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ABSTRACT

With the relentless growth of the wind industry, there is an
imperious need to design automatic data-driven solutions for
wind turbine maintenance. As structural health monitoring
mainly relies on visual inspections, the first stage in any au-
tomatic solution is to identify the blade region on the im-
age. Thus, we propose a novel segmentation algorithm that
strengthens the U-Net results by a tailored loss, which pools
the focal loss with a contiguity regularization term. To attain
top performing results, a set of additional steps are proposed
to ensure a reliable, generic, robust and efficient algorithm.
First, we leverage our prior knowledge on the images by fill-
ing the holes enclosed by temporarily-classified blade pixels
and by the image boundaries. Subsequently, the mislead clas-
sified pixels are successfully amended by training an on-the-
fly random forest. Our algorithm demonstrates its effective-
ness reaching a non-trivial 97.39% of accuracy.

Index Terms— Blade Segmentation, Wind Turbine,
Blade Inspections, BU-Net, Hole Filling.

1. INTRODUCTION

Wind energy has demonstrated to be an excellent alternative
energy source, thanks to being completely renewable and
environmentally sustainable [1]. The increase in installed ca-
pacity urges to adapt to more demanding challenges in terms
of cost and logistics [2], with special focus on developing
non-destructive inspection manners for health monitoring.
Drone inspections have become a fast and reliable setup
for wind turbine diagnosis [3], capturing around 400 high-
resolution images per turbine to design a repair plan. All in all
results in high-volume data that encourages the development
of automated, scalable and cost-effective solutions.

To successfully design a data-driven maintenance frame-
work for wind turbines in operation, current researchers are
tackling distinct image-based problems such as blade defect
detection [4, 5] or autonomous navigation [6, 7]. However,
current solutions have several limitations and are not being
applied yet to the industry. Hence, these challenges must be
simplified by means of distinct low-level vision techniques.
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Fig. 1. Wind turbine blade images in the wild with distinct
complexity due to the variation of the landscapes, the blade
shape and size, and the presence of shadows or dirt.

To this aim, this paper proposes addressing segmentation to
reduce the complexity of these learning tasks.

Current state-of-the-art segmentation methods rely on
learning-based approaches, usually employing an encoder-
decoder architecture [8, 9, 10] and, recently, an attention
mechanism on the encoder [11, 12]. With a properly tailored
architecture, these models have proven to successfully obtain
high precision results. Unfortunately, they do not provide a
segmentation algorithm that generalizes for newly acquired
images [13]. A generic solution is essential to deal with a
large variety of images (see Fig. 1) obtained on regular wind
turbine inspections under a different setup.

A common technique to enhance the segmentation map-
ping is including a post-processing step. DeepLab [8] uti-
lized Conditional Random Fields to fine-tune the localized
segmented objects. DeepLab V3+ [14] is further strength-
ened through superpixel merging in [13]. Another interest-
ing approach is ResNeSt [15], which incorporates a channel-
wise attention with multi-path representation in its last stage.
However, these methods do not leverage our prior information
about blade images, such as that the blade traverses the image
or that images of the same inspection share image properties.

This work proposes a novel segmentation algorithm that
identifies the blade region in very diverse images in appear-
ance. First, a preliminary mask is obtained by a customized
U-Net model [16], whose architecture still inspires current
techniques [17]. Then, this preliminary result is improved
through a set of post-processing steps: an extended hole fill-
ing routine from [18] followed by an unsupervised random
forest [19]; refined again through another hole filling step.
The hole filling relies on properly identifying the blade image
borders and the random forest on underfitting the preliminary
masks from the same blade surface. As a result, we obtain an
accurate, robust and efficient model for blade segmentation
that can handle a wide variety of images in the wild.



2. WIND TURBINE BLADE SEGMENTATION

Let I be a H × W × 3 color image of a wind turbine blade
that was captured from an arbitrary point of view and un-
der uncontrolled lighting conditions. Our goal is to recover a
H×W binary mask Ŝ to indicate the region in the image that
belongs to the blade. In our formulation, the mask is repre-
sented by the binary entries ŝh,w, where h = {1, . . . ,H} and
w = {1, . . . ,W} denote the pixel coordinates in the mask.

