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ABSTRACT

Solar energy adoption is moving at a rapid pace. The vari-
ability in solar energy production causes grid stability issues
and hinders mass adoption. To solve these issues, more ac-
curate photovoltaic power forecasting systems are needed. In
intra-hour forecasting, the most challenging issue is high out-
put fluctuations due to cloud motion, which can occlude the
sun. Using ground-based sky images, this paper proposes two
convolutional neural network models for intra-hour nowcast-
ing and forecasting that incorporate physical information on
sun motion and cloud coverage by means of the sun area mean
pixel intensity. Particularly, our models exploit that informa-
tion instead of relying exclusively on photovoltaic output his-
tory data as it is standard in state of the art. Taking advantage
of sun position and cloud coverage information, we were able
to reduce the overall root mean squared error for the nowcast-
ing task, making the model more accurate especially during
cloudy days, and obtaining competitive results on forecasting.
Moreover, our models are more robust against artifacts such
as occlusion and noisy observations.

Index Terms— Photovoltaic Power Estimation, Sun
Tracking, Sky Images, Deep Learning.

1. INTRODUCTION

Globally, deployment of solar power and wind is said to be
setting new records year by year worldwide until 2030 reach-
ing 40% of the total energy production, while levels in 2021
were at 10% [1, 2]. This staggering increase can be attributed
to the global shift towards greener energy in the fight against
climate change and geopolitical tensions, such as the Ukraine-
Russia conflict. Solar energy has become a more attractive
business case, with photovoltaic module costs decreasing by
80% in the last ten years.

Through the rise in photovoltaic (PV) and wind power,
the electric grid is forced to adapt with more power system
flexibility to maintain electric security [1]. The integration
of multiple individual users in micro-grids and large-scale
PV farms can lead to imbalances between consumption and
generation, resulting in grid stability concerns, which hinder
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the widespread adoption of solar energy [3]. To address these
challenges, accurate prediction of PV power output is cru-
cial for maintaining grid stability and maximizing efficiency,
minimizing the need for costly energy storage solutions.
Moreover, robust predictions contribute to establishing mar-
ket equilibrium by enabling effective price determination
based on energy resource availability [4].

To achieve reliable predictions the choice of optimal in-
put parameters is vital. Next to the historic PV output in-
formation, in [5], meteorological data such as solar irradi-
ance, temperature, cloud coverage, wind speed, air pressure,
relative humidity, and perceptible water [4] were exploited.
These input data are mostly used for intra-day to day-ahead
predictions, ranging from 1 to 48 hours. Persistence models,
popular for intra-hour (0-1 hour) forecasting [4], are now pri-
marily employed as baseline models due to their reduction of
the problem and limited consideration of weather conditions,
such as clouds [3]. It has been demonstrated that techniques
like k-Nearest Neighbor, persistence models, and autoregres-
sive integrated moving average are outperformed by artificial
neural networks [6], especially in scenarios involving cloudy
or partly cloudy days with uncertain meteorological condi-
tions. These situations are more complex tasks, necessitating
a greater amount of input data and advanced models.

Solar irradiance denotes the fraction of solar energy emit-
ted by the sun that reaches the Earth’s surface. A study in
Malaysia [5] has shown that solar irradiance correlates with
PV power output with a factor of 0.98. The major factors that
determine solar irradiation are the solar zenith angle, the angle
between the vertical and the sun, and cloudiness. Therefore
in clear sky conditions the solar zenith angle with air mass
can model the situation easily as shown in [7]. Some image
processing techniques have been proposed to deduce the sun
position and solar zenith angle from sky images [8].

Cloudiness is a highly local matter determined by factors
such as wind speed and cloud type. Clouds move at differ-
ent speeds, heights, they overlap and remain non-fixed [9]
shapes with splitting, merging and deformation happening
constantly. Making cloud recognition, modelling and fore-
casting such a complex endeavour [10, 11]. From sky images
information about cloud position can be extracted by thresh-
olding or adaptive thresholding [12]. A more complex ap-
proach is seen in [13], combining block matching, optical



flow and SURF [14] feature matching algorithms for cloud
recognition, classification and motion prediction. For better
accuracy in cloud recognition advanced image segmentation
techniques have also been employed in [15].

