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ABSTRACT

Photometric stereo is a technique for recovering a rigid ob-
ject’s 3D shape, reflectance properties, lighting conditions,
and specular highlights from multiple images captured un-
der varying lighting conditions. Variational, uncalibrated,
and unsupervised formulations have recently provided de-
tailed and robust solutions to the problem, reducing the need
for prior knowledge about shape geometry or lighting con-
ditions. However, uncalibrated methods, especially when
applied to real-world data, may be susceptible to noise and
depth errors near boundaries or self-occlusions, stemming
from missing or noisy data, surface orientation ambiguity,
and calibration issues. In this paper, we introduce a novel
piecewise depth regularizer to mitigate these errors, enhanc-
ing stability and improving robustness against initialization
errors. We demonstrate the effectiveness of our approach
through evaluations on both synthetic and real-world data,
showcasing its promise in enhancing the accuracy and relia-
bility of photometric stereo for practical applications.

Index Terms— Uncalibrated Photometric Stereo, Unsu-
pervised Vision, Piecewise Regularizer, Specular Materials.

1. INTRODUCTION

The aim of Photometric Stereo (PS) is the recovery of a rigid
object’s 3D shape, reflective properties, lighting character-
istics, and specular highlights, from multiple visual signals
captured from the same viewpoint but under varying lighting
conditions [1, 2, 3, 4]. Initially, it relied on specific assump-
tions about lighting control, limiting its use to controlled set-
tings with precise lighting calibration. Uncalibrated methods
emerged as an alternative, but comprised an ill-posed prob-
lem due to the linear ambiguity intrinsic to the recovered nor-
mal map [5]. Efforts to address those ambiguities introduced
variational formulations, representing 3D reconstruction as
a depth map rather than normal vectors [6, 7], and where
later extended to general lighting conditions [8, 9, 10, 11],
and non-Lambertian materials [11]. However, their overall
quality notably depended on the initialization of the depth
map [12, 13, 14]. Deep-learning approaches have also been
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applied to PS [15, 16, 17], utilizing ground-truth parameters
for supervision during training. However, these methods lack
a clear physical interpretation, hindering the understanding of
the interactions between lighting, 3D geometry, and specular
highlights. Furthermore, they require extensive training data,
which can be hard and expensive to obtain in practice.

It has been noted in recent works [10, 11, 18] that un-
calibrated methods often present various forms of depth er-
rors on their recovered shapes, especially near object bound-
aries and self-occlusions. These regions are particularly sus-
ceptible to inaccuracies due to various factors. Firstly, par-
tial information near boundaries can result in missing or am-
biguous data, making accurate estimation challenging. Am-
biguity arises because contours mark transitions between dif-
ferent surface orientations, making it difficult for the algo-
rithm to distinguish between these orientations, particularly
under less-than-ideal lighting conditions or when speculari-
ties, shadows and noise are present. Boundary reflections add
another layer of complexity, as objects near boundaries may
reflect light differently due to their proximity to background
or neighbouring objects, introducing noise, and further affect-
ing accuracy. Moreover, calibration issues, especially pro-
nounced near boundaries, can lead to depth errors as well,
as even minor calibration errors can result in significant in-
accuracies. One effective solution to mitigate depth errors is
the application of regularization techniques [19, 20, 21, 22],
helping to smooth out noisy or ambiguous areas. Exploring
advanced PS algorithms designed to handle complex surface
properties, shadows, specularities, and boundary effects can
also be beneficial.

To address the existing limitations of current methods, we
present an unsupervised, unified, and uncalibrated PS algo-
rithm, capable of functioning effectively under diverse light-
ing conditions, and catering to a wide spectrum of objects and
materials with no extra sensors, training data, or any form of
ground truth information. Our method utilizes a convex for-
mulation for shape initialization from a single visual signal,
which excels in fine detail recovery. Furthermore, we intro-
duce a physically-aware piecewise depth regularizer, to sep-
arately target depth errors in the shape boundary and enforce
smoothness on the rest of the recovered surface, thus making
our algorithm more robust against noise and errors stemming
from calibration or initialization.