Given the corresponding ground-truth mask S, we pro-
pose a supervised learning framework composed of four mod-
ules to learn the mapping Ii,j → Si,j for an i-th blade and
j-th image: 1) an encoder-decoder network algorithm with a
tailored loss, 2) a hole filling step, 3) a random forest block
and, 4) a latter hole filling step to refine the solution. Without
loss of generality, for every blade surface there are considered
up to J images for the i-th blade.

2.1. Blade U-Net (BU-Net)

Given an input RGB image I, our BU-Net aims at classifying
each input pixel into blade or background, i.e., obtaining the
output mask ŜBU by exploiting the labels in S. This module
follows a standard U-Net architecture [16], and its last layer
includes a 1 × 1 convolution to map the feature channels to
the desired number of classes. The mask ŜBU is obtained by
combining four predictions via soft voting, where each one
corresponds to a flipping rotation. Additionally, a regularized
focal loss is employed to adapt the learning task to our partic-
ular dataset. The two terms are detailed below.

The Focal Loss optimizes our segmentation mapping [20]
by penalizing low-confidence predictions. Moreover, to avoid
benefitting the majority class (in our case, the background)
relative to the minority class, we apply weights to each class:
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where σ(·) denotes the sigmoid function, γ controls the con-
fidence penalty; and α sets the class balance.

The Contiguity Loss [21] minimizes the jaggies in the
blade boundaries, forcing to detect contiguous objects:
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The Total Loss is defined as a linear combination of the
two previous losses modulated by the scalar λ:

L = Lf + λLc . (3)

As the output of this block is the probability for the blade
class, i.e., σ(ŜBU ), it is quantized by a threshold of 0.4.

Fig. 2. Hole filling representation. First, the blade orien-
tation is detected to identify the blade image borders (in or-
ange). Then, holes that edge with the image borders are filled.

2.2. Hole Filling

The estimated segmentation ŜBU still contains some non-
realistic regions, including some holes. We propose a hole
filling step to reduce these artifacts. Our approach is able to
not only fill in the holes surrounded by blade pixels, but also
when they are surrounded by the image borders. By exploit-
ing a spatial prior, our approach relies on localizing first the
blade pixels in the image boundaries, i.e., the blade-borders.

Assuming that the blade traverses the image, we first com-
pute the blade orientation by means of an accumulated gradi-
ent. Basically, it is classified as vertical (horizontal) if the
accumulated gradient along the x-axis is higher (lower) than
along the y-axis. Once the orientation is identified, we know
the blade-border locations, so we can enforce their continu-
ity by setting their pixels as blade. Finally, we proceed with
the standard hole filling algorithm [18] to obtain the output
ŜH . Both vertical and horizontal orientation examples are
displayed in Fig. 2. The hole filling step is applied twice: 1)
considering as input the estimation in our BU-Net and, 2) us-
ing as input the output of our random forest algorithm that is
introduced below. To differ between both hole filling estima-
tions, we will use the notation ŜH1 and ŜH2, respectively.

2.3. Unsupervised Random Forest

Finally, we propose a simple random forest to denoise the es-
timation and to fix uncommon errors of a single image. The
inability of previous steps to capture global context is tackled
by learning which RGB pixels are usually mapped as fore-
ground, providing a fine-grained boundary precision. To this
end, we learn the mapping {Ii,j}j∈J → {ŜH1

i,j }j∈J given the
i-th blade surface. This model ensembles tree estimators by
averaging their probabilistic predictions to set whether a sin-
gle RGB pixel and its local neighborhood is foreground:
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where RF is the set of decision trees t. It is worth pointing
out that this approach enables our algorithm to adapt to the
image features of a specific i-th blade. Once the model is
trained, it is applied to obtain the estimation ŜRF

i,j .
Lastly, we again apply a hole filling (section 2.2) step to

refine the solution, obtaining ŜH2 as our final estimation Ŝ.



3. EXPERIMENTAL RESULTS

In this section, we show the effectiveness of our segmenta-
tion approach through both quantitative and qualitative evalu-
ations as well as showing a comparison with competing tech-
niques, providing the results for every step in our algorithm.

