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Martı́n Méndez-López 1, Alicia Fornés 2 and Antonio Agudo3

1Universitat Pompeu Fabra, Spain
2 Computer Vision Center, UAB, Spain
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ABSTRACT
Upper limb impairment is a loss of motor function after a

stroke, leading to difficulties in performing daily tasks. With
a low remission rate six months after stroke, monitoring dur-
ing this critical period is essential. Telemonitoring with iner-
tial sensors has become a common approach that requires the
identification and recognition of specific movements. How-
ever, data quality in clinical databases is a challenge, mak-
ing data augmentation necessary. In this work, we propose a
novel method that can learn a trajectory subspace from partial
3D signals in an unsupervised manner. Our method is simple
yet effective, producing novel human-feasible motions com-
patible with the estimated trajectory subspace. To this end,
three approaches are introduced from global to local mod-
els that can capture a wide variety of human motions. Our
method outperforms the results in the state of the art in both
control and patient subjects.

Index Terms— Trajectory subspace, Signal completion,
Low-rank models, Upper limb impairment.

1. INTRODUCTION

Stroke is the second leading cause of death and the fourth
leading cause of disability according to the World Health Or-
ganization, and its prevalence will increase with the aging
population. Among the disabilities caused by stroke, the most
common is upper limb impairment. This means that the up-
per limb experiences a loss of motor function and sensation.
The patient unlearns the normal use of the limb and adopts
new patterns such as compensations, making it difficult to per-
form daily tasks [1]. After a stroke, there is a critical six-week
window for rehabilitation. During this time, neuronal plastic-
ity supports movement recovery. However, if pain and mus-
cle weakness lead to immobilization, patients may develop
compensatory postures that are difficult to correct later [2].
The limited window for mobility improvement is further chal-
lenged by the need for patients to perform unsupervised home
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Fig. 1: Human Activity Recognition. Four types of human motion
we use to analyze a patient evolution (two frame instances per col-
umn are displayed).

rehabilitation due to resource constraints. As a result, tele-
monitoring human motion (some visual instances of human
motion are displayed in Fig. 1) has become a key factor for
therapeutic protocols. To this end, some alternatives based on
vision or inertial sensors [3], such as the Apple Watch, can
be used to capture 3D human motion of the extremity. These
tools track predefined target movements to monitor progress
and adjust therapy and medication as needed [4, 5].

From a technical perspective, this is a Human Activity
Recognition (HAR) problem, which requires signal pre-
processing, segmentation, and feature extraction for clas-
sification [6]. Clinical HAR databases face challenges due to
high data acquisition costs and interclass variability, compli-
cating movement classification. A common strategy is data
augmentation, though it is less studied for time series than for
images. For inertial sensor signals, geometric transformations
like Gaussian noise, resampling, scaling, and interpolation
have shown an improvement in accuracy in standard datasets
such as UCI-HAR and USC-HAR [7]. Another approach
applies rotation to simulate different sensor positions [7].
In [8], Discrete Time Warping (DTW) is used for data gen-
eration, improving accuracy in some datasets. However, they
use datasets from healthy subjects, simplifying classifica-
tion, and do not ensure that the generated movements remain
within humanly feasible ranges of trajectory, velocity, and
acceleration, despite improving accuracy.

In recognition of motions in patients with upper limb
impairment, no previous work has used data augmenta-
tion. Approaches such as Random Forest [9], DTW-based
classification [5], and methods to distinguish goal-oriented



movements [10] have shown good results, with deep learning
frameworks such as LSTM performing best [11]. How-
ever, these successes are due to the use of well-separated
motions and patients at the same stage of impairment. In
more realistic telemonitoring scenarios, the accuracy drops
to 56% [12, 13, 14]. To address that, in this paper we pro-
pose a compact and interpretable formulation to learn a 3D
trajectory subspace in patients with upper limb impairment
from partial data and in an unsupervised manner. Thanks to
that, we can synthetically generate more trajectories within
the subspace at low cost, a key factor in this context as the
amount of publicly available datasets is very limited and the
real acquisition of new ones is expensive, when possible.

