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Abstract

Attribution map visualization has arisen as one of the
most effective techniques to understand the underlying in-
ference process of Convolutional Neural Networks. In this
task, the goal is to compute an score for each image pixel
related to its contribution to the network output. In this
paper, we introduce Disentangled Masked Backpropaga-
tion (DMBP), a novel gradient-based method that lever-
ages on the piecewise linear nature of ReLU networks to
decompose the model function into different linear map-
pings. This decomposition aims to disentangle the attri-
bution maps into positive, negative and nuisance factors
by learning a set of variables masking the contribution of
each filter during back-propagation. A thorough evaluation
over standard architectures (ResNet50 and VGGI6) and
benchmark datasets (PASCAL VOC and ImageNet) demon-
strates that DMBP generates more visually interpretable at-
tribution maps than previous approaches. Additionally, we
quantitatively show that the maps produced by our method
are more consistent with the true contribution of each pixel
to the final network output.

1. Introduction

Convolutional Neural Networks (CNNs) are ubiquitous
in current state-of-the-art approaches for automatic visual
understanding. Despite their outstanding performance in
multiple tasks [10, 14, 40], they are still characterized as
black-boxes whose internal inference rules are difficult to
interpret. As a consequence, the trustability of this type of
models is limited and it holds back their broader adoption
in applications such as autonomous driving [|7] or medical
diagnosis [6], where it is crucial to ensure that model deci-
sions are reliable and not based on data artifacts or biases.

In this context, several strategies have been explored to
visualize the underlying rules guiding the model’s decision
process [39]. Attribution map generation is one of the most
effective methods for this purpose [3, 21, 25, 31, 33, 37].
This task aims to assign an score to each individual in-
put (i.e., pixels) determining their contribution to the fi-
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Figure 1. Illustration of our proposed method for attribution
map generation. Given an input image, we want to obtain a
score for each pixel estimating their contribution to the CNN out-
put for a target label (in bold). Our approach is able to iden-
tify discriminative image pixels that contribute positively (red) or
negatively (blue) to the prediction, and pixels corresponding to
nuisance factors that have no effect on the output (white). For
instance, in bottom-middle, positive attributions are assigned to
the dog whereas negative scores correspond to pixels belonging
to the cat. Additionally, no attributions are assigned to the non-
discriminative background pixels. The disentanglement of this
components produces fine-grained pixel-level attributions reveal-
ing the patterns used by the network during inference. We show
that the generated attribution maps are more informative and visu-
ally interpretable than the ones obtained by previous methods.

nal network output (e.g., the probability for a given class).
By visualizing attribution maps, it is then easy to verify
whether network inference is guided by intuitive rules such
as the identification of discriminative image regions related
to high-level semantic concepts (see Fig. 1).

A promising approach to generate reliable attribution
maps are gradient-based techniques [28, 33, 37, 31]. To de-
termine the importance of each pixel, these methods use dif-
ferent mechanisms to backpropagate the information from
the output to the input image through the intermediate lay-
ers. An appealing property of gradient-based methods is
that, compared to other approaches producing coarse and
less informative attribution maps [2 1, 25], they can identify



high-frequency patterns such as edges or textures. It has
been shown that this information can be relevant to fully
understand the network inference process [11].

In this paper, we introduce Disentangled Masked Back-
propagation (DMBP). Similar to previous gradient-based
approaches, our method uses backpropagation to determine
the contribution of each input pixel to the network output.
However, DMBP addresses this task from a novel perspec-
tive. In particular, we use the fact that standard CNNs with
ReLU non-linearities can be interpreted as piecewise lin-
ear functions where the input space is separated into dif-
ferent linear regions depending on the input [35]. Using
this observation, DMBP decomposes output’s computation
into different linear mappings that are used to disentangle
nuisance, positive and negative factors from the attribution
map. Whereas nuisance components refer to information
that have no effect on the network output, the latter factors
identify the discriminative pixels providing negative or pos-
itive evidences for the target label (see again Fig. 1). The
different linear mappings are identified by decomposing the
network gradient into different sub-components, which are
identified by learning a set of variables masking network
filters during backpropagation (see Fig. 2 for an overview).

