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Abstract

Sports video analysis is a key domain in computer vision,
enabling detailed spatial understanding through multi-view
correspondences. In this work, we introduce SoccerNet-
v3D and ISSIA-3D, two enhanced and scalable datasets
designed for 3D scene understanding in soccer broadcast
analysis. These datasets extend SoccerNet-v3 and ISSIA
by incorporating field-line-based camera calibration and
multi-view synchronization, enabling 3D object localization
through triangulation. We propose a monocular 3D ball lo-
calization task built upon the triangulation of ground-truth
2D ball annotations, along with several calibration and re-
projection metrics to assess annotation quality on demand.
Additionally, we present a single-image 3D ball localization
method as a baseline, leveraging camera calibration and
ball size priors to estimate the ball’s position from a monoc-
ular viewpoint. To further refine 2D annotations, we intro-
duce a bounding box optimization technique that ensures
alignment with the 3D scene representation. Our proposed
datasets establish new benchmarks for 3D soccer scene un-
derstanding, enhancing both spatial and temporal analysis
in sports analytics. Finally, we provide code to facilitate
access to our annotations and the generation pipelines for
the datasets1.

1. Introduction
Sports analytics has become an increasingly vital compo-
nent in modern sports, transforming how teams, coaches,
and fans understand, optimize, and interact with athletic
performance [4, 23, 26, 32]. The proliferation of advanced
tracking technologies, such as player and ball tracking sys-
tems, has enabled the generation of rich, high-resolution
data that provides unprecedented insights into the dynamics
of sports competitions. The abundance of 2D tracking data
has revolutionized sports analysis, allowing more informed
decision-making, better player development, and the identi-
fication of strategic advantages. The ability to accurately

1https://github.com/mguti97/SoccerNet-v3D

capture and analyze tracking data now plays a vital role
in sports analytics, driving advances in player performance
optimization [10], injury prevention [2, 3], and the develop-
ment of sophisticated coaching strategies [36]. While wear-
able tracking devices have been instrumental in generating
performance data, computer vision has emerged as a com-
pelling alternative. Employing advanced vision-based al-
gorithms, researchers and sports organizations can extract
valuable tracking data directly from video footage, elimi-
nating the need for intrusive wearable sensors [9, 29]. This
camera-based approach offers several advantages, such as
simultaneous tracking of multiple athletes, the removal of
connectivity issues associated with wearables, and the po-
tential for retroactive analysis of historical game footage.
Computer vision-based tracking uses techniques such as ob-
ject detection [7], camera calibration [1, 16], and pose esti-
mation [39] to accurately identify and monitor players, the
ball, and other key elements in a sports environment. This
non-invasive, data-driven approach has become increas-
ingly sophisticated, generating rich, high-fidelity datasets
that provide deeper insights into athletic performance and
team dynamics.

Beyond motion tracking, computer vision has been
leveraged to enhance various aspects of the sports expe-
rience. A notable example is the development of semi-
automated offside detection systems [31, 33], which enable
quick and accurate identification of offside positions during
live matches. Similarly, automated systems for detecting
player fouls [18] assist referees, improving both the fair-
ness and pace of the game. Furthermore, real-time graph-
ics and overlays in sports broadcasts now integrate player
statistics, team formations, and tactical visualizations, en-
riching the viewing experience and facilitating data-driven
storytelling [5, 14, 30, 40]. Looking ahead, continued ad-
vances in computer vision are set to revolutionize multiple
facets of sports, from automated refereeing and advanced
performance analytics to immersive fan experiences.