2. FITTING TRAJECTORIES AND GENERATION

Let X̄ be a possibly non-full 3M×N matrix of 3D annotations
where M and N are the number of trajectories and samples,
respectively; and O the corresponding M × N observation
matrix with {1, 0} entries indicating whether a specific point
is observed or not. Given both X̄ and O, our goal is to learn
a subspace to model the set of observed trajectories from par-
tial data. To address this problem, in this paper, we propose
optimizing a cost function that enforces the full trajectories X
to lie in a linear subspace, i.e., that matrix is low rank. As
rank minimization is a non-convex NP-hard problem [15], we
employ a nuclear norm for a convex relaxation [16]. Taking
that into consideration, we propose to handle the next opti-
mization problem:

argmin
X,C,B

∥(O⊗ 13)⊙ (X − X̄)∥2F + α∥X∥∗ (1)

subject to X = CB

where ⊗ and ⊙ indicate a Kronecker and Hadamard prod-
ucts, respectively, and 13 is a vector of ones. ∥ · ∥F and ∥ · ∥∗
denote a Frobenius and a nuclear norm, respectively. α is a
weight coefficient. Our goal is to infer both X together with
a subspace encoded by C and B, which will be exploited to
produce other trajectories later. In this paper, we propose an
algorithm to minimize Eq. (1) by means of a two-stage ap-
proach in which: 1) complete missing entries X; 2) retrieve a
subspace to model the observed data.

The first stage can be sorted out by means of bilinear
factorization [17, 18, 19], defining X = UV⊤ where U ∈
R3M×K and V ∈ RN×K with K ≤ min(3M,N) an upper
bound on rank(X), and considering the next problem:

argmin
X,U,V

∥(O⊗ 13)⊙ (X − X̄)∥2F +
β

2
(∥U∥2F + ∥V∥2F )

subject to X = UV⊤ (2)

with β a weight coefficient. That problem is efficiently solved
via Augmented Lagrange Multipliers. Convergence is im-
proved by initializing the entries of X̄ in every trajectory as
the mean value of the observed data points.

Equipped with the full-trajectories matrix X, we now have
to learn a subspace to encode the set of observed data. In
general, the problem to be tracked can be written as:

argmin
C,B

∥(X − CB)∥2F , (3)

where C and B are 3M × K and K × N matrices –unless
otherwise stated– to encode the subspace of trajectories, with
K its rank.

In this work, we propose the use of three formulations to
constrain the subspace, where the dimensionality of both fac-
tors and their interpretability are different. Up to our knowl-
edge, we are the first to use this type of representations in
upper limb impairment modeling.
Principal Component Analysis (PCA). In the first case, data
are projected onto a low-dimensional space of K principal
components [20], which are orthogonal to each other and or-
dered by their eigenvalue. In particular, in this type of decom-
position C represents a shape basis matrix since every vector
includes information for all trajectories in a particular sam-
ple, with B the corresponding coefficients. Both factors can
be obtained efficiently by PCA.
Discrete Cosine Transform (DCT). In the second case, we
use a trajectory basis from signal theory. In particular, for
n = {1, . . . , N} we define a K-dimensional vector bn =
[wn

1 , . . . , w
n
K ]⊤ with:

wn
k =

ρk√
N

cos
(
π(2n− 1)(k − 1)