In our experiments, we validate the effectiveness of
DMBP by providing qualitative and quantitative results over
standard network architectures (ResNet50 and VGG16) and
benchmark datasets (ImageNet and PASCAL VOC). The
results demonstrate that, compared to previous methods, at-
tribution maps produced by DMBP are more consistent with
the true contribution of each pixel to the network output.
Moreover, we show that our results are more informative
and visually interpretable.

2. Related Work

Attribution Map Generation is one of the most effective
strategies to understand the inference process of a CNN for
a given input. For this purpose, perturbation-based meth-
ods measure the contribution of input pixels by observing
the effect of excluding or including them during inference.
These approaches use different mechanisms to generate bi-
nary masks defining image regions that are perturbed for
network evaluation. Prediction Difference Analysis [42]
and Occlusion [37] use a sliding window approach to set to
zero image patches and measure the effect on the CNN out-
put. RISE [21] generates random binary masks and average
them according to the target class probability. LIME [23]
and KernelShap [19] weights image super-pixels accord-
ing to a surrogate model that estimates the effect on the
CNN output when they are removed. In contrast to these
brute-force strategies, Meaningful [9] and Extremal Per-
turbations [8] pose this task as a learning problem where
the mask is optimized to minimize the target label proba-
bility. However, while the previous methods have shown

promising results, the generated attribution maps are sensi-
tive to different hyper-parameters [5, 2] controlling factors
such as: (i) the type of image perturbation [9], (ii) the ex-
tracted super-pixels [19, 23] (iii) the sampling process over
the masks [42, 21, 23] or (iiii) sparsity and smoothing con-
straints [8, 9]. These parameters can be difficult to validate
in practice given the absence of an objective ground-truth.

Another popular approach to generate attribution maps is
by exploiting the information contained in the intermediate
network layers. In particular, Class Activation Maps [4 1]
uses the weights of the final classifier to compute a linear
combination of the feature maps in the last average pooling
layer. GradCam [25] considered a similar approach with a
linear combination determined by the gradients of the out-
put w.r.t. the last feature map. Score-CAM [34] uses the
intermediate layer activations to generate attribution maps
following a similar strategy than perturbation-based meth-
ods. Full-gradient [32] uses the gradient of the bias terms
w.r.t. the output in order to generate attributions. More re-
cently, Principal Feature Visualization [4] visualized the in-
formation of the last CNN layer through a PCA over the
corresponding feature map. Finally, [22] combines multiple
attribution maps generated from the gradient information of
the output w.r.t. the intermediate layer parameters. Despite
these approaches typically involve less hyper-parameters
than perturbation-based methods, the information of inter-
mediate layers is visualized by up-sampling it to the reso-
lution of the original input image. As a consequence, the
generated attribution maps are coarse-grained and do not
reveal cues such as texture or edges that can be critical to
understand the network inference process [11].

Gradient based methods for generating attribution maps
are motivated by the fact that the gradient of a CNN output
w.r.t. the input image is related with the contribution of each
pixel to the final prediction. Based on this observation, [28]
proposed to directly use the network gradient to compute
the importance of each pixel. However, the results of this
approach tend to be too noisy to be easily interpreted. To
overcome this limitation, several approaches average mul-
tiple gradients computed w.r.t. a set of modified input im-
ages. In particular, Integrated Gradients [33] considers a set
of interpolations between the original and a reference input
(e.g., a zero image). XRAI [16] applies this framework to
assign an score to different super-pixels. BIG [12] uses a
set of blurred images as reference inputs. Finally, Smooth-
Grad [30] averages multiple gradients resulting from evalu-
ating different inputs corrupted with Gaussian noise.