While recent results in sports analytics and computer vi-
sion have unlocked unprecedented insights and experiences,
a critical limitation remains: the lack of publicly available
datasets that capture 3D scene information. This scarcity is
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primarily due to the challenges involved in recording and
annotating such data, including the need for intrusive sen-
sors, precise multi-camera synchronization, accurate cali-
bration, and extensive manual labeling. Consequently, the
development of robust 3D tracking and analysis methods is
hindered by the limited availability of high-quality datasets,
emphasizing the necessity for new resources to advance the
field. To date, several studies have leveraged 3D informa-
tion from sports videos: in basketball, multiple works have
explored multi-view video processing to achieve 3D local-
ization of players [24, 25, 38] and ball [37]. In [35] was
introduced DeepSportradar-v1, a suite of datasets designed
for tasks such as ball 3D localization, camera calibration,
player instance segmentation, and player re-identification.
Among these tasks, ball 3D localization truth is obtained by
leveraging calibration data and annotating both the ball cen-
ter and its vertical projection onto the ground. In baseball,
Chiu et al. [6] presented the MSL Baseball dataset, which
captures human 3D joint positions using four synchronized
cameras alongside a fixed VICON system with 10 cam-
eras operating in tandem to track 3D poses from markers
attached to the subjects. In soccer, Kazemi et al. [21] in-
troduced the KTH Multiview Football Dataset, which in-
cludes football images with 3D annotations and calibrated
multi-view camera parameters. This dataset has enabled the
development of various approaches for inferring 3D poses
from multi-camera systems [27]. More recently, in [19] was
introduced the WorldPose dataset, which features footage
from the 2022 FIFA World Cup. As a static multi-view
camera setup is available, 3D human pose estimates were
inferred by triangulating the 2D annotations, considering,
in practice, these estimates as the ground truth.

Despite the progress made in sports analytics and multi-
view 3D understanding [6, 19, 21, 24, 25, 35, 37, 38], no
publicly available dataset currently provides 3D ball lo-
cation with ground truth in soccer, limiting advances in
ball tracking and tactical analysis. To address this gap,
we introduce two novel datasets denoting SoccerNet-v3D
and ISSIA-3D, specifically designed to provide high-quality
3D ball localization annotations. These datasets leverage
multi-view frame synchronization, accurate camera calibra-
tion, and robust triangulation to generate precise 3D ball
positions. SoccerNet-v3D extends the existing SoccerNet-
v3 [8] dataset by incorporating refined ball annotations op-
timized for 3D reconstruction, offering a diverse range of
camera views and ball sizes, though lacking a temporal di-
mension. Conversely, ISSIA-3D builds on the ISSIA [11]
dataset, consisting of six static synchronized cameras, al-
lowing for temporal 3D ball tracking but with limited cam-
era view diversity. To enhance these datasets and establish
a strong benchmarking framework, we propose a monocu-
lar 3D ball localization task. To this end, we first apply a
YOLO [20] object detector to locate the ball in pixel space.

Then, PnLCalib [15] is utilized to calibrate the cameras and
the 3D ball position is recovered using the monocular ap-
proach in [34], setting the first baseline for the newly pro-
posed benchmarks. The main contributions of this work are
summarized as follows:
• We introduce SoccerNet-v3D and ISSIA-3D, the first

publicly available soccer datasets with 3D ball localiza-
tion annotations, leveraging multi-view synchronization
and precise camera calibration.

• We propose a simple yet effective triangulation frame-
work to generate 3D ball localization data from multi-
view annotated datasets, providing metrics for camera
calibration and triangulation to assess the quality of the
generated annotations.

• We present a bounding box optimization method that
leverages ball information from multiple views to re-
fine existing bounding boxes or generate new ones from
single-point annotations, ensuring consistency within the
3D scene.

2. Methodology
We propose the generation of multiple-view systems built
upon the combination of SoccerNet-v3 [8] broadcast main-
camera images along with its synchronized replay frames.
Moreover, we extend the triangulation pipeline to the IS-
SIA [11] dataset by leveraging its multiple-view synchro-
nized videos.

2.1. Multiple-view systems generation
Given a set of synchronized images from different points
of view, such as broadcast main-camera and replay frames,
our goal is to perform camera calibration for each individual
image using field-line annotations. Specifically, we define
the input set as F = {Ic}Cc=1 for C cameras that capture
the scene simultaneously, where c represents the camera in-
dex. The dataset generation process involves identifying
synchronized frame groups for which camera calibration
can be performed. This is achieved by estimating the pro-
jection matrices P = {Pc ∈ R3×4}Cc=1, ensuring C > 1,
which allows accurate object triangulation and, therefore,
3D scene reconstruction.