Another class of inputs are 2D images which are com-
monly employed for more detailed information on cloud
recognition, tracking and forecasting [10] as in [3, 16].
Satellite imaging has been employed in [17], but the im-
ages do not entail both high temporal and spatial resolution
and, therefore, they are impractical [18]. Ground based
sky image datasets have been collected to help facilitate
the forecasting task [19, 20] and are often applied in intra-
hour forecasting tasks using Convolutional Neural Networks
(CNNs) [3, 21]. To improve the results, weather condi-
tion specific sub-models [20] as well as new ways to merge
graphical and numerical data were proposed [22]. Another
possibility is to use image pre-processing techniques to ex-
tract cloud information in the form of cloud binary maps and
velocity fields [3]. Given that most systems feed the model a
sequence of images, this means that temporal information is
only learned implicitly [10]. Therefore new techniques have
been developed such as merging Long-short Term Memory
(LSTM) cells with CNNs [23]. Results have shown that in-
corporating cloud knowledge into image-based forecasting
models improves accuracy [10].

Inspired by [3, 7], in this work we propose a PV out-
put nowcasting and forecasting model that exploits physical
priors. With domain knowledge and image processing tech-
niques new valuable information will be inferred and consid-
ered as additional input to our model. Thanks to our novel
neural models, our estimations outperform those provided by
competing approaches while the solution is more robust.

2. NOWCAST AND FORECAST NEURAL
ARCHITECTURES

We now present our neural architectures for nowcast and fore-
cast PV power estimation. In the first case, our method ap-
plies a simple mapping, taking a single image as input and
directly predicting the PV output in kilo Watt (kW) related to
the image. In the second case, our model takes images of the
last 16 minutes, concatenated in the color channel, and PV
power production of the last 16 minutes as input. Exploiting
that, the algorithm can return a prediction for the PV output in
15 minutes. A summary of both models is displayed in Fig. 1.

As it can be seen, the architecture of the two models are
quite similar. They both consist of two blocks with convolu-
tional layers with 3 x 3 filters with a stride of 1 and same-value
padding, having 24 and 48 filters, respectively; as well as
batch normalisation. The activation function applied through-
out all layers is a rectified linear unit function, useful to pro-
vide a non-linear behaviour as it does not return negative val-
ues. Finally the last part of the block being a 2x2 pooling
layer with a stride of 2. After flattening the tensors the data
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Fig. 1. Neural architectures for PV power estimation. Ev-
ery block includes sequentially a convolutional, a batch nor-
malization and a pooling layer. After that, the processed input
is flattened and concatenated with different information. Top:
Nowcast model. Bottom: Forecast model.

are sent to the third and last block, which consists of two Fully
Connected (FC) layers with 1,024 neurons each and a dropout
of 40% to enhance stability of the model. It is in this part
where the main difference between the two models appears,
as in the forecast model the historical PV data is concatenated
to the flattened tensor before the FC layers.

A powerful methodology to boost performance is devel-
oping priors with domain knowledge. An example of prior
usage could be to apply a temporal smoothness prior, because
the PV outputs continuous shape as a function of a smooth
variation in the input image. As described earlier the model’s
weakness lies in cloudy conditions where high fluctuations
in PV output cannot be accurately predicted and PV output
is not smooth. Therefore a smooth prior would not increase
model performance. To better model these fluctuations, in
this paper we consider different loss functions to the model,
like Mean Absolute Error (MAE), mean absolute percentage
error, mean squared logarithmic error, pseudo Huber loss and
Log cosh. In the corresponding loss function we are look-
ing to penalise large errors, while maintaining the accuracy in
the sunny days. The fluctuations occur due to clouds occlud-
ing the sun. Hence, in our approach we extract information
on sun and cloud position from the images and add them as
additional input to the model. Unfortunately, our dataset does
not contain ground truth information about neither the sun po-
sition nor the cloud segmentation, and therefore, we propose
an algorithm to obtain them.

We develop five new models. To this end, five additional
input variables were extracted from the ground-based sky
images (image illumination, cloud segmentation, sun seg-
mentation, sun position and, sun area mean pixel intensity
or SAMPI) described in the next paragraphs. To consider
that, the information is included in the model’s architecture
as can be seen in Fig. 1, for both nowcast and forecast mod-
els. Particularly, sun or cloud segmentation involves adding a
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Fig. 2. Example results of the cloud segmentation algo-
rithm. The same information is provided twice. The figure
displays from left to right: the ground-based sky images, its
NRBR threshold result, ANRBR result and the final one.

fourth channel to the input image. Moreover, a second vari-
ation aims to leverage numerical information, including sun
position, total image illumination, and SAMPI. These values
are concatenated to the tensors between the convolutional
and FC blocks, similar to the historical PV log term in the
forecast model. After evaluating their partial contributions,
we combine some of them to obtain improved results.

