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ABSTRACT

In this paper we propose a convex approach for recovering a
detailed 3D volumetric geometry of several objects from vi-
sual signals. To this end, we first present a minimal detailed
surface energy that is optimized together with a volume con-
straint by considering some geometrical priors, and without
requiring neither additional training data nor templates in or-
der to constrain the solution. Our problem can be efficiently
solved by means of a gradient descent, and be applied for sin-
gle RGB images or monocular videos even with very small
rigid motions. Temporal-aware solutions and driven by point
correspondences are incorporated without assuming any 2D
tracking data over time. Thanks to this formulation, both rigid
and non-rigid objects can be considered. We have extensively
validated our approach in a wide variety of scenarios in the
wild, recovering challenging type of shapes that have not been
previously attempted without assuming any training data.

Index Terms— Visual Signals, Mininal Surfaces, Image
and Video Understanding.

1. INTRODUCTION

Visual signals are nowadays present in everyone’s life and
they can be easily accessed through the Internet, mainly
thanks to the rapid development of acquiring devices. In
the last decades, many efforts have been made in obtaining
systems able to perceive in three dimensions from still vi-
sual information. Unfortunately, building algorithms that can
emulate the human 3D perception has proven to be a much
harder task than initially anticipated. There is a large body
of literature on shape estimation from a single RGB image,
especially considering human motion [1]. These approaches
normally assume a relatively large set of training data to
solve the inverse problem, making them a very specific prob-
lem since the learned knowledge cannot be applied to another
type of objects. To solve this limitation, other approaches
relied on the use of planar templates to establish correspon-
dences [2], RGB-D sensors, or image silhouettes [3, 4, 5] to
infer the geometry. Unfortunately, the previous approaches
cannot recover some parts of very thin objects as well as
retrieve a finer level of details.

This work has been partially supported by the Spanish Ministry of Sci-
ence and Innovation under project MoHuCo PID2020-120049RB.

The alternative strand of methods known as structure-
from-motion [6] relied on 2D point trajectories throughout
the video to recover the 3D geometry. Later, these formu-
lations were extended to the non-rigid domain, coining the
term non-rigid structure from motion [7]. In these cases, the
problem is inherently ill-posed and requires to exploit the de-
nominated art of priors, in shape and motion, to constrain the
solution space. Most of techniques represent the time-varying
shape as a linear combination of shape [8, 9], trajectory [10]
or force [11] vectors. Sadly, these approaches have a few
important restrictions in practice: 1) they can only recover
the part of the shape that is fully observed in the image, and
2) a considerable amount of out of plane rotation is needed to
solve the problem. Nonetheless, there exist some works ad-
dressing the volumetric 3D reconstruction problem for rigid
scenes [12], and non-rigid ones such as humans [13, 14] and
animals [15, 16], where the use of training data is mandatory.
Other approaches have relied on knowing a volumetric 3D
initial mean shape [17, 18] that is the main component of
a deformation model. Unfortunately, acquiring volumetric
3D shapes for some objects, such as animals, is a hard task
because the standard 3D scanning techniques used to capture
human motion are not applicable to those scenarios in the
wild. The large diversity of animals and 3D configurations
they can take [19], makes the problem extremely complex,
particularly in unconstrained environments with uncalibrated
cameras. Recovering the corresponding volumetric 3D closed
shape from pictures is a longstanding challenge with poten-
tially many real-world applications in biology, agriculture,
animal conservation, animal-inspired design, the movie in-
dustry, motion capture or neuroscience, to name just a few.

We overcome most of the limitations of current methods
with a convex approach that can retrieve a closed and detailed
3D shape from a single image without needing any training
data. Moreover, our approach can be also applied for rigid and
non-rigid objects from a monocular video where the camera
motion is almost null, and without assuming any 2D tracking
data. To the best of our knowledge, no previous approach
has reconstructed animals in the wild without considering one
or multiple shape models as it is assumed in template-based
and learning-based approaches, respectively. In contrast, our
approach relies on an almost fronto-parallel image to infer the
3D volumetric shape, that represents a drastic reduction of
priors in comparison with previous techniques [15, 16, 18].