2N

)
, (4)

where ρk = 1 for k = 1 and ρk =
√
2, otherwise. The

collection of time-varying 3D trajectories for all N instances
can then be written by a linear combination of trajectories as
X = CB, where C is a matrix of unknown coefficient vec-
tors, and B = [b1, . . . ,bN ] is a known matrix with a pre-
defined trajectory basis. This type of basis has shown its
strength to capture human motion [21, 22, 23] from video, es-
pecially when the behavior of the signal can be adjusted glob-
ally through a small combination of vectors. However, we
exploit a K × N trajectory basis instead of 3K × N, making
our formulation more compact and robust when inferring the
subspace coefficients (thanks to that, we can solve the prob-
lem by estimating a smaller number of coefficients without
losing representation).
Piecewise trajectory basis. Finally, we propose the use of
local curves to encode the full trajectories, building a global
curve in pieces. To this end, following the work in [24, 25],
we propose uniform B-spline basis functions where K con-
trol points are needed in order to define the number of pieces
and, therefore, the final global curve. We consider N 3K-
dimensional pn = [pnx1, . . . , p

n
xK , pny1, . . . , p

n
yK , pnz1, . . . , p

n
zK ]⊤

vectors to collect the K control point locations associated
with the n-th sample point. The time-varying 3D trajectories
for all N instances can be now written by a linear combi-
nation of trajectories as X = CB, where C ∈ R3M×3K



is a matrix of known local B-spline functions [24] and
B = [p1, . . . ,pN ] ∈ R3K×N is an unknown matrix with
control point locations.

On balance, we propose three models to learn the trajec-
tory subspace. Two of them are global (PCA and DCT), and
the other is local. In PCA we need to infer both factors jointly,
while in the others one factor is assumed as known in advance,
making every model different with particular properties.

With these ingredients, we present three simple yet effec-
tive generators. The main idea is to include random Gaus-
sian noise with zero mean and standard deviation σ to the
coefficients matrix in every model. For PCA and B-Spline
cases, new trajectories are generated by X̂ = C(B+N), where
N = N (0, σ2I) is a noise matrix K ×N or 3K ×N for PCA
and B-Spline model, respectively. When the DCT model is
considered, new trajectories are obtained as X̂ = (C + N)B
where N = N (0, σ2I) is a 3M ×K noise matrix.

3. EXPERIMENTAL EVALUATION

We now present our experimental results on real data, provid-
ing both qualitative and quantitative evaluation and compar-
ison with respect to competing techniques. For quantitative
evaluation, we use recall, precision, and F1-score metrics.
Dataset. We use RPM3D [12], a dataset that contains the
motion of 25 healthy (control) subjects and 4 upper-limb
impairment patients. In total, there are four Fugl-Meyer
motions (see one per column in Figs. 1- 2 for images and
3D trajectories, respectively) –an ictus clinical protocol– for
classification: shoulder extension and flexion, shoulder ab-
duction/adduction, internal/external shoulder rotation, and
elbow flexion/extension [12, 13, 14]. The movements have
some particularities. Movement #1 and #2 are simple and are
up and down, while #3 and #4 are complex as they include
the combination of several simple motions, implying multiple
joints. It must be taken into account that control subjects will
be able to perform those movements completely, while for
patients, depending on their degree of impairment, they will
perform a simplified version of the motion because they do
not have a complete range of movement in the limb. However,
impairment will include sudden increases in jerk in motion,
over compensations and new learned motions (owing to the
pain of performing the movement naturally) that will increase
the variability between and within classes [5, 26]. All 3D
trajectories were acquired by using an Apple Watch sensor
placed on every individual’s wrist over four sessions with the
aim of monitoring the patient’s progress. For every motion
and session, the motion of both hands was acquired for each
person, collecting some features such as acceleration, veloc-
ity, position, and gravity along the three axes, jerk, pitch, and
roll, sampled at 100 Hz. Note that our method only needs the
3D trajectory of every individual’s wrist.

Analysis. We first split control subjects from patients,
creating for each group an input trajectory matrix X̄, that is,

Fig. 2: Some instances of 3D trajectories from upper-limb
impairment patients. Every column includes a type of Fugl-
Meyer motion, displaying the control subjects and patients in
the top and bottom parts, respectively. The red points and blue
lines represent the continuous trajectory and steps between
two red points, i.e., a non-soft trajectory can be captured.