2. PIECEWISE PHYSICALLY-AWARE MODEL

Consider {Z¢ C R?} as a collection of i = {1,...,I} visual
signals captured under varying illumination conditions, where
¢ ={1,...,C} denotes different color channels. These sig-
nals encompass a rigid object intended for reconstruction. In
the context of this object, we define S C Z?, representing the
shape segmentation within the signal set, and B C S the sil-
houette boundary of this object, comprising the set of pixels
residing solely on the boundary of the object’s silhouette. Ad-
ditionally, we define W = S \ B as the area enclosed by the
silhouette boundary. Following the principles of the Phong re-
flection model [23], the surface reflectance across all P pixel
points p = [u,v] € S can be mathematically represented
by aggregating elementary luminance contributions —in a unit
sphere in R3, denoted by S?- originating from all incident
lighting directions w as:

Ti(w) = [ pelp) o) max{0,0- n(p)} s+ 5'(p). (1)

where p.(p) € R signifies the color-wise albedo, and % (w)
represents the intensity of incident lights in the respective
color channels. Furthermore, n(p) corresponds to the unit-
length surface normal at the surface point corresponding to
the p-th pixel. Additionally, s*(p) characterizes the specular
reflection component, and - indicates a dot product.

Given these components, the PS problem in an uncali-
brated context involves the recovery of the 3D shape of the
object (characterized by its normal vectors n(p)) along with
the parameters {p.}, {I:} and {s'}, all of which are derived
from the input visual signals {Z'}. To make this problem
treatable, numerous studies model the irradiance map using
spherical harmonics for general lighting conditions [24], of-
ten considering first or second-order approximations. Follow-
ing said approximation, the image formation model described
in Eq. (1) can now be expressed as follows:

T(p) = pe(p) 1. - h[n](p) + s'(p). )

being h[n] € R” and I} € R7 the first- or second-order har-
monic lighting images and coefficients, with 7 € {4,9}, re-
spectively. To bypass the complexity associated with infer-
ring normal vectors in a nonlinear manner, each surface nor-
mal nz] is parameterized based on its depth under perspec-
tive projection [10, 18].

Estimation Error Formulation. The model parameters
can be estimated through the minimization of the image ren-
dering error computed across all observed points within the
entire set of visual signals. The residual function Ti,p repre-
sents the difference between the anticipated intensity and the
actual one at the p-th pixel, expressed as:

T p(apapcp’lcv po ):Pc,p li‘hp[ﬁp[z]/ap] Iép’

where oy, = |n,[2]| Vp € {1,..., P} and n,[z] = n,[z]/ .
being n,[z] a linear parametrization on depth. In addition to
the data term, four regularization priors are introduced. The
first two enforce smoothness and sparsity on the albedo and
specular maps, respectively. The last two represent the piece-
wise regularization terms of the depth map. The former en-
forces smoothness on the object’s boundary, whereas the lat-
ter targets the whole surface within. Then, the total cost func-
tion D(av, {p.}, {11}, {s'}, 2) can be written as:
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where fi4, s, pp and i, are the weight parameters for each
regularization term, | - \7 signifies a Huber norm, v/ is the
spatial gradient operator, and oy (z) = A%log(1 + %z) is
Cauchy’s M-estimator, where A is a scaling coefficient.

Given that the previous problem is highly non-linear and
non-convex, a proper initialization is essential to achieve ac-
curate results. For this reason, we implemented the minimal
surface initialization proposed in [12], which is capable of in-
ferring surfaces from a single visual signal by considering a
volume initialization encoded by a factor « that allows the
monocular reconstruction to be scaled, such that:

P
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p=1 p=1
where v is a weight coefficient. Dirichlet’s boundary con-
ditions are also enforced as z, = 0, Vp € B. Problem in
Eq. (4) is solved by gradient descent. Ultimately, a lagged
block coordinate descent algorithm is used to minimize D in
Eq. (3).

3. EXPERIMENTAL EVALUATION

We now provide both quantitative and qualitative evaluations
on the performance of our method, on both synthetic and real-
world data. For this purpose we compute the mean angular
error between the estimated n|z] and ground-truth n¥¢[z| nor-
mal vectors as:

MAE — 12P:cos1(ngt[z]'n”[z]>. (5)
P 2% el o, ]

However, as it will be shown later, this metric can prove
insufficient when surface discontinuities, like self-occlusions,



Dataset Armadillo Joyful Yell Lucy Thai Average
Meth. MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE
UPS [10] 1576 | 22.28 | 10.41 042 | 27.70 | 214.26 | 1529 | 30.73 | 17.29 | 66.92
USPS [11] 14.56 | 2458 | 7.93 0.55 16.02 | 172.48 | 15.29 | 28.04 | 13.45 | 56.41
Ours 1458 | 1491 | 8.84 036 | 1517 | 92.58 | 8.86 | 25.19 | 11.86 | 33.26
Relative error w.r.t. [10] | 1.08 1.49 1.18 1.17 1.82 2.31 1.73 1.22 1.46 2.01
w.rt. [11] | 0.99 1.65 0.90 1.53 1.06 1.86 1.73 1.11 1.13 ‘ 1.70