2. MINIMAL DETAILED SURFACES FROM SPATIO
AND SPATIO-TEMPORAL SIGNALS

Let Z C R? be an image plane where it appears an object we
want to reconstruct. For that object, we also define S C 7 as
its shape segmentation, and by means of B C S its silhou-
ette boundary, i.e., S contains the pixels inside the silhouette
of the object shape and B only its boundary. Our goal is to
recover the object 3D geometry from the single image Z by
determining silhouette consistent surfaces of minimal area to-
gether with a volumetric constraint. In other words, our prob-
lem consists in estimating a height map function z : S — R,
assigning a depth value z(z,y) for every point (z,y) € S.
To this end, we propose to minimize an energy function com-
posed of a data term to obtain the minimal surface [3], and a
shape prior to regularize it as:

A(z) = / V14 |Vz2 + Mz — w)? dady (1)
s
subject to/ zdxdy=V
s

where V() denotes a gradient operator, \ is a weight coeffi-
cient, V indicates the volume of the object, and w is a function
to regularize the solution. It is worth noting that this formula-
tion never exploits any depth value known in advance at any
specific point to constrain the solution. As the estimation is
performed from a single view, depth information will be up to
scale, and it can be fixed by imposing a volume value V', as
the product of the area of the silhouette S and the estimated
average depth value of the object.

To define the shape prior, we first assume that the thick-
ness of the object increases as we move inward from its sil-
houette boundary B. This assumption is especially relevant
in nature, where the shape normally evolves from the bound-
ary to the interior following a smooth and harmonious way,
as we can see in many natural objects, such as animals, and
a few human-made ones. To become effective, the distance
d(p, OB) to the boundary B for any interior point p € S can
be computed as d(p, 0B) = minyesp ||p — bl

While this assumption by itself is good for many points [4,
5], it still represents a non-realistic 3D constraint in others,
since an ample variety of details are not retrieved. To solve
this limitation, we define a detail map e(Z) by exploiting im-
age information as e(Z) = wmg(zzvl;";li’ﬁifgg)ﬂ), where 7 is
a weight coefficient, and e(Z(m)) = 0 for any point m ¢ S.
The previous terms are now combined to define the function
w, that for the pixel location (x, y) can be written as:

w(az,y) = min{¢7/-l + de((xvy)aaB) + 6(1(1‘,?/))}, (2)

where {¢, i, k} are parameters to code the type of prior. Par-
ticularly, ¢ is to limit the level of extrusion of the object and
it can be set as ¢ = amax(d((x,y),0B)), with € [0,1]. p
is to guarantee a minimum of extrusion in those points close

to the boundary. Note that the influence of this term can be
attenuated with decreasing the shape prior by modifying the
coefficient A in Eq. (1). Function w in Eq. (2) can be seen as
a shape constraint to encode that the object gets thicker the
further away the point is from the boundary, while consid-
ering spatial details and encouraging that thin areas are still
extruded. As the optimization problem in Eq. (1) is convex,
we can obtain a global optimal solution by means of an it-
erative gradient descent method with a projection step to en-
force the volume constraint. Finally, we also impose bound-
ary conditions to guarantee silhouette boundary consistency.
To this end, Dirichlet’s boundary conditions are considered
as z(z,y) = 0, V(x,y) € B. Once the minimal detailed
surface z with fixed volume is achieved, a closed surface (in-
cluding that unobservable part) can be computed by applying
areflection from the image plane and adding an internal mesh.
This makes our algorithm more accurate as the plane of sym-
metry of the object coincides with the image plane observed.

While our formulation in Eq. (1) could be directly used
to process video sequences frame by frame, the formulation
can also be extended to be temporally consistent, and provide
more realistic and faster solutions. To this end, we just need
some matching points between two consecutive images in the
video. To recover the 3D geometry of an object at frame f + 1
considering the estimation in frame f, our energy problem
can be written as:

T(zf“) :/ 1+ |sz+1‘2+)\(zf+1 _wf+1)2
s
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s

where © represents a Hadamard product and ¢ is a weight co-
efficient. o/ *! includes {0, 1} entries indicating whether the
coordinates of a point in the f 4 1-th frame were matched or
not in the f-th one. The z/ values for matching points are
included in 7/ (z/) in a correct location according to o/ !,
and they are used to constrain the new estimation 2 1. To
solve the matching problem, we exploit the segmentations
57187+ reducing the amount of pixels to be considered.
Additionally, and to avoid bad matches in objects with sim-
ilar local texture, we also include a guided search of corre-
spondences by means of a 25 x 25 window where SIFT [20]
points between consecutive images are considered. There-
fore, our approach does not need 2D tracking data to sort out
the spatio-temporal problem.