Cloud segmentation. This problem is very challenging
in image processing and computer vision. We implement
the approach outlined in [12] employing thresholding tech-
niques to classify each pixel into cloud (1) and non-cloud
(0) pixels, returning a percentage cloudiness value. It relies
on Rayleigh’s scattering law from which we can deduce that
clear skies spread more blue than red light and cloudy skies
spread a similar amount of blue and red light. The metric
used is the normalised blue-red-ratio (NRBR) from [24] and
the ANRBR utilising background subtraction from a sunny
day library to counteract the high pixel intensity in the cir-
cumsolar area. The approach and the threshold values were
developed on the same dataset that is used in this work [20].
Therefore, we use it without any adjustments, but utilising the
cloud segmentation instead of the calculated cloudiness value.

Some example results of the cloud segmentation on se-
lected test days are shown in Fig. 2. We can see that the seg-
mentation results are faulty having issues both in clear sky
conditions as well as in cloudy ones. Some clear sky images
contain a red cast, which impedes the usage of Rayleigh’s
scattering law and delivers incorrect results. More issues oc-
cur when the sun position cannot be determined, as the back-
ground subtraction loses its advantage.

Sun Motion Tracking and Sun Area Mean Pixel Inten-
sity. For sun motion tracking with 360-degree camera sky
images, we follow the ideas in [8]. Firstly the image is con-
verted into a gray-scale image. Then a threshold Py, = 225
is applied to determine the area of the sun (sun segmenta-
tion). High cloud coverage in certain images could cause no
pixels to surpass the threshold, resulting in no sun detection.
We have experimentally optimized the trade-off between pre-

cision and number of false negatives, selecting the provided
threshold. After that, the algorithm has to get the center pixel
of the sun segmentation, i.e., the sun position. When no pixel
passes the threshold, the sun segmentation is an image of ze-
ros and the sun position is declared as (0,0).

A metric that combines information about sun position
and cloud coverage is SAMPI [12], that can be defined as
SAMPI = % 3. ¢ I;, where I; = 0.229R; + 0.587G; +
0.114B; for the i-th pixel with ¢ = {1,..., N} being N the
number of samples, and S represents the set of pixels with a
radius of 7 around the sun. As the cloud coverage in the cir-
cumsolar area is especially important, radius needs to be high
enough to entail greater information, as sunny and cloudy
conditions provide different levels of pixel intensity. Again,
when no sun position was deduced we let SAMPI= 0.

In both models a MSE(y, §) = Y., (y; — 4:)? loss is
applied as it provided the best performance, where y and g
denote the ground truth value and the prediction, respectively.
For training, an Adam optimizer with a batch size of 256 and
10-fold cross validation is applied to obtain stable results.

3. EXPERIMENTAL EVALUATION

First of all, we present the dataset we use in this paper, that it
contains ground-based sky images recorded at 20 Hz at high
resolution (2048 x2048) with a 360-degree fish-eye camera
from 06:00AM to 08:00PM from March 2017 to December
2019, and they are paired with PV history data recorded at a
1-min frequency. As in [20], we use 363,375 samples of sky
images with a temporal resolution of one minute and spatial
resolution of 64x64, as well as the corresponding PV out-
put. From the previous data, we deduced another dataset our-
selves for the forecasting task, also referred to as the Forecast
dataset, with half the size (174,816 samples) by applying a
two minute sampling rate each day. To make a fair compar-
ison, we consider the same training, validation and testing
split as was used in [20], i.e., 96/4, respectively. Due to the
fact that our dataset does not contain annotations about the
sky conditions of each image we concluded that experiments
were not feasible. For quantitative evaluation, we propose the

Root Mean Squared Error RMSE(y, §) = Zf\il (yi — 41)2,
and the MAE as suggested in [20].

In Table 1 we provide our experimental results for now-
cast and forecast PV power tasks for SUNSET [20] model,
our own implementation of the SUNSET model denoted
as RSUNSET, and this neural model together with differ-
ent knowledge priors one by one (image illumination, cloud
segmentation, sun segmentation, sun position, SAMPI) to
finally consider the combination of sun position and SAMPL.
SUNSET [20] model provides an overall RMSE test error of
2.43kW and 3.03kW for nowcast and forecast tasks, respec-
tively. It is worth noting that the difference in performance
between sunny (0.8/0.61kW) and cloudy (3.34/4.27kW) days



for nowcast/forecast, respectively, being the cloudy scenario
more challenging.