2.1.1. Framework overview
The first goal of the proposed framework is to achieve the
localization of 3D objects through triangulation between
synchronized and calibrated frames. The proposed datasets
are based on the following data distributions. Firstly,
SoccerNet-v3 –a major extension of the SoccerNet [13]
dataset– offers spatial annotations and cross-view corre-
spondences for both broadcast main-camera and replay
frames. It provides detailed annotations, including field
lines, goal parts, players, referees, teams, salient objects,
and jersey numbers, while also establishing object cor-



respondences across different views. Secondly, the IS-
SIA [11] dataset, which includes ball and player annota-
tions captured from six synchronized static cameras. The
cameras are arranged in pairs, ensuring overlapping fields
of view within each pair, but not across all six cameras si-
multaneously.

2.1.2. Camera calibration
We use PnLCalib [15] as the calibration method, an
optimization-based calibration pipeline that leverages a 3D
soccer field model and a predefined set of keypoints. More
specifically, we make use of SoccerNet-v3 [8] ground-truth
field-lines annotations and transform them into a geometri-
cally derived keypoint grid that serves as input to the PnL-
Calib [15] calibration pipeline. Then, this method employs
a standard full-perspective camera model as:

P = KR[I | −t] ∈ R3×4, (1)

where R ∈ R3×3 and t ∈ R3 denote the extrinsic param-
eters (rotation and translation, respectively) to map from
scene coordinates to camera ones; and K ∈ R3×3 denotes
the camera matrix, which includes the intrinsic parameters
to transform from camera coordinates to image ones. For
a camera defined by a focal length {αx, αy}, a skew coef-
ficient s, and a principal point {x0, y0}, camera matrix is
defined as:

K =

αx s x0

0 αy y0
0 0 1

 . (2)

The extrinsic and intrinsic parameters in Eq. (1) are inferred
by leveraging the coordinates of 3D object points and their
corresponding 2D projections using the soccer field model
as a calibration rig. Finally, the PnL optimization module
enhances calibration estimates by jointly leveraging the in-
formation from detected keypoints and lines.

To evaluate the quality of the generated calibration, we
make use of Magera et al. [22] benchmarking protocol with
slight modifications to adapt the metric to varying image
sizes in the dataset. The evaluation relies on calculating
the reprojection error between each annotated point and
the line to which it belongs. Adopting a binary classifi-
cation approach, each pitch segment is treated as a single
entity. Therefore, a polyline representing a soccer field seg-
ment s is classified as a true positive (TP) if ∀p ∈ s :
min (d(p, ŝ)) < γ, being ŝ the corresponding annotated
segment, p the set of points contained in the polyline, and γ
the distance threshold as a percentage of the diagonal length
of the image. Otherwise, this segment is counted as a false
positive (FP). Segments only present in the annotations are
counted as false negatives (FN). Hence, the Jaccard index
for camera calibration, JaCγ , at a threshold γ is defined as:

JaCγ =
TPγ

TPγ + FN + FP
, (3)

where it serves as a measure of calibration accuracy and,
in our case, as an indicator of the quality of the proposed
annotations.

2.2. 3D ball localization
To estimate the 3D position of the ball, we fuse multiple
2D detections from different camera views using triangu-
lation [17]. Triangulation is the process of determining a
point in 3D space given its projections onto two or more
images, provided that the camera calibration matrices are
known. Consider two cameras as an example, as illustrated
in Fig. 1. The goal of triangulation is to estimate the 3D
point p12 given two corresponding 2D points, p̄1 and p̄2, in
image coordinates, along with their respective camera pro-
jection matrices, P1 and P2. Ideally, p12 should be located
at the intersection of the two projection rays, d1 = K−1

1 p̄1

and d2 = K−1
2 p̄2. However, these rays do not always in-

tersect precisely due to noise introduced by lens distortion,
annotation inaccuracies, and calibration errors. Instead, tri-
angulation seeks an optimal 3D point that best fits the ob-
served 2D detections. Given that errors in 2D ball detec-
tions and calibration annotations can lead to inaccurate tri-
angulated positions, we use the reprojection error as a mea-
sure of triangulation accuracy. The reprojection error quan-
tifies the difference between the detected 2D ball positions
and the back-projected 2D positions of the estimated 3D
ball. To refine the 3D localization, we filter out triangu-
lated points with reprojection errors exceeding a predefined
threshold τ . The final 3D ball position is obtained by aver-
aging the remaining valid triangulated points as:

