
VQ-HPS: Human Pose and Shape Estimation in a
Vector-Quantized Latent Space

Guénolé Fiche1 , Simon Leglaive1 , Xavier Alameda-Pineda2 , Antonio
Agudo3 , and Francesc Moreno-Noguer3

1 CentraleSupélec, IETR UMR CNRS 6164, France
2 Inria, Univ. Grenoble Alpes, CNRS, LJK, France

3 Institut de Robòtica i Informàtica Industrial (CSIC-UPC), Spain

Abstract. Previous works on Human Pose and Shape Estimation (HPSE)
from RGB images can be broadly categorized into two main groups: para-
metric and non-parametric approaches. Parametric techniques leverage
a low-dimensional statistical body model for realistic results, whereas
recent non-parametric methods achieve higher precision by directly re-
gressing the 3D coordinates of the human body mesh. This work in-
troduces a novel paradigm to address the HPSE problem, involving a
low-dimensional discrete latent representation of the human mesh and
framing HPSE as a classification task. Instead of predicting body model
parameters or 3D vertex coordinates, we focus on predicting the proposed
discrete latent representation, which can be decoded into a registered hu-
man mesh. This innovative paradigm offers two key advantages. Firstly,
predicting a low-dimensional discrete representation confines our predic-
tions to the space of anthropomorphic poses and shapes even when little
training data is available. Secondly, by framing the problem as a classifi-
cation task, we can harness the discriminative power inherent in neural
networks. The proposed model, VQ-HPS, predicts the discrete latent rep-
resentation of the mesh. The experimental results demonstrate that VQ-
HPS outperforms the current state-of-the-art non-parametric approaches
while yielding results as realistic as those produced by parametric meth-
ods when trained with few data. VQ-HPS also shows promising results
when training on large-scale datasets, highlighting the significant po-
tential of the classification approach for HPSE. See the project page at
https://g-fiche.github.io/research-pages/vqhps/.
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1 Introduction

Capturing and understanding human motion from RGB data is a fundamental
task in computer vision, with many applications such as character animation
for the movie and video-game industries [24,72,86] or performance optimization
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Fig. 1: VQ-HPS formulates the human pose and shape estimation prob-
lem as a classification task in a vector-quantized latent space. We present
the results of VQ-HPS on two challenging scenarios with in-the-wild conditions and
poor illumination, comparing its performance to that of HMR [34], CLIFF [45] and
FastMETRO-S [10] when trained on little data.

in sports [21, 79]. However, due to depth ambiguity, estimating 3D human pose
and shape from monocular images is an underdetermined problem. To overcome
this issue, parametric approaches (also called model-based) use statistical mod-
els of the human body, which enable the reconstruction of a 3D human mesh by
predicting a small number of parameters [2, 50,59,61,81]. Earlier methods were
optimization-based, estimating the parameters of a human body model itera-
tively using 2D cues [6,43,62]. However, their need for a good initialization, slow
running time, and propensity to converge towards local minima led many recent
works to focus on regression-based methods, which predict the parameters of a
human body model directly from RGB data [27, 34, 45]. Despite producing re-
alistic results in most scenarios, methods regressing the parameters of a human
body model face several issues well documented in the literature: 1) Paramet-
ric methods struggle in capturing detailed body shape and are biased towards
the mean shape [15]; 2) Most human body models use rotations along the kine-
matic tree for expressing the pose. In addition to being difficult to predict for
neural networks [12, 41], this representation induces error accumulation when
all rotations are predicted simultaneously [78, 87]; 3) Most regression methods
extract global feature vectors from the image as an input, which do not contain
fine-grained local details [48].