Regarding our estimations, the use of image illumination
worsened the error slightly, especially during the sunny test
days. The segmentation information lowered the models per-
formance significantly up to 2.715 overall RMSE. The sun
position and SAMPI give similar results as the baseline, only
varying up to 0.035 in the overall RMSE. The SAMPI model
performs similarly to the sun position model on sunny days,
but the last provides the best results on cloudy days, even out-
performing the baseline. On balance, just SAMPI and sun
position seem to show promising results and, therefore, we
only consider these contributions to be exploited in our final
model. To this end, our final model takes both parameters
as additional input, concatenated before the FC layers in the
nowecast and forecast architectures. We will discard the other
parameters, as they did not add any valuable information, at
least after considering the segmentation estimation. Image
illumination does not correlate with PV output. The under-
performance of bitmap segmentation inputs could be linked to
the unsuitability of the fourth image channel for model train-
ing. Regarding cloud segmentation results, the added infor-
mation’s quality is problematic, as discussed earlier. Our fi-
nal model outperforms the original one in a nowcast task in all
error metrics, improving its overall RMSE by 0.027kW. The
hike in performance is especially notable during the cloudy
test days with a 0.04kW difference in the RMSE, where it
better models the high variance. The combination of sun po-
sition and cloud coverage can give us more complete infor-
mation on the PV output. A qualitative evaluation in ten test
days is displayed in Fig. 3.

Unfortunately, we were not able to reproduce the results
of the forecast model, because we deduced the dataset our-
selves. Although we followed the same steps outlined in the
original papers [20, 3] we obtained an overall RMSE 5.67kW
higher than the original. In any case, our forecast model can
consistently outperform the reproduced model in all the met-
rics, showing the effectiveness of the physical priors we pro-
pose in this paper.

Finally, we evaluate the robustness of our model against
occlusions and noisy observations on the test set. For missing
data, we synthetically produce an occlusion in the image of
size 9x9 pixels. The same coordinates are used for one test
day, as this is the most realistic setup. Regarding the noise
evaluation, we apply Gaussian noise with a variance equals
to 0.1. Pixels outside the value range of O to 1 are changed
to the corresponding edge value. As expected, both artifacts
worsened performance significantly with the 9x9 occlusion
and the noisy observations. For nowcast, on the one hand
the overall RMSE is 2.96kW and 7.64kW by applying SUN-
SET [20] model, exceeding the value of 2.43kW obtained
under normal conditions (see Table 1). On the other hand,
the overall RMSE by applying our proposed model (RSUN-
SET+sun position+SAMPI) in the same conditions is 2.78kW

Overall (kW) Sunny days (kW) | Cloudy days (kW)

Model RMSE MAE | RMSE MAE | RMSE MAE
SUNSET [20]* 2.43 1.50 0.8 0.66 3.34 2.34
RSUNSET (Ours) 2.44 1.52 0.85 0.70 3.35 2.34
+image illumination 2.47 1.56 0.88 0.73 3.37 2.38
+cloud segmentation 2.71 1.74 1.00 0.75 3.70 2.72
+sun segmentation 2.53 1.61 0.89 0.71 3.46 2.50
+sun position 243 1.52 0.84 0.69 3.33 2.34
+SAMPI 2.46 1.54 0.83 0.69 3.38 2.38
+sun position & SAMPI | 2.40 1.48 0.79 0.65 3.30 2.30
SUNSET [20]* 3.03 1.71 0.61 0.50 4.27 2.95
RSUNSET (Ours) 8.70 7.18 9.22 8.16 8.15 6.20
+sun position & SAMPI | 8.13 6.65 8.62 7.55 7.61 5.75

Table 1. Nowcast and forecast PV power predictions in
sunny and cloudy days. Nowcast (top) and forecast (bot-

*

tom) results as a function of several priors. * results taken

from [20].

Fig. 3. Qualitative comparison on nowcast estimation. The
same information is provided on both sides, including ground
truth, SUNSET [20] and our RSUNSET+priors. Five test
days on sunny (left) and cloudy (right) conditions.

and 6.98kW, respectively. Comparing the numbers, it can be
seen as our model achieves more robust estimations against
artifacts than competing approaches.

4. CONCLUSION

In this paper we propose several neural models for nowcast
and forecast PV power estimation from RGB visual signals.
While current approaches solve the problem directly from
data, some properties are not correctly learned by the neu-
ral network, limiting the performance of the model. In con-
trast, in this work, ground-based sky images are exploited to
infer some physical properties such as the sun position and
cloud coverage that are then combined with the input im-
ages to learn a more accurate and effective model. Thanks
to that, our nowcast and forecast models successfully outper-
form state-of-the-art approaches, being even more robust than
those against occlusion and noise artifacts. We believe our
analysis can help improve the new generation of algorithms
in this topic, exploiting a data-driven model where physical
priors are extracted and incorporated in the main pipeline.
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