p =
1

N

∑
1≤i,j≤C

(pij |eij < τ), (4)

where p ∈ R3 represents the estimated 3D ball position, pij

is the triangulated 3D position from cameras i and j, eij de-
notes the corresponding reprojection error, τ is the reprojec-
tion error threshold, C is the total number of cameras, and
N is the number of valid triangulated pairs with eij < τ .
However, due to the inherent optimality of pij , triangula-
tions with small parallax angles β—the angle between the
two projection rays—exhibit higher uncertainty despite po-
tentially yielding low reprojection errors. This introduces
additional uncertainty in 3D ball localization, which should
be considered when interpreting results.

2.2.1. Single-image 3D ball localization
As a baseline for 3D ball localization from a single image,
we adopt the approach proposed in [34]. From a monocular
point of view, 3D ball localization can be performed using
calibration information and knowledge of the actual ball di-
ameter, in meters, together with its diameter and position in
the image pixels space. Given the diameter d and ball po-
sition p̄ = [p̄x, p̄y]

⊤ in pixels in the image space, the 3D



Figure 1. Ball triangularization. Given two cameras from differ-
ent viewpoints, a 3D point p12 can be estimated from the corre-
sponding image points p̄1 and p̄2 in cameras 1 and 2, respectively,
using the camera projection matrices P1 and P2. However, since
p12 is only an optimal solution, its reprojected image points, p̄′

1

and p̄′
2, do not exactly match the original points p̄1 and p̄2. e12

and e21 are the reprojection errors for cameras 1 and 2, respec-
tively. β corresponds to the parallax angle defined by the intersec-
tion of rays d1 and d2.

projection rays of the ball center pc and two diametrically
opposed ball edges p+

c and p−
c , expressed in the camera

coordinate system, are:

pc = K−1

p̄xp̄y
1

 , (5)

p±
c = K−1

 p̄x
p̄y ± d

2
1

 . (6)

Hence for a camera placed at t ∈ R3 in the world coordinate
system, with an orientation defined by R ∈ R3×3, and the
true ball diameter ϕ in meters, the 3D ball localization is
given by:

p = R⊤ ϕpc∥∥p+
c − p−

c

∥∥ + t. (7)

3. Dataset Generation
To the best of our knowledge, in the domain of soccer, only
two datasets provide 2D ball position annotations alongside
multi-view camera frames:

SoccerNet-v3 [8] is a soccer dataset comprising
33,986 images with varying resolutions from 960×540 to
1920×1080. It includes both main-camera and replay
frames, resulting in a total of 12,764 multi-view systems.
The ball position is manually annotated using bounding
boxes, while the field lines are annotated by placing as many
points as needed to fit them with segments formed by those
points.

Soccer-ISSIA [11] is a two-minute soccer sequence cap-
tured using six synchronized cameras at a resolution of

1920×1080 pixels and a frame rate of 25 frames per second.
The ball position was annotated using a semi-automated
process across all six streams, enabling 3D localization
through known calibration parameters. The full field cov-
erage is achieved through overlapping views from pairs of
cameras.

In this work, we focus on soccer, where the ball appears
relatively small in image space, is frequently occluded, of-
ten exhibits poor contrast, and is affected by noise and mo-
tion blur due to the sport’s fast-paced dynamics. To address
these challenges, we construct our datasets, SoccerNet-v3D
and ISSIA-3D, extending the original SoccerNet-v3 [8] and
ISSIA [11] datasets, respectively.

3.1. From SoccerNet-v3 [8] to SoccerNet-v3D

Starting from the raw SoccerNet-v3 [8] distribution, the
first filtering step involves selecting the subset of images
that can be calibrated using ground-truth field-line annota-
tions. Due to the limitations of PnLCalib [15], a minimum
number of keypoints from the predefined grid is required
to obtain an initial calibration estimate. Moreover, fisheye
shots from inside the goals, with extreme lens distortion,
make calibration unable. While this estimate serves as a
camera calibration annotation derived from field-line anno-
tations, we further assess its quality using the JaCγ index,
as described in Eq. (3). Specifically, we compute JaCγ for
γ = {0.5, 1, 2}%. As the confidence threshold for the an-
notation increases, the number of available multi-view sys-
tems with calibration decreases, as illustrated in Fig. 3. To
balance annotation reliability with a sufficient number of
samples, we adopt a threshold of JaC0.5% > 0.75, resulting
in a total of 4,297 calibrated multi-view systems.