To alleviate these issues, several works switched to methods inspired by 3D
pose estimation models that predict 3D coordinates directly. Earlier methods
predicted the 6890 vertices of the full SMPL [50] mesh using graph convolu-
tional neural networks (GCNNs) modeling the mesh structure and focusing on
local interaction between neighboring vertices [12, 41]. While [47] used Trans-
formers [77] to model global interactions between joints and vertices, others
argued that a hybrid architecture mixing Graph Convolutional Neural Networks
(GCNNs) and Transformers would enable modeling both local and global in-
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teractions [48]. More recently, FastMETRO [10] proposed a Transformer-based
encoder-decoder architecture to disentangle image and mesh features and to pre-
dict 3D coordinates of body joints and a coarse mesh that can be upsampled
to the full SMPL body mesh. Significantly different from prior works, LVD [15]
proposed an optimization-based approach estimating each vertex position inde-
pendently by predicting vertex displacement with neural fields. Despite propos-
ing alternatives to model-based approaches, these methods also present some
drawbacks: 1) Approaches regressing all vertices of the body mesh at once lack
global interaction modeling when using GCNNs [48] and have a very high com-
putational cost when using Transformers [10, 18]; 2) Regression-based methods
sometimes output noisy meshes, some of them regress the SMPL parameters
from the predicted mesh to obtain smoother predictions, but it comes with a
loss of accuracy [10,12,41]. This problem is even more glaring when little train-
ing data is available, with non-anthropomorphic predictions as displayed in Fig. 1
for [10]; 3) Methods regressing 3D vertices are very sensible to the distribution
shift between training and test data [47] (see Sec. 5.4); 4) LVD [15] is real-time
and obtains state-of-the-art results for shape estimation, but is not adapted to
extreme poses.

This work introduces a method significantly different from all prior human
pose and shape estimation (HPSE) approaches. Instead of predicting the param-
eters of a human body model or 3D coordinates, we learn to predict a discrete
latent representation of 3D meshes, transforming the HPSE into a classification
problem in which we can exploit the originally targeted discriminative power of
Transformers, which has been proven unmatched in natural language processing.
For learning our discrete latent representation of meshes, we build on the vector
quantized-variational autoencoder (VQ-VAE) [75] framework and adapt it to the
fully convolutional mesh autoencoder proposed in [91]. The encoder of the pro-
posed model, called Mesh-VQ-VAE, provides a low-dimensional discrete latent
representation preserving the spatial structure of the mesh. We then propose a
Transformer-based encoder-decoder model, called VQ-HPS, for learning to solve
the HPSE problem using the cross-entropy loss. Once the mesh discrete rep-
resentation is predicted, we can decode it using the pre-trained Mesh-VQ-VAE
decoder and obtain a full mesh following the SMPL mesh topology [50]. Since the
Mesh-VQ-VAE is pre-trained on a large human motion capture database [54],
it automatically learns to decode smooth and realistic human meshes. This is
particularly interesting when training with little data: VQ-HPS learns to pre-
dict sequences of indices corresponding to realistic meshes early in the training
process, as demonstrated in the supplementary materials.

In the context of few training data availability, VQ-HPS achieves state-of-
the-art (SOTA) performance on the challenging in-the-wild 3DPW [55] and
EMDB [36] benchmarks: it significantly outperforms other methods quantita-
tively while producing qualitative results as realistic as parametric methods (see
Fig. 1). Moreover, it also shows SOTA results when trained on standard large-
scale datasets, enhancing the significant potential of the classification-based ap-
proach for solving the HPSE problem.
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Our key contributions can be summarized as follows:

– A Mesh-VQ-VAE architecture providing a discrete latent representation of
3D meshes.

– A classification-based formulation of the HPSE problem using the introduced
discrete latent representation of human meshes.

– VQ-HPS, a Transformer-based encoder-decoder model learning to solve the
proposed HPSE classification problem using the cross-entropy loss.

– Code and trained models are available from the project page.

2 Related Work

2.1 Parametric Approaches

Several methods are dedicated to recovering the parameters of a parametric
human model, such as SMPL [50]. Optimization techniques iteratively esti-
mate the parameters of a body model based on images or videos, ensuring that
the projection of predictions aligns with a set of 2D cues, including 2D skele-
tons [6,22,33,61], part segmentation [43,85], or DensePose [28]. Pose and motion
priors are commonly incorporated into optimization methods to enhance the re-
alism of predictions [52, 62, 70, 74]. On the contrary, regression methods employ
neural networks to predict the parameters of a human body model from input
images or videos. Many of these methods leverage convolutional neural networks
(CNNs) for extracting image features [11,19,34,35,38–40,45,73,82,83,88]. Recent
works have demonstrated remarkable performance by replacing CNNs with Vi-
sion Transformers [17] as seen in [8,27,46,90]. Some methods output probabilistic
results, enabling sampling among plausible solutions [4,23,42,68,69]. While op-
timization methods typically yield superior results, they come with significantly
longer running times than regression methods and require precise initialization
and accurate 2D cues. One limitation in training regression models is the scarcity
of RGB data with 3D annotations. Prior works have addressed this challenge by
employing synthetic data [5,9,60,68,76] or pseudo-labels [33,43,57] for training
their models.