3. EXPERIMENTAL EVALUATION

We now present our experimental evaluation for different sce-
narios, by considering single images as well as monocular
videos of both rigid and non-rigid animal objects.

Single RGB Image. We first evaluate our approach
on real RGB images in the wild taken from the DAVIS



Fig. 1. Ablation study on detailed surfaces. Top: From left to
right it is represented the minimal surface estimation z by modifying
the parameter v = {0, 10, 20, 25} from 0 (without considering any
details) to 25 (probably, a type of over-estimation). Bottom: Two
novel view points of the 3D reconstruction.

cow flamingo camel mallard rhino black
[3] 1.0-107* 3.1-107* 1.3-107* 7.6-107° 7.1-107> 1.3-10~*
[5] 1.4-107* 79-107* 7.2-107* 4.2-107* 25-107* 2.1-107*
Ours 1.9-107° 1.2-1077 3.9-107° 5.1-107° 23-107° 5.5-107°

Table 1. Quantitative error comparison. Error for some
images considered in Fig. 2.

dataset [21]. As the object segmentation is out of the scope
of this paper, we directly use the original object segmenta-
tions provided in the dataset, since similar solutions can be
obtained by means of semi-supervised [22, 23] and unsuper-
vised [24] approaches. Particularly, we consider the follow-
ing RGB images: cow, flamingo, camel, mallard, rhino, black
swan, bicycle and break dance. In all cases, image resolu-
tion is 480 x 854, producing 3D reconstructions from 10,249
(mallard) to 77,088 (rhino) points (this number represents
the size of z, i.e., the final value for the closed 3D shape will
contain many more).

We first use the mallard image to evaluate how the de-
tailed map in Eq. (2) acts. To this end, we directly modify the
~ coefficient from 0 to 25. The results are displayed in Fig. 1,
including our z estimation along with the corresponding vol-
umetric 3D shape. As it can be seen, thanks to this term, our
algorithm provides more physically plausible estimations.

Considering 7 = 10, we use the rest of the images for
evaluation. An outline of our results are summarized in Fig. 2.
As it can be seen, the minimal detailed surface z we obtain
produces solutions with spatial details while thin areas are
still extruded and the variation from the boundary is consis-
tent (see third column in the figure). Without loss of gen-
erality, as the distance from the camera to the object shape
is within reasonable bounds, the relation between shape area
and shape volume is always similar, simplifying the search for
a volume value V. Finally, the solution z is employed to gen-
erate physically-aware closed 3D surfaces (see the right part
of the figure). It is worth noting that those representations are
only included for visualization purposes, since our estimation
is z, as it can be seen in the third column of the cited figure.

A qualitative comparison is also provided with respect to
the approaches [3, 5] (as they use the same input signal) in
Fig. 3 for the flamingo and mallard images. To make a fair
comparison, we use for all methods the same volume V', and
apply the same strategy to infer the closed surface. As it is

Fig. 2. Qualitative evaluation on real images in the wild. From
top to bottom are considered the images: cow, flamingo, camel, mal-
lard, rhino, black swan, bicycle and break dance. First column:
Input RGB image. Second column: Object image segmentation.
Third column: Minimal detailed surface with volume z. Yellow-
ish areas mean bigger z values. Fourth column: 3D reconstruction
from a novel point of view. Fifth column: 3D reconstruction from
a novel point of view with original texture. Best viewed in color.

shown, thin (see for instance mallard and flamingo faces, as
well as the flamingo legs) and detailed areas (see main body
parts and feathered areas) cannot be recovered properly by
competing techniques [3, 5], as we can do. After performing a
qualitative comparison, we can see that [5] handles better thin
areas than [3], but it is not enough to obtain physically-aware
surfaces as those recovered by our approach. Thanks to our
novel energy, besides producing more accurate solutions, our
algorithm is more stable and converges faster, giving an speed
up of 22.92x and 20.70x in comparison with [3] and [5].