However, despite JaCγ filtering, certain annotation er-
rors may persist. These errors can be categorized as fol-
lows: (1) inaccuracies in the keypoints forming the field-
line annotations, (2) inconsistencies between main-camera
and replay frames, where field-line annotations are correct
in image space but represent different field regions due to
perspective ambiguities (e.g., the main-camera annotation
corresponds to the right side of the field, while the replay
annotation represents the left one), and (3) discrepancies in
multi-view systems where images do not correspond to the
same exact moment in the match. To address these issues,
erroneous images are further filtered using the reprojection
error method described in Eq. (4).

Additionally, enforcing the requirement that ball anno-
tations must be present in multiple views for 3D ball lo-
calization via triangulation further reduces the number of
available multi-view systems. Furthermore, as discussed
in Sec. 2.2, the small parallax angle problem affects triangu-
lation accuracy. We identify a subset of multi-view systems
in which the replay view closely matches the main-camera
view, leading to unreliable 3D ball localization estimates.
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Figure 2. SoccerNet-v3D dataset generation pipeline. A main camera frame is paired with its corresponding synchronized replay frames,
where blue dots indicate the original SoccerNet-v3 [8] field-line annotations. The PnLCalib [15] calibration pipeline is used to recover
camera parameters {K,R, t}. Calibration quality is assessed using JaCγ , with a threshold of JaC0.5% = 0.75 to determine whether
frames qualify as part of the multi-view system. Red lines represent the field projection obtained from the estimated calibration. Finally,
2D ball annotations are fused through triangulation to estimate 3D ball positions, while original bounding boxes are optimized to ensure
consistency with the 3D scene, with the original SoccerNet-v3 [8] and optimized bounding boxes represented in red and blue, respectively.
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Figure 3. Available multi-view systems with ball bounding box
annotation on the SoccerNet-v3 [8] dataset in terms of the JaCγ

threshold for γ = {0.5, 1, 2}%. Red dashed line represents the
selected threshold corresponding to JaC0.5% > 0.75.

To mitigate this issue, we impose a minimum camera dis-
placement of 1 meter between frames. This final refine-
ment step results in the proposed SoccerNet-v3D, the first
publicly available soccer dataset with 3D ball localization
annotations. SoccerNet-v3D comprises 4,051 images with
precise 3D ball position annotations. An overview of the
dataset generation pipeline is illustrated in Fig. 2.

3.2. Bounding box optimization
Although SoccerNet-v3 [8] provides manually labeled ball
annotations in the form of bounding boxes, we identify
slight inaccuracies, particularly in the tightness of these
boxes. Even if the ball is assumed to be centered within
the bounding box, the estimated ball diameter in pixels us-
ing the bounding-box dimensions may be significantly er-
roneous. To address this issue, we employ the proposed

methodology to refine the dimensions of the bounding box,
ensuring consistency with the 3D representation.

Given an image with ground-truth field-line annotations
–providing a calibration estimate {K,R, t}– and a 3D ball
localization p obtained via triangulation using Eq. (4), we
compute the 3D ray corresponding to the ball center us-
ing Eq. (6). By fixing the true ball diameter ϕ in meters, we
optimize the bounding box dimensions through local min-
imization [28] of the 3D localization error by solving the
problem:

argmin
d

∥∥∥∥∥p−R⊤ ϕpc∥∥p+
c (d)− p−

c (d)
∥∥ − t

∥∥∥∥∥ . (8)

After varying the ball diameter in pixels, d, we effec-
tively traverse the 3D ray toward the ball center, obtaining a
dopt in Eq. (8) that minimizes the Euclidean distance to the
3D location label, p. Therefore, the optimized bounding
box will be centered on the 3D ray with a width and height
equal to dopt. This process ensures that the bounding boxes
remain consistent with the 3D scene representation.