While parametric models can estimate reasonable human poses, the model
parameter space may not be the most suitable focus for predicting human pose
and shape [15, 41]. Recognizing these limitations inherent in parametric ap-
proaches has spurred the development of non-parametric methods.

2.2 Non-parametric Approaches

Several works have explored methods for directly predicting 3D meshes with-
out relying on the parameters of a human body model [10, 15, 41, 47, 48, 58]. In
earlier approaches, regression architectures based on GCNNs were proposed,
utilizing a graph structure derived from the topology of the SMPL human
mesh [41, 48, 58]. Recent advancements have leveraged Transformer architec-
tures, capitalizing on attention mechanisms to capture relationships between
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joints and vertices. While approaches like [47,48] have introduced encoder-based
strategies that concatenate image features and mesh tokens for predicting 3D
coordinates, FastMETRO [10] presented an encoder-decoder architecture, ef-
fectively disentangling image and mesh modalities. Recently, [18] introduced a
token pruning strategy to enhance the efficiency of Transformer-based HPSE,
and [15] achieved state-of-the-art accuracy in body shape estimation through an
optimization-based approach relying on per-vertex neural features.

This work introduces a non-parametric approach to HPSE. Our objective is to
estimate the vertices of a human body mesh, adhering to the SMPL topology [50].
In contrast to all prior works, our method involves predicting the mesh through
a discrete latent representation, reframing HPSE as a classification problem. Al-
though exploiting the discriminative power of classification networks has already
been proposed for the Human Pose Estimation (HPE) problem (see Sec. 2.3), to
our knowledge, this has not been done before for the HPSE problem.

2.3 Quantization of the Human Pose and Shape

Some works explored quantization for HPE. [44] proposed to discretize hori-
zontal and vertical coordinates for 2D HPE. On the other hand, [63, 64] used
anchor poses and refined them for solving the 3D HPE problem. [14] proposed a
human pose and shape classification method, but the system was trained on only
12 different postures. Some approaches proposed hand shape classification [37],
especially for sign-language recognition following the works of [13]. Some works
also proposed face shape classification [66] and head pose estimation [29] using
a Support Vector Machine.

Similar to ours, recent works in human motion generation [51, 71, 84, 89]
used a VQ-VAE [75] for quantizing human motion. The main difference between
these models and the proposed Mesh-VQ-VAE is that a single index encodes a
sequence of poses in these works. In contrast, we use several indices to encode
a single pose, allowing for higher precision. Also, none of these works encode
the 3D mesh: [51] works on the SMPL parameters, and others only encode a
3D skeleton. Furthermore, human motion forecasting and generation tasks differ
significantly from HPSE.

3 Background

SMPL model. SMPL [50] is a skinned vertex-based human body model that
maps the body shape parameter β ∈ R10 and the pose parameter θ ∈ R72 to 3D
vertices through the differentiable function M(β, θ). It outputs the 3D vertices
V ∈ R6890×3 of a registered mesh, and 3D joints J ∈ R24×3 can be extracted
from the mesh using the joint regressor matrix Jsmpl. In this work, we do not
predict the parameters of the SMPL model, as prior works [12, 15, 41] showed
that they are not a suitable target for regression models. However, the mesh
predicted by the proposed VQ-HPS model follows the SMPL mesh topology. It
allows us to use tools like joint regressors and provides a fair comparison with
existing approaches.
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Fig. 2: VQ-HPS global process for predicting the mesh given an image. We
first predict the camera π̂ and the rotation R̂ from the image I. Then, we use the image,
the predicted rotation, and the camera to predict the vertices V̂c of the canonical mesh.
Finally, V̂c is rotated according to R̂ to obtain the final mesh vertices V̂ .