3.1. Dataset
We present a dataset that consists of high-resolution images
taken by drone and ground-based equipment from distinct lo-
cations of the blade. The images provide a large variety of
blade sizes, shapes, illumination conditions, as well as the
background to be observed (Fig. 1). Another background
variation arises from on-shore and off-shore wind turbines.
For this challenging dataset, we propose 1,712 images for
training, 120 for validation and 200 for test. As a segmen-
tation ground-truth is not provided, we manually annotated
all the images. To make a fair analysis, the three sets are
composed of different windfarms and inspection campaigns,
ensuring their independence and that the test properly gener-
alizes. In particular, we randomly selected 20 images of each
windfarm to generate the validation and test sets. On the other
hand, the training data was selected from a pool of different
blade images, prioritizing the ones that are more challeng-
ing. These are the images in the root, the tip or the max-cord
(where the blade section is widest). All color images and
masks were min-max normalized. In addition to that, flip-
ping and cropping strategies were applied to learn the desired
invariance and robustness properties.

3.2. Implementation Details
The original input images were resized to 1024 × 1024 pix-
els. We use Adam solver [22] with an initial learning rate of
10−4 and a mini-batch of 1. A custom scheduler is employed
to reduce the learning rate when there is no improvement on
the validation loss after three epochs. Early stopping is per-
formed. The model is trained using a NVIDIA GeForce RTX
3080 GPU. The weights for the focal loss in Eq. (2.1) are set
to γ = 2 and α = 0.25, and the weight in Eq. (3) λ = 1.

3.3. Quantitative Evaluation
The segmentation performance per image is analyzed in terms
of accuracy, recall and F1-score.

Hyperparameter Search. Our random-forest step (sec-
tion 2.3) is optimized in terms of the number of split branches
and the number of decision trees, obtaining the highest accu-
racy with five tree estimators that have a maximum of four
split branches. Additionally, when the local pixel neigh-
bors are included in the input, we enhance the random forest
masks. However, increasing the number of input neighbors
does not increase the segmentation accuracy. Thus, we took
as input the local pixel and its most immediate neighbors.

Test Set Results. The performance over the test set is
compared between each algorithm step. In particular, we re-
port the accuracy, recall and F1-score in Table 1.

Table 1. Test results after each segmentation step.
Performance BU-Net Fill holes Random forest Fill holes 2

metric ŜBU ŜH1 ŜRF ŜH2

Accuracy (%) 92.28 96.11 97.11 97.39
Recall (%) 85.73 92.08 92.37 93.35

F1-score (%) 90.41 94.53 95.12 95.73
mIoU (%) 87.71 93.57 95.07 95.53

Fig. 3. Box plot test results after each segmentation step.

Table 2. Quantitative comparison on blade segmentation.
Relative metrics are with respect to the worst estimation.

Method Accuracy Recall F1-score mIoU Relative Relative
% % % % accuracy recall

U-Net [16] 86.24 68.93 77.95 79.94 1 1
DeepLabv3+ [14] 94.14 87.38 89.03 90.74 1.09 1.27

SW [9] 93.48 91.71 91.37 89.71 1.08 1.33
ResNeSt [15] 94.23 91.47 92.77 91.20 1.09 1.33

U-NetFormer [17] 96.20 93.51 94.42 93.65 1.12 1.36
Ours Ŝ 97.39 93.35 95.73 95.53 1.13 1.35

By only employing our BU-Net, we obtain a notable out-
come of 92.28% of accuracy. However, this result is not suf-
ficiently good for blade assessments, because the recall of
85.73% could compromise the detection of defects. For in-
stance, if a large area of the blade is masked as background,
it could cover the region where there are structural damages,
which is a severe defect that cannot be overlooked.

By incorporating the first hole-filling step, we substan-
tially improve performance. Namely, the recall increases to
92.08%, which represents the highest gain of all the post-
processing steps. This huge difference is due to the BU-Net
being able to successfully capture the blade borders, but not
the inner region of the blade. Further algorithm steps are nec-
essary to yield further improvement, reaching in the end a
novel performance of 97.39% of accuracy and 93.35% of re-
call. On balance, and as it can be seen in Table 1, every step is
key to sort out the problem properly, obtaining a final accurate
solution that cannot be achieved directly by our BU-Net.