Rather than averaging multiple gradients, other ap-
proaches attempt to filter the non-relevant information dur-
ing backpropagation by modifying the activation function
derivatives [2]. For instance, DeconvNet [37] applies a
ReLU activation to the gradient of each intermediate layer.
Guided Backpropagation [3 1] follows a similar strategy but
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Figure 2. Overview of Disentangled Masked Backpropagation for generating attribution maps. Top: Given a function F'(x) modelled
by a CNN with ReLU non-linearities, the network output for a given image can be computed by applying a linear mapping over the input.
This mapping is equivalent to the output gradients w.r.t. the input. Then, the attribution map indicating the contribution of each pixel can be
computed as an element-wise multiplication of the mapping and the image pixels. As can be seen, however, this strategy typically produces
noisy results that are difficult to visually interpret Middle and Bottom: DMBP learns a set of variables weighting the contribution of each
network filter during backpropagation. The optimization of these variables is guided by a loss which decomposes the original function into
different linear mappings disentangling positive and negative attributions and removing nuisance factors from the attribution maps.

the derivative is also zeroed if the input to the corresponding
layer is negative. Guided GradCam [25] combines Guided
Backpropagation attributions with the coarse-grained maps
of GradCam. Finally, methods such as Excitation Back-
propagation [38], Layer-wise Relevance Propagation [3],
DeepLift [26], DeepShap [19], Deep Taylor Decomposi-
tion [20] or PatternAttribution [18] employ different gradi-
ent computation rules to propagate attributions across lay-
ers.

The proposed Disentangled Masked Backpropagation
draws inspiration on the methods that use a gradient-based
strategy to generate attribution maps. A fundamental differ-
ence, however, is that DMBP does not rely on hand-crafted
backpropagation rules as in [38, 3, 37, 31]. Instead, it op-
timizes a set of variables masking the individual network
filters during gradient computation. While learning func-
tion derivatives has been recently explored in LPR [36], this
method uses the modified gradients to generate a binary-
mask similarly to perturbation-based methods. DMBP, in-
stead, is the first approach to optimize backpropagation
rules to explicitly decompose the network function into a
set of linear mappings disentangling positive, negative and
nuisance factors from the attribution maps.

3. Disentangled Masked Backpropagation

In the following, we introduce the formal definition of
attribution map used in our framework. Let us consider a
linear model of the form y = ¢”x, where y € R is the
output (e.g., an score for a given class) and ¢ € R% is a
linear mapping applied to the input x € R% (e.g., a vector-

ized RGB image). Given any input-output pair {x,y}, we
can compute an attribution map a € R% as a(x) = ¢ O x,
where © is the Hadamard product and y = >, a;. As x is
an image, a can be visualized in order to identify the con-
tribution of each input pixel to the output. From now on,
we use the previous definition of attribution map for DMBP
and the rest of gradient-based approaches.

In this section, we show that standard ReLU networks
model a linear function for each input x (Section 3.1). For
the sake of simplicity, we start considering networks with
fully-connected layers and without bias terms. In Sec-
tion 3.2, we explain how DMBP uses this input-dependent
linearization in order to disentangle positive, negative and
nuisance factors from the attribution maps. Finally, in Sec-
tions 3.3 and 3.4, we generalize our framework to the case
of networks with bias terms and CNNss, respectively.

3.1. Linearizing ReLLU Neural Networks

Let us consider a neural network with L fully-connected
layers defining a function F' : R% — R as:

y=F(x)=w'[fro...0ofio...0fr0 fi(x)], (1)

where w € R? represents a final filter computing an out-
put from the last hidden layer (e.g., the target label score
before applying a softmax). Additionally, each intermedi-
ate layer f is defined as the composition of a linear function
and a ReLU non-linearity as:

h; = fi(h;—1) = #(Wih;_1), 2

where h; € R% are the intermediate layer activations, W &€
R%*di-1 and ¢(-) = max(-,0). Given previous definitions,



we can express Eq. (2) as:
by = Wil = diag(H(Wihi1))Wihi—1, - 3)

where H(-) denotes the Heaviside step function applied to
all the elements in a vector. More intuitively, we model the
ReLU operation as a diagonal binary matrix masking the
subset of filters in W, that produces negative elements via
W ;h;_;. As aresult, we can express the composition of the
linear mapping and the ReLLU as a single matrix W,