3.3. From ISSIA [11] to ISSIA-3D
Unlike the SoccerNet-v3 [8] distribution, the ISSIA [11]
dataset does not include any calibration-associated annota-
tions. To address this, and given that it consists of six static
cameras, we manually annotate field-line labels following
the SoccerNet-v3 [8] format. This enables the generation of
camera calibration annotations using the PnLCalib [15] cal-
ibration pipeline. Notably, all six cameras satisfy the condi-
tion JaC0.5% > 0.75, ensuring reliable calibration quality.
Ball annotations in ISSIA [11] are not provided in a bound-
ing box format but rather as a single point indicating the ball



Bounding box IoU ↑ Size error [%] ↓

SoccerNet-v3 [8] 0.57 19.01
Optimized SoccerNet-v3 0.66 7.27

Table 1. Bounding-boxes comparison and evaluation against
the manually annotated ball bounding boxes. Evaluation metrics
include IoU and bounding box size error, expressed as a percent-
age of the annotated bounding box diagonal.

center in image coordinates. As with the SoccerNet-v3 [8]
dataset, 3D ball localization is obtained through triangula-
tion using the method described in Eq. (4). This method is
also leveraged to filter out erroneous annotations based on
reprojection errors. Although the ball is never visible in all
six cameras simultaneously due to their spatial distribution
around the field, this approach yields the ISSIA-3D dataset,
comprising 10,544 images with precise 3D ball position an-
notations.

Furthermore, ISSIA [11] dataset single-point ball anno-
tations are enhanced with generated bounding boxes us-
ing the previously described bounding box optimization
method. This refinement enhances the dataset’s applicabil-
ity for object detection tasks.

4. Experiments
The implementation details and metrics used to conduct this
research are presented below.

4.1. Datasets
SoccerNet-v3D: This dataset is built upon SoccerNet-
v3 [8] by leveraging both the main camera and the replay
frames to calibrate the 3D scene. A total of 4,051 frames
with 3D ball localization annotations are included, split into
train (3,240) and test (811) sets. The dataset presents a sig-
nificant challenge due to the diverse camera viewpoints, as
replay frames introduce a wide range of perspectives be-
yond the main camera shots.

ISSIA-3D: This dataset is constructed from ISSIA [11]
by employing synchronized cameras for 3D scene calibra-
tion. Cameras 3 to 6 are designated as the train set, while
cameras 1 and 2 form the test one, containing 8,686 and
1,858 frames, respectively. Unlike SoccerNet-v3D, ISSIA-
3D includes temporal information, making it particularly
suitable for additional 3D ball tracking tasks.

4.2. Optimized bounding boxes
To validate the effectiveness of our optimization method,
we manually annotate precise ball bounding boxes on ap-
proximately 10% of the SoccerNet-v3D training set images.
A quantitative comparison between the original bounding
boxes and those optimized using the method described

in Sec. 3.2 is presented in Tab. 1. For evaluation, we use
Intersection over Union (IoU) as the primary metric. Ad-
ditionally, to account for varying image resolutions and
bounding box sizes, we measure the bounding box size er-
ror as a percentage of the annotated bounding box diagonal
length. Results demonstrate that the optimized bounding
boxes outperform the original SoccerNet-v3 [8] ball anno-
tations on the proposed metrics, confirming their reliability
as an annotation source. Furthermore, a visual comparison
of the original and optimized bounding boxes is provided
in Fig. 4, illustrating improvements in localization accuracy.

4.3. Evaluation metrics
We assess 2D ball detection performance using Average
Precision (AP) at an IoU threshold of 0.5 (AP@0.5) [12],
which serves as the standard evaluation metric for single-
class object detection. For 3D localization evaluation we
compute the projection error (MAEm), defined as the Eu-
clidean distance in meters between the actual ball position
and the estimated one, using Eq. (7). In addition, we cal-
culate the relative distance error (MAE%), which represents
the ratio between the projection error and the distance to the
cameras. To further analyze localization accuracy, we em-
ploy a precision plot in 3D space, illustrating the percentage
of frames where the estimated ball position falls within a
given threshold distance from the annotation. The position
refers to the center of the ball, and the distance is measured
as the Euclidean distance between the estimated and anno-
tated ball centers. For a representative precision score, we
set the threshold to τ3D = 2 meters for 3D localization. For
the computation of MAEm, MAE%, and precision metrics,
only predictions with a non-zero IoU against the ground-
truth bounding boxes are considered, ensuring that errors
are evaluated only for valid detections.