Table 1. Quantitative evaluation on synthetic data. The table reports the MAE in degrees and RMSE for depth, respectively,

for each dataset.

are present (due to the ambiguity intrinsic to surface normal
representation). For this reason, we also compute a root-
mean-square error between the estimated z, and ground-truth
29" depth maps as:

P
RMSE = %Z(zp — 2942, (6)
p=1

We propose using both metrics in a complementary man-
ner, in order to achieve a thorougher evaluation. Additionally,
both errors can be plotted (before being averaged) to serve a
more qualitative evaluation of the results. The angular error
metric better serves to quantitatively evaluate the overall qual-
ity of the reconstruction, and can be used to locate and visual-
ize errors of a more subtle and localized nature. On the other
hand, the depth error metric can serve to identify and evaluate
errors that extend over a larger scale, such as smooth defor-
mations that extend across large surfaces, or offsets caused by
surface discontinuities.

Synthetic datasets. We considered four challenging syn-
thetic shapes under varying light conditions: Joyful Yell [25],
Armadillo, Lucy, and ThaiStatue [26], which were generated
following [11]. Firstly, we tuned the depth initialization algo-
rithm [10], and found that the optimal « values for our imple-
mentation were 32, 3, 5 and 15 for Joyful Yell, ThaiStatue, Ar-
madillo and Lucy, respectively. Secondly, we proceeded with
the tuning of the weight parameters in D(-), and fixed the val-
ues that best helped minimize said cost function. For our im-
plementation, these values were v = v, = 0.1, ig = 5- 1073,
ps =2-1075 ppy =5-1077, gty = 5-107% and A = 0.15.
We use the same values for all our experiments.

Our results are reported in Table 1, obtaining MAE and
RMSE errors of 11.86 and 33.26 on average, respectively. To
make a fair comparison, we also include the results by ap-
plying the competing approaches UPS [10] and USPS [11],
as in all cases the depth initialization strategy is the same.
It is worth noting that our method outperforms the solution
in UPS [10] and USPS [11] by large margins in terms of both
MAE (from 46% to 13% on average, respectively) and RMSE
(from 101% to 70% on average, respectively) metrics. Thanks
to our piecewise physically-aware formulation, the algorithm
is more stable and less dependent on depth initialization (see
Fig. 1). However, as our formulation exploits more sophis-
ticated constraints to solve the problem, it is slightly more
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Fig. 1. Evaluation on the impact of depth initialization.
Average RMSE of depth across all four synthetic datasets,
for different « values, with and without depth regularization.
k is the hyper-parameter that determines the volume of the
balloon-like shape to be generated by the initialization algo-
rithm, we use in Eq. (4).

Mothod Dataset | ) madillo | Joyful Yell | Lucy | Thai | Average

USPS [11] 10770 | 14884 | 194.69 | 261.87 | 178.28

Ours 15608 | 21771 | 259.61 | 363.81 | 249.30
Speedup w.r.t. [11] 0.69 0.68 0.75 0.72 0.72

Table 2. Quantitative evaluation of execution times for the
synthetic dataset. The table reports the execution times in
seconds and speedup for each dataset.

expensive. Particularly, for a non-optimized Python imple-
mentation, our method increases the computing time by ap-
proximately 30% (see Table 2). In any case, our algorithm
provides a competitive trade-off between accuracy and com-
putational cost with respect to state-of-the-art approaches.
Figure 2 shows an example of how both the MAE and
RMSE metrics were used in a complementary manner to eval-
uate unfavourable results. The recovered shape presents er-
rors in texture and detail, especially on the face, chest and
base of the statue, which are better appreciated in the nor-
mal map and angular error representations. Furthermore, self-



Fig. 2. Shape recovery evaluation. From left to right: ground-truth and recovered normal maps, ground truth and recovered shape, angular

error map, and depth squared error map.

Fig. 3. Qualitative evaluation of the piecewise depth regularizer. From left to right: shape recovered with unfavourable tuning and no
regularizer, shape recovered with the same tuning but using depth regularization, ground-truth shape, angular error before regularization,
depth error before regularization, depth error after regularization, exaggerated representation of the shape used for depth initialization.

occlusions present on the original shape (i.e., the folds of the
dress or the gap between the wings and the rest of the body)
are lost after reconstruction, and the recovered shape is some-
what flattened. This difference can only be appreciated by
comparing the rendered shapes or by plotting the depth error
metric, which directly targets the depth maps, instead of the
surface normals.