From Eqgs. (1) and (3), it is easy to see that the network
output is computed by applying a composition of linear
transformations W over the input x as:

y:wT |:WL...W2W1]X—WTHLX. (@)

where H;, € R% > Note that for any linear function
of the form F(x) = c¢Tx, we have ¢ = VF(x). There-
fore, the vector w/ Hy, € R% in Eq. (4) is equivalent to
the gradient of the network’s output w.r.t. the input. An at-
tribution map a(x) € R% for a given image can thus be
computed as:

a(x) = [wH ] Ox = V,F(x) ®x. 6)
3.2. Attribution Map Disentanglement

Motivation. Using the output gradient to compute attri-
bution maps was initially proposed in [28]. However, this
strategy typically produces noisy results that are difficult to
visually interpret (see Fig. 2-Top). To understand this phe-
nomena, we need to analyse the role of the matrix Hy, in
Eq. (4). In particular, it can be interpreted as a linear map-
ping computing the last layer features h; from the input
x. However, note that the resulting features entangle both
discriminative and non-relevant information encoded by the
network during inference. Nuisance components are thus
also visualized in the attribution map, masking the discrim-
inative factors that truly contribute to the model’s output.

Motivated by this observation, DMBP decomposes
Eq. (4) into three different terms:

wHx =w’ (Hf + H; + H])x, (6)

where Hz and H} are linear mappings producing fea-
tures that contribute positively and negatively to the out-
put, respectively. In contrast, H} aims to extract the non-
discriminative features.

Using this decomposition, an attribution map without
nuisance factors can be computed as:

a(x)=[w'Hj]ox+[w H]Ox. (7

Filter decomposition. To obtain the decomposition in
Eq. (6), we use the fact that the feature extractor Hy, in

Eq. (4) is defined as a product of matrices W,. We can
therefore decompose each of these linear mappings as:

Wl = Wl+ —|— W; == EZWZ + (I - El)wb (8)

where I is the identity and ; = diag(o;) € R%*% is a
diagonal matrix whose entries o; € [0,1]% are vectors of
learnable parameters.

Denoting ¢ = {o,...,01}, the network output in
Eq. (4) can be explicitly decomposed into positive, negative
and nuisance terms as:

Y= WT(H}: +H; + HE)X
=y (o) +y (o) +y~ (o)

= WT |:2LWL ce 21W1:| X

+wT [(I — X)W ... (I- El)Wl}x
+wlHTx, &)

where the masks 3; and (I — X;) select the set of filters for
each layer producing features that have a positive or nega-
tive effect on the output, respectively. In contrast, H7' mod-
els the non-discriminative features.

Learning objective. In order to learn the optimal parame-
ters o for a given input image x, DMBP optimizes:

min _y~ (o) —y" (o) +[ly~(o)],  (10)

where we aim to maximize and minimize the positive and
negative terms in Eq. (9), respectively. Additionally, the
term ||y~ (o)||1 encourages nuisance factors to have a neg-
ligible effect on y. During optimization, we ensure the con-
straint o; € [0, 1]% by applying a sigmoid function over the
set of learned scalar parameters.

Optimization via masked backpropagation.  Analo-
gously to Eq. (4), the positive and negative terms in Eq. (10)
are linear w.r.t. the input and thus, they can be expressed as:

y (o) =V Fr(x)'x |, y (o) =V, F (x)Tx (11)

where V,F*(x) is obtained by performing a backward
pass over the network while multiplying the filters of each
layer by ¥;. Similarly, V4 F~(x) can be obtained with an-
other backward pass using (I — X;). Finally, the nuisance
term does not require any explicit computation since it can
be estimated through the network output and the previous
computed terms as 4y~ (o) = y — y* (o) — y~ (o). Upon
the definition of these computations, the parameters o; for
each layer can be optimized by minimizing the loss function
in Eq. (10) using standard gradient descent.