Control Patient

Class 1 (987, 727) (192, 597)
Class 2 (1050, 644) (204, 573)
Class 3 (927, 710) (192, 698)
Class 4 (1017, 576) (192, 822)

Table 1: Number of trajectories and samples for control
and patient subjects. The table reports the total number of
trajectories M and the maximum number of samples N in X̄.

Control Patient

Class 1 - DCT (21714, 727) (7488, 597)
Class 2 - DCT (13650, 644) (7956, 573)
Class 3 - DCT (8343, 710) (7488, 698)
Class 4 - DCT (18306, 576) (7488, 822)

Class 1 - PCA (38493, 727) (7488, 597)
Class 2 - PCA (40950, 644) (3876, 573)
Class 3 - PCA (36153, 710) (1536, 698)
Class 4 - PCA (37629, 576) (2304, 822)

Class 1 - B-Spline (38493, 727) (7488, 597)
Class 2 - B-Spline (40950, 644) (7956, 573)
Class 3 - B-Spline (36153, 710) (7488, 698)
Class 4 - B-Spline (39663, 576) (7488, 822)

Table 2: Synthetic trajectories and samples for control
and patient subjects that have been generated. The num-
bers for every generator (PCA, DCT, B-Spline) are reported.

one for every distinct motion (see Table 1 to know the num-
bers of every case). We then solve Eq. (1) by considering the
three models we present in section 2. The rank in every model
is empirically selected, ensuring that the reconstructed matrix
retains the 99.5% of the variance in the input matrix.

A qualitative evaluation of our reconstructed trajectories
is shown in Fig. 3 where the best estimations are provided by
the DCT and B-Spline models for control subjects. However,
for patients, DCT do not reconstruct correctly as it has to deal
with localities, which is not going to perform correctly, as the
trajectory basis is global. It is worth noting that B-Spline still
obtains a good reconstruction of the 3D signal.



Fig. 3: Motion types #3 and #1 reconstruction. The same information is displayed in both sides. From left to right: the 3D
trajectory captured by the sensor, and the reconstructed one by PCA, DCT and B-Spline models. Control subject and patients
are considered in the top and bottom parts.

Classifier Recall Precision F1 Average
Class 1 Class 2 Class 3 Class 4 Class 1 Class 2 Class 3 Class 4

Reconstructed trajectories without noise

Control - Baseline [12] SVM 0.82 0.75 0.44 0.85 0.72 0.88 0.52 0.76 0.72
Control - DCT SVM 0.77 0.82 0.45 0.83 0.76 0.79 0.62 0.69 0.71
Control - PCA SVM 0.89 0.72 0.35 0.61 0.54 0.80 0.65 0.68 0.62
Control - B-Spline SVM 0.78 0.82 0.42 0.85 0.76 0.79 0.64 0.68 0.70

Control - Baseline MLP 0.89 0.85 0.62 0.85 0.80 0.89 0.69 0.83 0.82
Control - DCT MLP 0.90 0.93 0.79 0.87 0.89 0.901 0.82 0.88 0.85
Control - PCA MLP 0.89 0.84 0.53 0.34 0.58 0.74 0.55 0.95 0.63
Control - B-Spline MLP 0.93 0.88 0.76 0.87 0.85 0.93 0.82 0.86 0.85

Patient - Baseline [12] SVM 0.27 0.87 0.64 0.54 1.00 0.81 0.39 0.43 0.55
Patient - DCT SVM 0.58 0.85 0.73 0.34 0.75 0.72 0.53 0.52 0.62
Patient - PCA SVM 0.33 0.76 0.76 0.37 0.87 0.75 0.46 0.39 0.53
Patient - B-Spline SVM 0.53 0.73 0.76 0.36 0.79 0.82 0.49 0.41 0.61