Fully convolutional mesh autoencoder. The fully convolutional mesh autoen-
coder [91] is an autoencoder specifically tailored for handling arbitrary registered
mesh data. It relies on the definition of novel convolution and pooling operators
with globally shared weights and locally varying coefficients depending on the
mesh structure. These variable coefficients are pivotal in capturing intricate de-
tails inherent to irregular mesh connections, contributing to the model’s perfor-
mance in mesh reconstruction. One of the main advantages of fully convolutional
architecture is that the latent codes are localized, which gives a latent space pre-
serving the spatial structure of the mesh. The latent representation of the fully
convolutional mesh autoencoder lies in RN×L where N is the number of latent
vectors, and L is the dimension of latent vectors.

Vector quantized-variational autoencoder. The VQ-VAE [75] is an encoder-decoder
model with a discretized latent space. The idea is to learn jointly an encoder, a
dictionary of latent codes, and a decoder. The encoder maps the input data x into
a latent variable z ∈ RN×L. We then discretize z using a learned dictionary of
S latent codes of dimension L. We can then write zd ∈ RN×L where each vector
of z is replaced by the closest latent code, or zq ∈ {1, . . . , S}N , where the index
of the closest latent code replaces each vector of z. The decoder reconstructs x
from the discrete latent representation zd and the learned dictionary.
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4 Method

4.1 Proposed HPSE method

We propose a novel classification-based method for HPSE. Our goal is to predict
an oriented 3D mesh from an image. VQ-HPS consists of an encoder-decoder
architecture, predicting the human mesh discrete representation of the intro-
duced Mesh-VQ-VAE from image features. We believe this is the most adapted
architecture for predicting our discrete latent representation, with encoder to-
kens corresponding to image patches and decoder tokens corresponding to body
parts and indices in the latent space. To ease the low-dimensional representa-
tion learning of the mesh, the predicted mesh is non-oriented and centered on
the origin: we call it a canonical mesh. To obtain the final oriented mesh, we
then need to predict the rotation R ∈ R3×3, and for better alignment with the
image, we also regress the perspective camera π = [s, t] ∈ R3 where s is a scale
parameter and t is a 2D translation. The overall method is shown in Fig. 2, and
we will now detail each of its primary components.

Mesh-VQ-VAE. For learning discrete representations of meshes, we build on
the fully convolutional mesh autoencoder [91] (see Sec. 3) for encoding the full
canonical mesh vertices Vc ∈ R6890×3 to a latent representation z ∈ RN×L. We
add a vector quantization step in the latent space similar to [75] (see Sec. 3),
which maps z to the discrete latent representation zq ∈ {1, . . . , S}N . While the
fully convolutional architecture preserves the spatial structure of the mesh, the
added quantization step allows us to view the HPSE as a classification task as
we aim to predict the indices of the latent mesh representation given an image.
Our Mesh-VQ-VAE in Fig. 2 can be seen as a VQ-VAE [75] whose architecture
corresponds to the fully convolutional mesh autoencoder.

Feature extractors. The first step for image-based HPSE is to extract features
from the image. We use CNN backbones to preserve the spatial structure of the
image, and we obtain features X ∈ RH×W×C , where C is the number of channels
of the backbone and H and W are the spatial dimensions. We use two feature
extractors. The feature extractor of the camera and rotation predictors gives
Xrot. The feature extractor gives Xmesh with W = 1 in the latent canonical
mesh predictor.

Rotation and camera prediction. We start by predicting the mesh rotation and
the perspective camera parameters (see again Fig. 2). These predictions depend
on the image features and an initial body pose p ∈ R17×3 following the Hu-
man3.6M [32] joints layout and corresponding to the SMPL T-pose. We predict
the rotation R̂ and the weak perspective camera parameters π̂.

Latent canonical mesh regressor encoder. We then predict the discrete latent
representation of the canonical mesh. The Transformer encoder inputs are the
features extracted by the CNN backbone. Before being fed to the Transformer
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Fig. 3: Mesh-VQ-VAE reconstruction error. Samples of reconstruction on the
3DPW test set. The error is in cm and corresponds to the Euclidean distance between
the reconstruction’s original mesh and the corresponding vertex.

encoder, we apply a 1x1 convolution on the image features to make them of
dimension and obtain X ′

mesh ∈ RH×W×D where D is the hidden state size of
the Transformer. These features are flattened to obtain HW tokens of dimen-
sion D, and then we add positional encoding. The obtained tokens are fed to
a Transformer encoder, using self-attention between all image tokens to output
encoded image features Xfeat ∈ RHW×D.