4.4. Baselines
In this section, we present various experiments and evaluate
performance in both 2D and 3D space. The proposed
monocular 3D ball localization framework comprises three
key tasks: 2D ball detection, field localization, and camera
calibration.

2D Ball Detection: For this task, we employ the state-
of-the-art object detector YOLOv11 [20], specifically the
YOLOv11-l model. We first train an initial YOLO model,
denoted as YOLObase, on the full SoccerNet-v3 [8] training
set. We then fine-tune this base detector on the optimized
bounding boxes of the SoccerNet-v3D training set, resulting
in the enhanced model YOLOopt. Additionally, we fine-tune
YOLObase on the ISSIA-3D training set using its generated
bounding boxes to obtain YOLOISSIA.

Field localization: This task involves detecting key field
landmarks, such as field lines, circles, and keypoints, which
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Figure 4. A visual comparison of the precise manually annotated ball bounding boxes (blue), the original SoccerNet-v3 [8] ball bounding
boxes (red), and the optimized bounding boxes (orange) obtained through the optimization pipeline described in Sec. 3.2.

Figure 5. Precision-threshold curve for 3D ball localization in
SoccerNet-v3D (left) and ISSIA-3D (right). The red dashed line
represents the fixed threshold τ3D used for 3D localization results
comparison.

serve as reference points for camera calibration. For the
SoccerNet-v3D dataset, we utilize the PnLCalib [15] key-
point detector, as it has been pre-trained on the SoccerNet-
v3 [8] distribution. Additionally, ground-truth field-line an-
notations are used as an oracle baseline for evaluation. In
the case of ISSIA-3D, since the dataset consists of static
cameras, manually labeled ground-truth annotations in the
SoccerNet-calibration [8] format are directly used for cali-
bration.

Camera calibration: We apply the PnLCalib [15] cam-
era calibration pipeline to estimate the intrinsic and extrin-
sic camera parameters from 2D-3D correspondences.

3D Ball Localization: We employ the method proposed
by [34], as detailed in Sec. 2.2.1, to estimate the 3D position
of the ball from a monocular viewpoint by leveraging the
relationship between the detected ball dimensions in pixels
and its actual diameter in meters.

4.5. Experiment results
The detected ball bounding boxes, together with the cam-
era calibration, are used to compute the 3D ball position
using the method described in Eq. (7) and the known ball
diameter in meters. Results for the 2D detection and 3D

ball localization tasks are presented in Tab. 2. In the
SoccerNet-v3D dataset distribution, YOLOopt significantly
outperforms YOLObase in the AP@0.5 metric. This im-
provement is primarily due to the optimized bounding boxes
used for training YOLOopt, which benefit from fine-tuning
on a dataset with more accurately fitted bounding boxes and
leading to improved detection performance. For 3D ball
localization, the impact of the tighter bounding boxes is
evident in the MAE metrics, showing a significant reduc-
tion in localization errors, both in absolute meters and rel-
ative to camera distance. There is also a notable increase
in precision for τ3D = 2m. Since both YOLO models
were trained on the SoccerNet-v3 [8] distribution, these re-
sults highlight the effectiveness of the optimized bounding
boxes, which not only enable YOLOopt to predict more pre-
cise bounding boxes but also to infer more accurate ball di-
mensions in pixels. Similar trends are observed when using
the PnLCalib [15] keypoint and line detection method for
field localization instead of ground-truth field-line annota-
tions. Although a decline in performance might typically
be expected, the results further demonstrate the method’s
robustness to small deviations in calibration estimates.