Patient - Baseline MLP 0.53 1.00 0.64 0.64 1.00 0.83 0.50 0.58 0.70
Patient - DCT MLP 0.80 0.93 0.25 0.23 0.47 0.57 1.00 0.60 0.50
Patient - PCA MLP 0.58 0.95 0.62 0.59 0.72 0.73 0.67 0.63 0.66
Patient - B-Spline MLP 0.84 0.90 0.69 0.73 0.78 0.92 0.72 0.73 0.78

Synthetic trajectories with noise

Control - Baseline [12] SVM 0.82 0.75 0.44 0.85 0.72 0.88 0.52 0.76 0.72
Control - DCT SVM 0.89 0.83 0.25 0.94 0.73 0.84 0.84 0.65 0.75
Control - PCA SVM 0.85 0.84 0.48 0.39 0.54 0.70 0.59 0.89 0.66
Control - B-Spline SVM 0.82 0.86 0.59 0.85 0.78 0.79 0.77 0.80 0.78

Control - Baseline MLP 0.89 0.85 0.62 0.85 0.80 0.89 0.69 0.83 0.82
Control - DCT MLP 0.96 0.96 0.76 0.99 0.90 0.96 0.98 0.87 0.92
Control - PCA MLP 0.73 0.79 0.66 0.34 0.63 0.70 0.48 0.95 0.62
Control - B-Spline MLP 0.98 0.91 0.95 0.94 0.90 0.97 0.92 0.99 0.94

Patient - Baseline [12] SVM 0.27 0.87 0.64 0.54 1.00 0.81 0.39 0.43 0.55
Patient - DCT SVM 0.56 0.88 0.48 0.30 0.48 0.58 0.69 0.54 0.56
Patient - PCA SVM 0.87 0.78 0.00 0.00 0.28 0.85 0.00 0.00 0.22
Patient - B-Spline SVM 0.78 0.81 0.70 0.37 0.70 0.83 0.55 0.58 0.67

Patient - Baseline MLP 0.53 1.00 0.64 0.64 1.00 0.83 0.50 0.58 0.70
Patient - DCT MLP 0.80 0.90 0.66 0.72 0.64 0.75 0.89 0.88 0.77
Patient - PCA MLP 0.84 0.98 0.83 0.81 0.72 0.80 0.94 0.83 0.84
Patient - B-Spline MLP 1.00 0.97 0.95 1.00 0.94 1.00 1.00 0.98 0.98

Table 3: Classification recall, precision and F1-score. The table reports the numbers for the baseline [12] and for our three
generators based on DCT, PCA and B-Spline. All cases are evaluated for control subjects and patients, and exploiting a classifier
based on SVM or MLP. Top: Results for reconstructed trajectories by our methods. Bottom: Results after applying Gaussian
noise to generate synthetic new trajectories.



As was said above, once we have applied our three mod-
els to learn a trajectory subspace, a Gaussian noise (σ=0.01)
is applied to randomly produce more trajectories within the
learned subspace, i.e., the matrix X̂. As our trajectories are
represented in meters, this implies a deviation of 1 cm from
the trajectory reconstructed without noise. A generated tra-
jectory is defined as valid if its Mean Absolute Error (MAE)
compared to the original trajectory is less than 1.5 times the
MAE between the reconstructed trajectory without noise and
the original one. After applying that, the set of synthetic tra-
jectories that we obtain is reported in Table 2.

Without loss of generality, we propose to evaluate our tra-
jectory generators on a classification task. To do so, we ex-
ploit two alternatives: an SVM-based approach as is standard
in the literature [12] and an MLP-based approach with 100
layers, Adam solver with learning rate 0.001 and 1000 iter-
ations. To this end, we propose a battery of experiments in
which the three generators are considered in two situations:
1) the reconstructed trajectories are exploited for training and
the original ones for testing, and 2) Gaussian noise is added to
produce new trajectories that are exploited in training, again
using the original ones for testing. That means training is al-
ways performed with synthetic trajectories and testing with
real ones. To train and test both SVM and MLP classifiers,
a 12-feature vector is obtained from each trajectory, corre-
sponding to the maximum, minimum, mean and standard de-
viation of each x-, y-, z-channel of each trajectory. These
features are evaluated based on the actual maximum number
of frames for each trajectory, without considering the signal
completion we propose in section 2. For comparison, we con-
sider [12] with full trajectories, the same features for classifi-
cation, and an 80-20 train-test split of the data to make a fair
analysis.