Latent canonical mesh regressor decoder. The Transformer decoder takes as in-
puts N learned mesh tokens Mt of size D, each responsible for predicting an
index of the Mesh-VQ-VAE discrete latent representation. We need to solve N
classification problems, one for each index. Each problem has S classes, S corre-
sponding to the size of the Mesh-VQ-VAE codebook. The Transformer decoder
consists of self-attention between learned tokens and cross-attention with im-
age features. It outputs latent mesh features zfeat ∈ RN×D. Then (see Fig. 2),
to obtain the logits ẑlog ∈ RN×S , we rely on the mesh features as well as on
the previously predicted rotation and camera. We obtain the predicted discrete
representation ẑq ∈ {1, . . . , S}N by applying an argmax(·) operation.

Reconstructing the full mesh. From the discrete latent mesh representation ẑq ∈
{1, . . . , S}N , we use the decoder of the introduced Mesh-VQ-VAE to reconstruct
the vertices of a full canonical mesh V̂c ∈ R6890×3. We apply the predicted
rotation R̂ of the oriented mesh in the frame coordinates to the vertices to
obtain the vertices V̂ . This process is shown in Fig. 2.

4.2 Training VQ-HPS

VQ-HPS is trained in a supervised manner, given a dataset of RGB images paired
with meshes. The canonical mesh predictor is trained solely on the discrete latent
representation of meshes. To obtain the latent representation of the ground truth
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and decode the predicted indices to a full mesh, we use the Mesh-VQ-VAE, which
is pre-trained and frozen during the VQ-HPS training. The fact that the Mesh-
VQ-VAE is frozen during the training of VQ-HPS is crucial for making realistic
predictions in the context of scarce data. Pre-training acts as a regularization,
allowing for the reduction of the amount of training data.

Mesh-VQ-VAE. The Mesh-VQ-VAE (see Fig. 2) is trained on the AMASS [54]
dataset and finetuned on the 3DPW [55] training set. To ease the learning of
the mesh discrete representation with a limited number of indices, we train
the Mesh-VQ-VAE with non-oriented meshes translated to the origin (canonical
meshes). The final reconstruction error is 4.7 mm, which is almost not noticeable
qualitatively. This reconstruction error is an important parameter as it corre-
sponds to the minimal per-vertex error (see Sec. 5.2) we can obtain. Qualitative
reconstruction results on 3DPW are shown in Fig. 3.

Latent canonical meshes. To learn how to predict the pose and shape, we only
use the discrete representation of the canonical mesh as the training target. The
loss Lmesh is the cross-entropy between the discrete latent representation of the
ground truth mesh and the prediction.

Mesh rotation. We learn to predict the global orientation by computing the
mean squared error between the ground truth and predicted rotation matrices.

Reprojection. We add a reprojection error to guide the rotation learning and for
better image alignment. It is computed between the 2D projection (using the
predicted weak-perspective camera) of the 3D joints extracted from the predicted
mesh and the 2D ground truth joints. This loss is computed using the SMPL 24
joints, which can be extracted from the full mesh using a joint regressor Jsmpl

(see Sec. 3). The reprojection loss is computed as:

L2D = ||ŝΠ(Ĵ3D) + t̂− J2D||1, (1)

where ŝ is the predicted scale, t̂ the predicted 2D translation and Ĵ3D are the 3D
joints computed from the predicted oriented mesh vertices V̂ . Π is the ortho-

graphic projection using the matrix
[
1 0 0
0 1 0

]⊤
and J2D denotes the ground truth

2D joints.

Learning scheme. The rotation prediction is learned using Lrot and L2D. We
use L2D for the camera and Lmesh for the canonical mesh. L2D might help to
learn the pose, but we chose not to use it to demonstrate that the cross-entropy
is sufficient for making accurate predictions.
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5 Results

5.1 Datasets

AMASS. The Mesh-VQ-VAE is trained on AMASS [54], a large human motion
database in the SMPL [50] format. It contains more than 11000 motions and 300
subjects, which makes it representative of the variety of body poses and shapes.