Furthermore, Fig. 3 shows the rather unfavourable result
obtained for the Thai dataset when certain trade-off values
where fixed during tuning. Although the angular error map
does not provide any particular insights on the quality of the
reconstruction, the depth error map does show that the re-
covered shape presents considerable noise on the left bound-
ary of the base, and is warped along the diagonal axis (see
Fig. 3-fifth column). Taking into account how critically de-
pendent our algorithm is on depth initialization [10], we were
able to trace this deformation back to the shape generated by
the depth initialization algorithm, which also presented a very
subtle deformation of the same nature (see Fig. 3-seventh col-
umn), and which propagated to the final result. The depth reg-
ularizer addressed initialization errors as well as the issue of
noise, showcasing a more robust response across all datasets
(see Fig. 1).

Real datasets. We now evaluate our algorithm on eight
real-world visual collections. The first four datasets are Cat,

Dataset

Meth. Cat Frog | Hippo | Scholar | Average
StLS [27] 14.83 | 11.80 | 20.25 | 28.13 18.75
UPS [10] 9.53 | 16.01 | 11.22 12.93 12.42
USPS [11] 9.65 | 14.83 | 11.59 12.95 12.26
Ours 947 | 12.10 | 11.22 | 12.72 11.38
Relative error w.r.t. [27] | 1.57 0.98 1.80 2.21 1.65
w.rt. [10] | 1.01 1.32 1.00 1.02 1.09
w.rt. [11] | 1.02 1.23 1.30 1.02 1.08

Table 3. 3D reconstruction evaluation and comparison.
The table reports MAE results in degrees for StLS [27],
UPS [10], USPS [11] and our algorithm.

Frog, Hippo, and Scholar [27], which present varying ge-
ometries, diffuse albedo, and were captured under directional
lighting. Due to the nature of the lighting conditions, these
shapes present strong shadow regions, caused by the inter-
action between self-occlusions and the directional light rays.
Table 3 shows a quantitative evaluation between our results
and those obtained by the competing approaches StLS [27],
UPS [10] and USPS [11]. As it can be seen, our method ob-
tains the best solution, obtaining between the 8% and 65% of
performance on average. In Fig. 4 we present our joint es-
timation results, which are physically plausible and detailed,
thus proving that our algorithm is generalizable to mainly di-



Fig. 4. Qualitative evaluation on real datasets. From top to bot-
tom: Cat, Frog, Hippo, and Scholar. From left to right: an arbitrary
input image, the 3D ground truth, our 3D estimation and a novel
point of view of that shape.

rectional lighting conditions, and provide satisfying results in
spite of the presence of strong self-cast shadows.

The last four shapes we evaluated present a wide variety
of natural geometries, highly detailed surfaces, and different
examples of natural albedos. The visual collections are Facel,
Face2, Tablet, and Vase [28], which were captured under day-
light and a freely moving LED. As shown in Fig. 5, our esti-
mations are physically plausible and consistent with the input
images. The previous attempt on this same dataset [18] pre-
sented noisy regions in the Facel and Face?2 scenarios, as well
as over-deformations in the Vase collection. Our implemen-
tation addressed these issues thanks to the use of piecewise
depth constraints. Particularly noticeable is the improvement
on the Facel dataset, where the tip of the nose presented con-
siderable noise due to specular reflections. Furthermore, on
the Tablet case our algorithm did not perform as well. The
recovered shape already presented overall smoothness, and
depth regularization led to a loss in detail (the groove on the
case is shallower in our case). A certain loss of surface texture
or detail is an inherent trade-off of depth regularization, which
otherwise effectively helps to tackle noise and initialization
problems. Furthermore, the recovery of planar shapes (such
as that of the tablet case) is especially challenging through
monocular vision, which explains the quality of this particu-
lar reconstruction.

4. CONCLUSION

In this study, we have proposed an uncalibrated, unified,
and unsupervised PS algorithm that enhances performance,
stability, and robustness across diverse datasets. A piece-
wise physically-aware regularizer was proposed to address
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Fig. 5. Qualitative evaluation on real datasets. From top to bot-
tom: Vase, Facel, Face2, and Tablet. First column shows an arbi-
trary input image. Columns 2 & 4 represent estimation by [18], for
two points of view. Columns 3 & 5 display the same information for
our method.

depth errors by targeting object boundaries and smoothing
out noisy regions, which significantly improved stability. We
also tackled the issue of inaccurate depth initialization, which
can cause shape deformations. Our method demonstrated
resilience against initialization errors, resulting in more ac-
curate outcomes. Nevertheless, it is essential to note that
depth regularization entails a trade-off, as excessive appli-
cation can lead to a loss in detail and flattened geometry.
Therefore, a balanced approach is necessary when employing
this technique. Our future work aims to take our formulation
a step further by addressing outdoor scenarios with strong
occlusions.
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