Fig. 3 analyzes the performance dispersion of each step.
We observe the skewness of the BU-Net performance: rather
spread along the tail with lower performance, containing
many instances with poorer accuracy and recall compared
with their median. As we include the different steps in our
algorithm, that dispersion is reduced notably. Therefore, de-
spite not substantially improving the mean performance, the
subsequent steps are the cornerstone to ensure robustness.



Fig. 4. Qualitative evaluation on test images after apply-
ing each step of our proposed segmentation algorithm. On
both sides, the same information is displayed. First column:
Input color image (I). From second to fifth column: BU-
Net (ŜBU ), first hole filling (ŜH1), random forest (ŜRF ) and
second hole filling (ŜH2 ≡ Ŝ) estimations, respectively.

Comparative Results. As the BU-Net employs the U-
Net architecture [16], we compared our proposed algorithm
with the original one and state-of-the-art methods (Table 2).
We outperform those methods, thanks to overcoming the
blade-background imbalances, and escaping from the ten-
dency of predicting the most common region.

3.4. Qualitative Results

We visualize the segmentation results of each algorithm step
in Fig. 4. In general, our BU-Net can capture the blade edges
and, therefore, its overall shape. However, it struggles with
the inner area of the blade, which is addressed in the first hole
filling step. Note that just using the standard hole filling ap-
proach would not improve the BU-Net outputs. Then, the
random forest is responsible for fixing the misplaced pixels,
acting as a regularizer of the pixel color intensity. By train-
ing a simple model, we ensure there is no overfitting and that
it just learns the main patterns. Hence, if the BU-Net can in
general classify which color intensities belong to the blade
region, then the random forest would learn those patterns and
resolve the particular images or pixels that failed, obtaining
robustness in the solution. The second hole filling step is ap-
plied to solve the shortcomings the random forest can intro-
duce. They are generally caused by dark regions that highly
differ with the typical white color of the blade –a typical ex-
ample is illustrated in Fig. 4, first row/right side–, where the
random forest misplaces the vortex generators as background.

In Fig. 5, we depict the most common cases where our
segmentation algorithm could fail. To start with, the BU-Net
might occasionally struggle with images of the wind turbine
hub, because our dataset has a few instances of the hub. This
is the case for the images in the first row. Distinct sources of
contamination can also cause the BU-Net to mislead part of
the blade with the background. This is the case for the image
in the second row and right side. As the blade image borders
are not fully captured and these images may contain a broad
range of color intensities in the blade region, the hole filling
and random forest steps are not sufficient to recover the blade
region that has not been identified by the BU-Net.

In addition, an image could include wind turbines at its
background or its own tower (see images in the second row).

Fig. 5. Failure cases on test images after applying each
step of our segmentation algorithm. See caption of Fig. 4.

Fig. 6. Accuracy results over the test set for each wind-
farm. It is included in each step in our method. For readabil-
ity, the plot does not include every windfarm of the test set.

Ideally, we would like to predict the tower as blade, since it
belongs to the turbine itself, but not the turbines in the land-
scape. This challenging problem is part of our future work.

3.5. Windfarm Dissimilarity
Fig. 6 proves the generability of our approach, demonstrat-
ing that images from all the distinct windfarms have a high
performance. Notice that this is not the case for the BU-Net
without the post-processing steps, as it has really low per-
formance for Windfarm #1. Hence, it is the post-processing
steps as a whole which ensures the generability. For instance,
hole filling is crucial for Windfarm #1, while random forest is
crucial for Windfarm #2 and #3.

4. CONCLUSION

In this paper we have presented a novel segmentation algo-
rithm for wind turbine blade images. To this end, we have
proposed a BU-Net model in combination with additional
steps based on hole filling and random forest strategies that
can solve the problem in an accurate and efficient manner.
Our BU-Net exploits a focal loss that is regularized with a
contiguity term. The hole filling is simple but effective, and
helps to improve the solution after applying every learning
model. Finally, our unsupervised random forest is trained
on-the-fly capturing the main patterns, like a denoising step.
Remarkable quantitative and qualitative results are provided
on newly acquired blade images, even when they belong to
distinct inspection campaigns and wind farms, validating the
capability of our model to generalize properly. Our future
work is oriented to extend our model to semantic segmen-
tation where different parts of the wind turbine need to be
segmented in the image. Furthermore, we would like to study
its impact on facilitating the defect detection task.
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