3DPW. This dataset [55] consists of 60 in-the-wild RGB videos with 3D ground
truth for human bodies. We use the pre-defined splits for training, validation,
and testing.

EMDB. EMDB [36] contains 81 indoor and outdoor videos with the ground
truth SMPL bodies. We use EMDB1, which consists of the 17 most challenging
sequences for testing, and train on the rest of the dataset (referred to as EMDB2
in [36]).

COCO. COCO [49] is a dataset of images annotated with 2D keypoints. For
training a human mesh predictor, we follow [33,45] and use pseudo-ground truth
meshes. We use the same annotations as [45], with 28k images.

5.2 Metrics

We use several metrics for evaluating the predictions of VQ-HPS. All of them
will be expressed in millimeters (mm) for the whole results section.

Per-vertex error (PVE) measures the Euclidean distance between the predicted
vertices and the ground truth.

Mean-per-joint error (MPJPE) measures the Euclidean distance between the
predicted joints and the ground truth. In our case, the joints are extracted from
the predicted mesh using a joint regressor similar to Jsmpl.

Procrustes-aligned mean-per-joint error (PA-MPJPE) measures the Euclidean
distance between the predicted joints and the ground truth after a Procrustes
alignment.

5.3 Training on limited data

We train VQ-HPS separately on the 3DPW, COCO, and EMDB training sets
(see Sec. 5.1) to see how it performs when trained on limited data. We compare
our performance with HMR [34], CLIFF [45], and FastMETRO [10] trained with
the same data. We chose these 3 models for comparison because HMR is the ba-
sic architecture for parametric human mesh recovery, CLIFF is the SOTA for
parametric HPSE, and FastMETRO is the SOTA for non-parametric HPSE and
the closest method to ours. For these experiments, the backbone for all networks
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Table 1: Results on in-the-wild datasets We compare VQ-HPS with SOTA meth-
ods using standard metrics on 3DPW trained with 3DPW (1st col.), 3DPW trained
with COCO (2nd col.), EMDB trained with EMDB (3rd col.), and EMDB trained with
COCO (4th col.).

Method PVE ↓ MPJPE ↓ PA-MPJPE ↓

HMR [34] 209.34 110.28 191.28 170.01 177.57 94.11 172.20 149.16 89.31 57.77 96.15 82.40
CLIFF [45] 223.90 105.36 163.27 163.16 188.82 89.32 144.65 142.98 89.20 56.83 86.90 81.61
FastMETRO-S [10] 176.34 107.77 151.02 143.09 156.99 95.84 132.90 123.89 104.64 57.03 95.48 80.17

VQ-HPS (ours) 163.88 102.92 138.49 152.65 139.80 87.98 117.08 131.09 84.92 53.31 77.53 74.47

Image Ground truth VQ-HPS (ours) HMR CLIFF FastMETRO

Fig. 4: Qualitative results We compare our method with HMR [34], CLIFF [45] and
FastMETRO-S [10] on 3DPW trained on 3DPW (first 2 rows), and EMDB trained on
EMDB.

is ResNet-50 [31] pre-trained on ImageNet [65]. We use the public implementa-
tion of FastMETRO and adapt the HMR and CLIFF implementations provided
by [5]. For all comparisons, we use FastMETRO-S, as this version is the closest to
VQ-HPS. When training on COCO, we propose an improved version of VQ-HPS,
replacing the MLP of the latent canonical mesh regressor with a Transformer
implementing self-attention between the latent mesh features zfeat. Quantitative
results are shown in Tab. 1, and visualizations are available in Fig. 4 and in the
supplementary materials.

Overall, VQ-HPS outperforms the SOTA methods significantly when train-
ing on 3DPW and EMDB (see Tab. 1, col. 1 and 3). Visualization of the results
confirms that our method performs best (see Fig. 4), and we propose a more
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Table 2: Comparison to the SOTA methods. We evaluate VQ-HPS trained on
a mix of datasets without finetuning on 3DPW (see Sec. 5.1) with standard metrics
on 3DPW and EMDB and compare them to the state of the art. On the left part,
methods use a ResNet-50 backbone. On the right, models use an HRNet backbone,
except TokenHMR [20] that uses a ViT [17] backbone and additional data. All results
are given in mm.