First, we consider reconstructed trajectories without noise
for training (see Table 3-top). As can be seen, for control
subjects, the proposed approaches obtain a similar result with
respect to the baseline without improving it when using an
SVM classifier, but our DCT- and B-Spline-based solutions
are better when an MLP classifier is considered. This effect
is more visible for patients –a more challenging case–, where
our B-Spline-based solution consistently outperforms the rest
of the approaches for both classifiers.

Second, we report the same analysis but now including
Gaussian noise to generate new trajectories for training (see
Table 3-bottom). In this case, the most robust solution seems
to be the one obtained with the B-Spline-based model, for
control subjects and patients, and considering both classifiers,
obtaining very precise classification results in some cases. For
patients with SVM, some generators respond worst to noise,
decreasing their performance compared to not adding noise,
except for the B-Spline solution which obtains the major over-
passing of the baseline. In contrast, when MLP is used, all
three generators outperform the MLP baseline.

In general, for similar conditions, the MLP classifier pro-

vides better solutions than those reported by SVM. Addition-
ally, our results show the effectiveness of our generators, es-
pecially that based on B-Spline, since piecewise modeling of
trajectories gives greater versatility to the generator, produc-
ing more accurate adjustments and therefore generating new
trajectories that are faithful to the real ones –which represents
an effective encoding of the upper-limb impairment trajec-
tory space in this context–. This shows that the generator is a
feasible way to obtain new trajectories that even outperform
the originals in classification. That is because our generator
produces cleaner and smoother trajectories compared to the
potentially noisy ones that are acquired with the sensor. The
numbers of F1 score still low for SVM are supported by the
fact that a single wrist sensor placed in patients obtains an ac-
curacy around 40% which makes it necessary to place more
sensors to improve the results, as well as by the type of clas-
sifier used [5]. For the case of MLP it obtains good metrics
both for the control subjects and patients, and the generators
improve the results better than in the case of SVM.

Then global methods such as DCT perform well in global
trajectories with no localities as the ones in healthy motions,
independently of whether it is a composed movement or not,
while B-Spline works better in patients as it has a local ba-
sis. However, B-Spline also performs well in complete sub-
jects. In addition, both the DCT and B-Spline methods re-
spond well to the addition of Gaussian noise and improve the
baseline. This is particularly notorious for B-Spline methods
using MLP where it is near to a perfect classification.

Overall, what has been shown is that the trajectory genera-
tors that we propose are a framework that can augment upper-
limb datasets for both patients and healthy subjects. We hope
that our contribution will serve as inspiration for other works
to increase the amount of data in a precise and interpretable
manner, especially in those contexts where obtaining the data
is complex and expensive.

4. CONCLUSION

We have provided a framework capable of generating trajec-
tories from small- and high-variance trajectory datasets such
as the one in RPM3D [12]. Our method just needs a set of in-
complete 3D signals to learn a trajectory subspace with phys-
ical interpretation in an unsupervised fashion, which is then
exploited to produce compatible trajectories. As has been
shown, our method improves the baseline in this dataset for
control and patient subjects, obtaining robust, consistent, and
accurate trajectories that are properly classified by off-the-self
classifiers. Further, this method overcomes geometric trans-
formations in the sense that working with trajectories enables
to create data that live in the subspace of feasible trajecto-
ries, not only for healthy subjects but for patient data. Future
work should focus on incorporating additional constraints in
our models to encode the features of motion in this context as
well as the combination with other signals.
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