Figure 4 shows the evolution of the error for the eight
cases considered in Fig. 2, comparing these values with com-
peting techniques in similar conditions (see table 1). Note
that after around 50 iterations our approach drastically re-
duces the error, being a few extra iterations needed to guar-
antee the exact satisfaction and, obtaining lower errors than
other methods. As it can be also seen in the figure, the vol-
ume constraint is perfectly satisfied throughout the iterations.
On average, the median computation time with non-optimized
Matlab code was from 105 to 152 seconds, on a laptop with
an Intel Core i7 processor at 2.4GHz.



Fig. 3. Qualitative comparison w.r.t. competing approaches.
In all cases, the displayed data are the same, including the images
flamingo, and mallard. Top: From left to right it is represented the
minimal surface estimation z by considering the approaches [3], [5]
and ours, respectively. Bottom: Two novel 3D views.
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Fig. 4. Convergence analysis and volume enforcement vs. num-
ber of iterations. Left: Error evolution for the eight images con-
sidered in Fig. 2, and the volume enforcement V' as a function of
the iterations until convergence. Note that two different scales (left
and right vertical axes) are used to represent the errors and volume
evolution by using non-dashed and dashed lines, respectively. The
correspondence between colors and pictures is: cow in red, flamingo
in green, camel in blue, mallard in magenta, rhino in yellow, black
swan in cyan, bicycle in orange, and break dance in black. Right:
Zoom of the area within the red dashed rectangle in the left plot.

Monocular Videos. We now evaluate our approach on
real monocular videos. It is worth noting that we only con-
sider videos with fronto-parallel views of the object to be re-
constructed, i.e., our approach does not need large camera
motions to solve the problem. While this could be consid-
ered a limitation of our approach against rigid-structure-from-
motion [6, 25], multi-view [26] and non-rigid-structure-from-
motion approaches [9, 11, 27, 28], in the same way, this is
also our great strength against those methods since in the ab-
sence of rigid motion they cannot be used. In other words, the
previous frameworks rely on motion parallax to achieve a so-
lution, while our approach can do it without that assumption.

Again, we rely on the DAVIS dataset [21] to get RGB
videos of rigid and non-rigid objects. Particularly, we con-
sider boat and flamingo classes for rigid and non-rigid shapes,
respectively. Our results are summarized in Fig. 5. Despite
not assuming any camera motion, our approach can accu-

Sl B G R B B

Fig. 5. Qualitative evaluation for rigid and non-rigid objects
on real videos in the wild. In both cases, the same information is
displayed for the categories boat and flamingo, respectively. First
row: Images of the categories boat and flamingo. In both cases 2D
correspondences with the previous frame are displayed in crosses.
No tracking is assumed. Second row: Minimal detailed surfaces z
with volume. Third row: Two novel views of our detailed, closed
and volumetric 3D reconstruction. Best viewed in color.

rately estimate these challenging shapes over time, a couple
of estimations that have not been previously attempted, es-
pecially without assuming any training data at all. Some of
the 2D correspondences we use to infer the solution are rep-
resented in the figure. As it can be seen, just a few corre-
spondences —without assuming any tracking— are needed to

apply our energy in Eq. (3). In these sequences, we can com-
2=zl 7
”Z(l) [E=

solutions after applying Eqgs. (3) and (1), respectively, denot-
ing F a Frobenius norm. We obtain ¢ = 2.85 - 10~* and
€ = 9.15-107° for boat and flamingo classes, that means both
estimations are quite similar. A visualization can be seen in
the last rows of Fig. 5. Apart from that, our new energy in
Eq. (3) exploits the previous frame estimation and reduces a
40% the computational cost w.r.t. the direct frame-by-frame
application of Eq. (1), producing faster solutions.

pute the error € = with z and z(;) the minimal

4. CONCLUSION

We have proposed a convex method to retrieve the 3D geome-
try of an object from visual signals and without assuming any
training data at all. To this end, an energy is optimized to be
consistent with a pre-defined volume, while enforcing some
geometrical priors to acquire fine details of the object. Our
approach can be applied for single RGB images as well as
for video sequences, where a temporal-aware solution is au-
tomatically enforced. Our solution is also fast in a commodity
laptop even for dense estimations, and it obtains convergence
within reasonable bounds, while satisfying perfectly the con-
straints. We have experimentally evaluated our approach on
a wide variety of real scenarios, by using images in the wild
where obtaining 3D training data could be a very hard task.
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