(a) ResNet-50 backbone

Method PVE ↓ MPJPE ↓ PA-MPJPE ↓

GraphCMR [41] - - 70.2
I2LMeshNet [58] - 93.2 58.6

FastMETRO-S [10] 129.4 112.6 68.9
HMR [34] - 130.0 81.3
SPIN [40] 116.4 96.9 59.2

PyMAF [88] 110.1 92.8 58.9
ROMP [73] 105.6 89.3 53.5
DSR [19] 105.8 91.7 54.1

PARE [39] 99.7 82.9 52.3

VQ-HPS (ours) 93.6 79.1 50.4

(b) HRNet backbone

3DPW EMDB
Method PVE ↓ MPJPE ↓ PA-MPJPE ↓ PVE ↓ MPJPE ↓ PA-MPJPE ↓

FastMETRO-L [10] 121.6 109.0 65.7 119.2 108.1 66.8
ROMP [73] 103.1 85.5 54.9 134.9 112.7 75.2
PARE [39] 97.9 82.0 50.9 133.2 113.9 72.2

Virtual Marker [53] 93.8 80.5 48.9 - - -
CLIFF [45] 87.6 73.9 46.4 122.9 103.1 68.8

TokenHMR [20] 88.1 76.2 49.3 124.4 102.4 67.5

VQ-HPS (ours) 84.8 71.1 45.2 112.9 99.9 65.2

detailed analysis of the error in the supplementary materials. HMR and CLIFF
show realistic predictions but are less accurate than VQ-HPS. Despite rather
good metrics, FastMETRO produces unsmooth results that do not correspond
to human body shapes. This is probably due to the limited training sets, as
the results displayed in the original paper looked more realistic. This highlights
a clear limitation of non-parametric approaches predicting the 3D coordinates;
in comparison, VQ-HPS needs much less data to provide realistic predictions,
probably because learning sequences of indices corresponding to anthropomor-
phic meshes is easier than understanding the structure of the 3D vertices. Fur-
thermore, VQ-HPS benefits from the large-scale pre-training on human motion
datasets, acting as a regularization to allow learning with fewer image data la-
beled with 3D poses.

The fact that the Mesh-VQ-VAE, whose decoder is an important part of
VQ-HPS, is pre-trained on AMASS [54] is a great advantage of our approach.
Indeed, we can leverage large amounts of body mesh data not paired with images
for training. This is particularly interesting because many body motion data can
be generated using animation software or generative models. We could finetune
the Mesh-VQ-VAE depending on the target application, with uncommon body
shapes [67] or extreme poses [26,30].

FastMETRO slightly takes the lead in global metrics on the EMDB bench-
mark when training on COCO. The advantage VQ-HPS had when training with
scarce data is less important here. Indeed, COCO has as many images as EMDB
or 3DPW, but the diversity is much higher than for video datasets, where there
exist important correlations between different images [33].

5.4 Training on large-scale datasets

Following the standard practice [10,34,45], we train VQ-HPS on Human3.6M [32],
MPI-INF-3DHP [56], COCO [49], and MPII [1]. For this experiment, we use the
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Table 3: Ablation study. We perform several ablations on the VQ-HPS architecture
and training process on the 3DPW dataset.

Method PVE ↓ MPJPE ↓ PA-MPJPE ↓

VQ-HPS 176.6 152.0 91.8

SMPL 199.8 171.8 99.3
3D loss 220.3 194.9 144.1

No reprojection 183.9 158.4 95.6

Ground truth VQ-HPS (ours) "3D loss" Ground truth VQ-HPS (ours) "3D loss"

Fig. 5: Ablation study. Effect of the “3D loss” ablation. We can see that replacing
the cross-entropy with a PVE loss produces unnatural poses, showing interest in the
classification-based approach.

same version of VQ-HPS as in Sec. 5.3. We evaluate VQ-HPS on 3DPW [55] and
EMDB [36] without finetuning on the 3DPW training set. We only compare VQ-
HPS with SOTA models using the same backbone and the same datasets for a fair
comparison. We take results from the papers or use the provided implementations
and checkpoints for other methods. Recent methods using a more powerful back-
bone such as a Vision Transformer [17], as well as additional datasets [5,7,60,80]
obtain better results. However, the comparison would not be fair. Results are
shown in Tab. 2 and qualitative samples are in the supplementary materials.