3.3. Incorporating Bias Terms

In previous sections, we have obviated the biases terms
for each filter that are typically used in neural networks. To
take them into account, we shall modify Eq. (3) as:

h; = fi(hi_1) = ¢(Wihy_1 + by), (12)

where by is the bias term of the filter W;.
Similar to Eq. (4), it is easy to show that, in this case, the
network function can be linearized for a given input as:

L
y:WT[WL...W1:|X+ZWT|:WL...W1:|bl_1
=2

13)
where W; = W;diag(H(h;_; + b;_1)), and w =
wdiag(H(hr)). See Appendix A for more details. Note
that the output y is now obtained by applying a set of linear
mappings over the input x and each bias term b;. Yet, the
resulting function is again linear with respect to x and byg. ..
Therefore, we can also express Eq. (13) using the output
gradients w.r.t. the input and biases as:

L
y=VuF(x) T x+Y VpF(x)"by. (14)
=1

While the previous expression was firstly developed in [32]
by using a different derivation, we use Eq. (14) in order to
compute the DMBP decomposition in Eq. (9) for neural net-
works with bias terms. Concretely, we follow the same pro-
cedure described in Sec. 3.2. However, the gradients w.r.t.
the biases need to be computed during the two independent
backward passes using X and (I — X). This is required to
compute the contribution of the bias terms in Eq. (14).

3.4. DMBP for Convolutional Neural Networks

Masking Convolutional Filters. CNNs compute interme-
diate feature maps by applying a convolutional layer of the
form h; = ¢(W; % h;_1). In this case, the composition
of the convolutional operator and the ReLLU can be also ex-
pressed as a single linear mapping:

h; = ¢(Wyxh;_1) = H(Wixh_1) ©(Wyxh;_q). (15)

The DMBP decomposition in Eq. (9) can be also applied
to convolutional layers as follows. Firstly, the positive term
yT (o) can be obtained by multiplying ¥; by the resulting
feature maps after each convolutional and ReLU:

h =30 H(Wl * hl—l) ® (Wl * hl—l), (16)

where X; is a tensor of the same dimension than h;. In-
tuitively, this is equivalent to mask the applied filters W;
independently for each spatial position and channel of the

input feature map. In this manner, the term y* (o) can be
also computed as in Eq. (11), where Vx F'*(x) is obtained
with a single backward pass over the network by modifying
the gradients for each intermediate layer as 3; o Vi, F'(x).
Similarly, the negative term y~ (o) can be computed using
(I — %) during backpropagation. Pseudo-code for DMBP
optimization is provided in Appendix B.

Applying DMBP for other layers. Besides convolutions
and ReL.Us, standard CNNss also incorporate Batch Normal-
ization (BN) [15] or residual layers [13]. Fortunately, the
use of these layers does not requires any modification into
our proposed framework. The reason is that they can also
be modelled as linear mappings over the input and thus, the
network function can still be linearized as in Eq. (14). Dur-
ing evaluation, BN can be fused with its previous convolu-
tion by modifying its filters and bias terms.'. On the other
hand, residual layers of the form h; = ¢(W;h;_1) + h;_4
can be represented by a linear mapping hy = (W;+I)h;_1,
where Wl is defined in Eq. (3).

4. Experiments

Datasets and models. We conduct our experiments over
benchmark datasets and architectures for image classifi-
cation. In particular, we use the validation sets of Ima-
geNet [24] and VOC2012 [7]. As baseline models, we use
two extensively used CNN architectures: ResNet50 [13]
and VGGI16 [29]. Over ImageNet, we use the pretrained
models in the Torchvision library for both architectures. In
VOC2012, we use the models trained in [38].

Baselines. @ We compare DMBP with 11 previous ap-
proaches for attribution map generation, including state-of-
the-art methods. Given that DMBP is a gradient-based ap-
proach, we focus on the comparisons with previous meth-
ods following this strategy: Grad [28], Integrated Gradients
(IG) [33], Smooth Gradients (SG) [30], Blurred Integrated
Gradients (BIG) [12], DeepLift (DL) [27], Gradient Back-
propagation (GBp) [3 1] and Guided GradCam (GGC) [25].
As a reference, we also compare our method with Grad-
Cam (GC) [25] and FullGradients (FG) [32], which use the
information in intermediate layers to compute the attribu-
tion maps. Finally, we also provide comparisons with the
perturbation-based approaches RISE [21] and LPR [36].

