

LEARNING SHAPE, MOTION AND ELASTIC MODELS IN FORCE SPACE

Antonio Agudo^{1,2} and Francesc Moreno-Noguer¹

¹Institut de Robòtica i Informàtica Industrial (CSIC-UPC), Barcelona, Spain ²Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Spain

Universidad Zaragoza

PROBLEM STATEMENT

- Given: 2D temporal point tracks acquired with a monocular camera.
- We want: A NRSfM solution that estimates timevarying shape, camera motion and the full elastic model of the observed object.
- Existing approaches only recover small parts of the full physical model.

APPROACH

- Real-world objects are deformed by a set of acting forces that lie in a force linear subspace.
- Model parameters are learned using Expectation Maximization (EM) with partial M-steps.
- Approach suitable to model a wide variety of objects and deformations, even under partial observations.

CONTRIBUTION

- low-rank force space.
- Learning the full elastic model without requiring any prior knowledge.
- A shape-trajectory-force duality that gives physi-

- Interpretation of the NRSfM problem in terms of a
- cal interpretation to low-rank methods.

LOW-RANK FORCE SPACE

• A 3D displacement is defined as S = CF, with F the acting forces and C the compliance matrix (elasticity). $\mathbf{F} pprox \mathbf{F} \mathbf{\Gamma}$ is low-rank.

3N	X	T

$$3N \times 3N \ 3N \times Q$$

Factor	Full	Shape	Trajectory	Force
Camera	5T	5T	5T	5T
Basis	-	3NQ	-	3NQ
Coefficients	-	QT	3NQ	QT
Model	3NT	-	-	3N(3N+1)/2
Total number	5T	5T + 3NQ	5T	5T + 3NQ + QT

Force-Shape-Trajectory Duality

- The time-varying shape S can also be modeled using low-rank shape or trajectory spaces:
 - Shape: $\mathbf{S} = \tilde{\mathbf{S}} \boldsymbol{\Psi}$, with $\tilde{\mathbf{S}}$ the basis.
 - Trajectory: $\mathbf{S} = \mathbf{\Phi}\tilde{\mathbf{T}}$, with $\tilde{\mathbf{T}}$ the basis.
- From direct comparison with the force model: for shape $\tilde{\mathbf{S}} = \mathbf{C}\tilde{\mathbf{F}}$, and for trajectory $\tilde{\mathbf{T}} = \mathbf{\Gamma}$.
- Shape and trajectory bases are seen as physical priors (and not just statistical).

N	T	Q	Obs.	Full	Shape	Traj.	Force
55	260	12	28,600	44,200	6,400	3,280	20,095
40	316	11	25,280	39,500	6,376	2,900	13,636
29	450	7	26,100	41,400	6,009	2,859	9,837
41	1,102	10	90,364	141,056	17,760	6,740	25,386

EXPERIMENTAL EVALUATION

Motion Capture Sequences

Space:	Shape					Trajectory	y Shape-Trajectory		Force
Met. Seq.	EM-PPCA [†]	EM-LDS [†]	MP [†]	SPM [†]	EM-PND [†]	PTA [†]	CSF2 [†]	KSTA [†]	EM-PFS
Jacky	1.80(5)	2.79(2)	2.74(5)	1.82(7)	1.41	2.69(3)	1.93(5)	2.12(4)	1.80(7)
Face	7.30(9)	6.67(2)	3.77(7)	2.67(9)	25.79	5.79(2)	6.34(5)	6.14(8)	2.85(5)
Flag	4.22(12)	6.34(3)	10.72(3)	7.84(5)	4.11	8.12(6)	7.96(2)	7.74(2)	5.29(12)
Walking	11.11(10)	27.29(2)	17.51(3)	8.02(6)	3.90	23.60(2)	6.39(5)	6.36(5)	8.54(11)
Average error:	6.11	10.77	8.69	5.09	8.80	10.05	5.66	5.59	4.62
TANDOON IT ' ' / DANAUGGI ENA DOON IT ' / / DANAUGGI NAD ID I I' ' / /						/ O\/DD!001 O		/ 0) / D D ! / 0]	

EM-PPCA [Torresani et al. PAMI'08], EM-PPCA [Torresani et al. PAMI'08], MP [Paladini et al. CVPR'09], SPM [Dai et al. CVPR'12], EM-PND [Lee

et al. CVPR'13], PTA [Akhter et al. PAMI'11], CSF2 [Gotardo et al. CVPR'11] and KSTA [Gotardo et al. ICCV'11].

Real Video Sequences

Elastic Model Estimation

Force-Shape-Trajectory Duality for Actress Sequence

- We can model shapes outside of the subspace, but in the full physical
- Our forces are mathematically and physically plausible. This is not the case when a random C mathematically plausible is used.

LEARNING ELASTIC MODEL, SHAPE AND CAMERA MOTION

+3NQ +3N(3N+1)/2

 $Q \times T$

- Projection model under orthography:
 - $\mathbf{w}^t = \mathbf{G}^t(\mathbf{s}_0 + \mathbf{C}\tilde{\mathbf{F}}\boldsymbol{\gamma}^t) + \mathbf{h}^t + \mathbf{n}^t$
- Our problem is to recover the elastic model C, camera motion $(\mathbf{G}^t, \mathbf{h}^t)$ and dynamic shape $\mathbf{s}^t =$ $\mathbf{s}_0 + \mathbf{C}\mathbf{F}\boldsymbol{\gamma}^t$ from observations \mathbf{w}^t .
- Learning C is challenging due to its large number of parameters. We just estimate the upper triangular part using vectorization rules.
- Weight coefficients are modeled as Gaussian distributions $\gamma^t \sim \mathcal{N}\left(\mathbf{0}; \mathbf{I}_Q\right)$.
- This problem is equivalent to recover the distribution over observations:

 $\mathbf{w}^t \sim \mathcal{N}\left(\mathbf{G}^t \mathbf{s}_0 + \mathbf{h}^t; \mathbf{G}^t \mathbf{C} \tilde{\mathbf{F}} (\mathbf{G}^t \mathbf{C} \tilde{\mathbf{F}})^\top + \sigma^2 \mathbf{I}_{2N}\right)$

 We use an EM algorithm with partial M-steps to retrieve every model parameter.