Results on the ISSIA-3D dataset are straightforward.
YOLO models trained on SoccerNet-v3 [8] data, i.e.,
YOLObase and YOLOopt, fail to detect and localize the ball
in both 2D and 3D spaces. This highlights the need for
generating bounding boxes from ISSIA’s single-point ball
annotations, as described in Sec. 3.2. By fine-tuning on
the ISSIA-3D generated bounding boxes, the YOLOISSIA
model successfully detects the ball, achieving a notable im-
provement in the AP@0.5 detection metric. Furthermore,
3D localization errors are comparable to—or even smaller
than—those on the SoccerNet-v3D-test set. These results
underscore the importance of the bounding box optimiza-
tion pipeline, which not only allows training an object de-
tector on a dataset without original bounding box annota-
tions but also ensures the quality of the generated boxes.
The precision-threshold relationship for 3D ball localiza-
tion is shown in Fig. 5, with results for the SoccerNet-



Dataset 2D ball detector Field localization AP@0.5 ↑ MAEm ↓ MAE% ↓ P2m ↑

SoccerNet-v3D
YOLObase Oracle 0.65 15.3 18.3 0.03
YOLOopt Oracle 0.81 4.2 5.5 0.30

YOLObase PnLCalib [15] 0.65 15.8 18.7 0.03
YOLOopt PnLCalib [15] 0.81 4.2 5.2 0.26

ISSIA-3D
YOLObase Oracle 0.04 28.8 30.1 0.00
YOLOopt Oracle 0.39 15.6 16.9 0.00

YOLOISSIA Oracle 0.65 4.2 4.8 0.35

Table 2. Error analysis on SoccerNet-v3D and ISSIA-3D test sets. The models YOLObase, YOLOopt, and YOLOISSIA serve as ball
detection baselines. For field localization in the SoccerNet-v3D distribution, both Oracle and PnLCalib [15] field-landmark detection
methods are evaluated, whereas only Oracle detections are used for the ISSIA-3D distribution due to its static camera setup.

Figure 6. Sensitivity analysis of the 3D ball localization method
using 100 samples from the SoccerNet-v3D-train set. The left plot
illustrates the 3D ball localization error as a function of ball size
variation, expressed as a percentage of the bounding box size. The
right plot shows the error in relation to ball center variation, mea-
sured as a percentage of the image’s diagonal length. In both plots,
the color scale represents the distance from the ball to the camera.

v3D-test (left) and the ISSIA-3D-test (right) datasets. The
former demonstrates a consistent trend with the obtained
MAE metrics. Oracle field localization slightly outper-
forms the PnLCalib [15] landmark detection pipeline, and
YOLOopt achieves significantly higher precision values
across all thresholds. For the ISSIA-3D-test dataset, al-
though YOLOopt improves ball detection and size estima-
tion over the base model, its generalization capability is
insufficient for competitive results. This emphasizes the
importance of the bounding box generation pipeline, as
YOLOISSIA significantly outperforms the previous models
across all thresholds.
Finally, sensitivity analysis for the 3D ball localization
method is illustrated in Fig. 6, showing the behavior of 100
randomly selected samples from the SoccerNet-v3D-train
set. The 3D ball localization error is evaluated by varying
the annotated bounding box size and shifting the bounding
box center, with error curves color scale representing the
distance from the ball to the camera. The results indicate
that the 3D localization error is highly sensitive to varia-

tions in the predicted ball size, ranging from approximately
6 to 14 meters for a 10% pixel size variation, with sensitiv-
ity increasing as the ball’s distance from the camera grows.
In contrast, sensitivity to bounding box position is less pro-
nounced, with errors ranging from 0.6 to 1.6 meters when
the bounding box position is varied by 2% of the image di-
agonal. While some correlation with the camera distance
is observed, it is notably less significant than with ball size
variation.

5. Conclusion

In this paper, we introduce two enhanced datasets,
SoccerNet-v3D and ISSIA-3D, for 3D scene understanding
in soccer broadcast analysis. Leveraging field-line-based
camera calibration and multi-view synchronization, we pro-
pose a monocular 3D ball localization task, which relies on
triangulating ground-truth 2D ball annotations. Addition-
ally, we present a bounding box optimization method that
ensures alignment with the 3D scene representation. By
combining object detectors, a camera calibration algorithm,
and the real ball size in meters, we establish new bench-
marks for monocular 3D ball localization task. Extensive
evaluation demonstrates the feasibility of the proposed task
and validates the effectiveness of the bounding box opti-
mization algorithm. For future work, we aim to enhance
our approach with more advanced monocular 3D ball lo-
calization pipelines, leverage the temporal dimension of the
ISSIA-3D dataset to extend the task to 3D tracking, and ex-
plore the datasets’ expansion potential for additional tasks
by leveraging already-existing annotations such as player
bounding boxes.
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