Implementation details and hyper-parameters. We use
a PyTorch implementation for DMBP and the rest of com-
pared methods. For BIG ? and FG °, we integrate the code
provided by the authors. We use our own implementation
of LPR given that no code is publicly available. For the rest
of methods, we use the implementations in the Captum.ai
and TorchRay libraries. The hyper-parameters for all the

Ihttps://nenadmarkus.com/p/fusing-batchnorm-and-conv/
Zhttps://github.com/PAIR-code/saliency
3https://github.com/idiap/fullgrad-saliency
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Figure 3. Illustration of the Insertion Metric (IM) used in our experiments. See text for details.

DB/Model Metric ND DMBPT DMBPH~ DMBP4!
M 36 [.62] 51 .57
VOC/VGGI6 cM .09 06 [.18] 16
M 30 .58 .59 [.61]
VOC/RNS0 cM .15 .15 [.22] [.22]
ImNet/VGG16  IM 24 37 37 [.39]
ImNet/RN50 M 26 .50 .51 [.57]

Table 1. Results for DMBP variants optimized with different
disentanglement losses. See text for details. Best method is indi-
cated with brackets. Second and best are indicated in bold.

compared methods are set to the default values suggested
in the original papers. For DMBP, we use RMSProp with a
learning rate of 0.01 as an optimizer to minimize the loss in
Eq. (10). No weight decay is applied. A total number of 200
iterations are executed during gradient-descent. The opti-
mization for a given 224 x 224 input image requires ~ 20s
on a NVIDIA 2080 Ti GPU. This time is higher than the
needed by other gradient-based approaches. However, our
primary goal is to generate accurate attribution maps rather
than their efficient computation. Our code implementing
DMBP is publicly available in this repository.

4.1. Evaluation Metrics

Evaluating attribution maps is challenging given the ab-
sence of objective ground-truth. Previous works have at-
tempted to evaluate them by using object bounding-boxes
provided by human annotators [25, 38] or conducting user-
studies [19]. However, human-based evaluation can be
flawed and misleading [ 1], given that the perceived discrim-
inative pixels can differ between humans and CNNs.

Insertion Metric (IM). To overcome this limitation, we
use the insertion metric proposed in [21]. This metric does
not rely on human annotations and computes a score for
each image as follows. Given an attribution map generated
for a target label, the pixels are ordered in decreasing or-
der according to their attribution value. Then, an increas-
ing percentage of pixels is added iteratively to a reference
blurred image and the probability of the target label is eval-
uated with the network. Finally, the AUC over the proba-
bilities is computed to obtain a single score for the image
(see Fig. 3 for an illustration). Intuitively, this metric at-
tempts to measure if the pixels with large attribution val-
ues contribute positively to the network output. Different
from [21] where the attribution maps were generated for
the label with a highest probability, we use the ground-truth

classes provided in each dataset as the target label. This re-
sults in a more challenging problem because the class can
be predicted with a low probability. Additionally, using the
ground-truth annotations as target labels allows us to use the
following complementary metric to IM.

Complementary Insertion Metric (cIM). In IM, the first
inserted pixels are the ones with highest attributions. As a
consequence, this metric is not appropriate to evaluate the
information provided by pixels with negative scores. We ex-
pect such pixels to correspond to regions that are discrimi-
native but provide negative evidences for the target label. To
evaluate these attributions, we use an alternative metric that
can be applied to images annotated with multiple classes
and which we refer to as Complementary Insertion Metric
(cIM). In particular, we follow the same procedure as in
IM but the pixels with lower attributions are inserted first.
Then, the AUC is computed by evaluating the probabilities
for all the ground-truth labels that are different from the tar-
get class used to compute the attribution map. Therefore,
a high cIM indicates that pixels with negative attributions
correspond to discriminative regions providing positive ev-
idences for the complementary classes in the image. Con-
sequently, these regions provide negative evidences for the
target class. We do not compute cIM for ImageNet given
that images are only labelled with a single class.