VQ-HPS outperforms all other methods on all 3 metrics, being paramet-
ric [19, 34, 39, 40, 45, 73, 88] or non-parametric [10, 41, 53, 58]. Note that there
is a large gap between the performance of FastMETRO and Virtual Marker in
Tab. 2 and the reported results in the original papers. This is because we do not
perform finetuning on 3DPW. The authors of FastMETRO acknowledge that
methods regressing 3D vertices such as [10, 47, 48, 53] perform poorly on data
significantly different from the training set4. This limitation of non-parametric
methods was also described in [47]. Even though TokenHMR’s backbone is more
powerful and the method is trained on additional 2D datasets, VQ-HPS still out-
performs TokenHMR [20] on the 3DPW and EMDB datasets. When additionally
incorporating Bedlam [5] in the training set, TokenHMR takes the lead [20].

5.5 Ablation study

We ablate VQ-HPS architecture and training scheme and present the results in
Tab. 3. We train and test on the 3DPW [55] dataset for these experiments. Note
4 https://github.com/postech-ami/FastMETRO/issues/13
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that for faster experiments, we use early stopping with patience of 10 epochs,
which makes the training stop much earlier. The first line of Tab. 3 shows the
updated VQ-HPS results.

“SMPL" means predicting the SMPL parameters instead of using our pro-
posed discrete latent representation. For obtaining the final 3D prediction, the
SMPL model is used instead of the Mesh-VQ-VAE decoder. The performance
gap shows that using similar architecture, predicting the discrete latent repre-
sentation instead of the SMPL parameters yields improved performance.

The ablation “3D loss” replaces the cross-entropy loss with the PVE L3D =
||V − V̂ ||2 where V is the ground truth mesh vertices and V̂ the final prediction.
Given the huge decrease in performance (see Tab. 3), we conclude that cross-
entropy is a good alternative to 3D losses used in all prior works such as [10,34,
45]. Training VQ-HPS with the PVE produces sequences of indices corresponding
to non-anthropomorphic results, which recall results obtained with FastMETRO
in Fig. 4 when training on limited data.

“No reprojection" means that we do not compute the reprojection error. This
mostly increases the error in PVE and MPJPE, which was expected since the
PA-MPJPE is only related to the canonical mesh, and the reprojection loss is
not used to train the canonical mesh predictor. However, it still has an impact
since the canonical mesh prediction is conditioned on the predicted rotation.

6 Conclusion

In this work, we proposed Mesh-VQ-VAE, an autoencoder architecture providing
a discrete latent representation of registered human meshes. This discrete repre-
sentation allowed us to tackle the HPSE problem from a classification perspec-
tive, avoiding the limitations of parametric and non-parametric HPSE methods
described in Sec. 1. We also introduced VQ-HPS, a Transformer-based model
for solving the proposed HPSE classification problem.

While trained using the cross-entropy loss, VQ-HPS significantly outperforms
state-of-the-art methods when trained on scarce data and shows promising per-
formance on large-scale datasets. The classification-based approach exploits the
discriminative power of Transformers. It addresses several known problems of
non-parametric approaches, such as the plausibility of results and the lack of
generalization when training on large-scale datasets without finetuning on the
target domain. Comparisons to [10] as well as our ablation study (Sec. 5.5)
showed the superiority of the classification-based approach compared to para-
metric and existing non-parametric approaches when using similar architectures.

Failure cases are discussed in the supplementary materials. Future works
may include the use of a SOTA backbone [3, 17] or additional datasets [5, 7] for
achieving better performance. Extensions of the classification-based approach
may also be explored for other types of registered meshes, such as human hands
or faces. We also believe that multimodal applications involving text and 3D
humans [16, 25] would benefit from the Mesh-VQ-VAE representation as it can
be considered a language.
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