4.2. Evaluating Attribution Map Disentanglement

In this experiment, we evaluate the effect of disentan-
gling positive, negative and nuisance factors on the gener-
ated attribution maps. For this purpose, we compare differ-
ent variants of DMBP optimized with ablated versions of
our loss defined in Eq. (10). Concretely, we use: (i) A loss
maximizing only the positive term y*. (i) The same ob-
jective but also minimizing y~. (iii) The original loss that
also takes into account the nuisance term y~. From now
on, we refer to these approaches as DMPB*, DMBP*:~
and DMBPA!!, respectively. Note that DMPB™ is optimized
to identify only positive factors; DMBP™~ aims to disen-
tangle positive and negative factors; DMBPA! also seeks to
remove nuisance factors. In addition, we also evaluate at-
tribution maps generated by the vanilla approach in Eq. (5),
where factors are not disentangled. We refer to this method
as ND. For a faster experimentation, we use a subset of 5K
images for ImageNet with five random images per class.



DB/Model Metric Grad [28] IG[33] SG[30] BIG[I2] DL[27] GBp[3]] GGCI[25] LPR[36] RISE[2]] FGI[32] GC[25] DMBP
VOC/VGG M 0.36 0.43 0.55 0.36 0.41 0.32 0.35 0.40 0.41 0.28 0.35 [0.57]
cIM 0.09 0.06 0.06 0.08 0.07 0.06 0.12 0.07 0.13 0.10 0.13 [0.16]
VOC/RN50 ™M 0.30 0.36 0.47 0.27 0.34 0.39 0.50 0.40 0.51 0.44 0.51 [0.61]
cIM 0.15 0.16 0.15 0.15 0.15 0.13 0.19 0.14 0.21 0.14 0.21 [0.22]
INet/VGG ™M 0.23 0.28 0.38 0.21 0.30 0.32 0.36 0.28 0.28 0.43 [0.48] 0.41
INet/RN50 M 0.26 0.30 0.40 0.27 0.29 0.43 0.50 0.33 0.33 0.53 0.55 [0.56]
Avg 0.23 0.27 0.34 0.22 0.26 0.28 0.34 0.27 0.31 0.32 0.37 [0.42]

Table 2. Results obtained by DMBP and other state-of-the-art methods. Metrics are shown for all the evaluated datasets and network
models. Best method is indicated with brackets. Second and best are indicated in bold.
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Figure 4. Comparison between attribution maps generated by
FG, GradCam and the proposed DMBP. The latter generates
fine-grained pixel attributions that are more informative and inter-
pretable than the coarse results produced by the other methods.

Table 1 summarizes the results for the different evaluated
metrics, datasets and models. As we can observe, ND yields
significantly worse results compared to the different DMBP
versions in most metrics. The reason is that positive, neg-
ative and nuisance factors are not disentangled in this case.
This generates noisy results where attributions do not cor-
rectly identify the contribution of each pixel to the model’s
ouput. On the other hand, DMBP™" ~ consistently outper-
forms DMBP™ in all the cases except for the IM metric in
VGG16 over VOC. This improvement is because DMBP*
ignores the negative factors during optimization. As a con-
sequence, the discriminative patterns having a negative im-
pact on the model’s output are not correctly identified. This
is clearly seen by observing the poor cIM values obtained by
DMBP*. Finally, DMBP4! achieves comparable or better
results than DMBP™'>~ in most cases. This demonstrates
the importance of removing non-discriminative factors by
minimizing the effect of the nuisance term y~ .

4.3. Comparison with state of the art

Comparison with gradient-based methods. As can be
obzerved in Table 2, DMBP consistently outperforms the
rest of compared gradient-based approaches (Grad, IG, SG,
BIG, DL, GBp and GGC). To provide further insights,

Fig. 5 shows qualitative results obtained with DMBP and
the alternative gradient-based methods with better perfor-
mance. As shown, IG, SG and DL produce noisy visualiza-
tion, in which positive and negative attributions are mixed.
The reason is that these approaches do not explicitly disen-
tangle the discriminative and non-relevant factors. In con-
trast, GBp uses hand-crafted backpropagation rules to iden-
tify image regions corresponding only to positive factors.
However, this method produces attributions where pixels
that do not belong to the target class are also assigned with
positive attributions. Finally, GGC uses the coarse feature
maps produced by GradCam to filter the attributions gener-
ated by GBp. Still, this strategy is not able to identify image
pixels that have a negative contribution to the network out-
put. In contrast to IG, SG and DL, our method produces
more interpretable attribution maps by removing the non-
discriminative factors. Additionally, compared to GGC and
GBp, our approach correctly identifies factors that have a
negative effect on the output.

Comparison with other approaches. Results in Table 2
also demonstrate the advantages of DMBP over the ap-
proaches using intermediate layer information GradCam
and FG. More concretely, DMBP obtains the best average
performance and the top-scoring results in all the metrics
except for VGG16 over ImageNet, where FG and GC out-
perform our approach. Nevertheless, these two methods
generate attribution maps by upsampling the information
extracted from intermediate layers. As shown in Fig. 4,
this results in coarser and less informative visualizations
than those obtained with our method. Whereas coarse at-
tribution maps can be potentially applied to specific down-
stream tasks such as weakly-supervised object localization,
reliable network intepretability requires fine-grained results
providing detailed information about the visual cues that the
model exploits during inference. As can be observed, this
is the case for DMBP visualizations, which provide fine-
grained pixel-level attributions identifying high-frequency
information such as object edges or textures. To conclude,
our method consistently outperforms the perturbation-based
methods RISE and LPR. The latter also optimizes func-
tion derivatives for backpropagation. However, the modi-
fied gradients are used to generate binary masks corrupting
the original image. In contrast, DMBP achieves better per-
formance by using the modified gradients to explicitly dis-
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voC IMNet
VGG16 RNS0 VGG16 RN50
GBp [31] 0.99 0.99 0.99 0.99
GGC [25] 0.25 0.28 0.35 0.45

DMBP (Ours) 0.02 -0.03 0.00 0.00
Table 3. Correlation between the attributions obtained from the
original network and for one with reinitialized parameters.

entangle positive, negative and nuisance factors.

Attributions sensitivity to layer reinitialization. DMBP
generates fine-grained attributions where visual cues such
as edges can be clearly identified. The identification of
this intuitive patterns is also observed in gradient-based ap-
proaches such as Gradient Backpropagation and Gradient
GradCam. However, [ ] showed that these approaches suf-
fer from a critical weakness: the attribution maps are not
sensitive to the reinitialization of network parameters. As a
consequence, they cannot be identifying the discriminative
regions explaining the inference process. In order to eval-
uate if DMBP suffers from this limitation, we perform a
sanity check proposed in [1]. In particular, we compute the
rank correlation between the original attribution maps and
the ones generated by a network where the last layer param-
eters are randomly reinitialized using a normal distribution.
Table 3 shows the obtained results. As can be observed,
the high correlations obtained by GBp and GGC indicate
that these methods generate attribution maps that are not
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Figure 5. Qualitative results for DMBP and alternative gradient-based approaches. More results provided in suppl. material.

sensitive to model reinitialization. In contrast, DMBP ob-
tains almost a zero correlation for all cases, showing that the
identified edges are truly dependent on network parameters.

5. Conclusions

We have presented Disentangled Masked Backpropaga-
tion, a novel gradient-based approach for attribution map
generation. In contrast to previous methods, DMBP lever-
ages on the piecewise linear nature of ReLU neural net-
works to disentangle positive, negative and nuisance factors
from the attribution maps. Our experiments demonstrate
that, compared to previous state-of-the-art methods, DMBP
produces fine-grained attribution maps that are more visu-
ally interpretable and identify better the contribution of each
pixel to the network output. Whereas we have focused on
standard CNN architectures employing ReLU activations,
our framework can also be applied to networks with other
types of piecewise linear activations such as the Leaky-
ReLU. Last but not least, other non-linearities such as the
sigmoid or the hyperbolic tangent could be also introduced
by modelling them with piecewise linear approximations.
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