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ABSTRACT

Rate-distortion optimization through neural networks has
accomplished competitive results in compression efficiency
and image quality. This learning-based approach seeks to
minimize the compromise between compression rate and re-
constructed image quality by automatically extracting and
retaining crucial information, while discarding less critical
details. A successful technique consists in introducing a deep
hyperprior that operates within a 2-level nested latent vari-
able model, enhancing compression by capturing complex
data dependencies. This paper extends this concept by de-
signing a generalized L-level nested generative model with
a Markov chain structure. We demonstrate as L increases
that a trainable prior is detrimental and explore a common
dimensionality along the distinct latent variables to boost
compression performance. As this structured framework can
represent autoregressive coders, we outperform the hyper-
prior model and achieve state-of-the-art performance while
reducing substantially the computational cost. Our experi-
mental evaluation is performed on wind turbine scenarios to
study its application on visual inspections.

Index Terms— Image Compression, Rate-distortion
Loss, Nested Models, Wind Turbine, Blade Inspections.

1. INTRODUCTION

Lossy image compression aims to convert an image to a com-
pressed representation by capturing its spatial redundancies.
It sacrifices the ability to perfectly reconstruct the original
data to achieve a higher compression ratio. In response to the
ever-growing demand for efficient image storage and trans-
mission, distinct traditional codecs have emerged. Notably,
these routines are grounded in manually tailored algorithms:
JPEG2000 [1] uses a wavelet-based transform, WebP [2]
combines predictive coding and discrete cosine transform,
HEVC [3] integrates spatial prediction and transform coding,
BPG [4] employs context modeling, and VTM [5] utilizes
intra and inter prediction, and block-based transform coding.
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Fig. 1: Generalized nested latent variable model for lossy
compression. Solid arrows signify direct calculations of the
latent variables zl from the encoder and the input image x
from the decoder, while dashed arrows entail the estimation
of likelihood and prior distributions.

Instead of relying on handcrafted algorithms, learning-
based codecs formulate image compression as an optimiza-
tion problem [6, 7]. By implementing a relaxed rate-distortion
loss [8, 9], they can directly generate compressed representa-
tions of data and automatically learn to prioritize what infor-
mation to retain for optimal compression performance.

A common powerful technique involves leveraging a la-
tent variable, a concealed factor not inherently part of the in-
put data, which strengthens the model’s capacity to capture
intricate data dependencies. Bls2017 [10] proposes an end-to-
end optimized image compression framework that utilizes an
autoencoder network and a factorized trainable prior. HP [11]
extends this set-up by introducing a hyperprior, adding a sec-
ond latent variable nested to the previous one. Recent ad-
vances in this field explore a coarse-to-fine architecture for
enhancing conditional entropy modeling [12]. An extended
coarse-to-fine approach with ResNet architecture is presented
in [13], and QARV [14] further refines it with variable-rate
compression by embedding the specific rate-distortion trade-
off desired through adaptive normalization. Other approaches
apply a context prediction module as JA [15] or others [16,
17, 18, 19], tailored non-linear transforms [20] or attention
mechanisms [21] such as GMM-Anchor/-Attn [22, 23].

In this work, we extend the hyperprior concept by stack-
ing L distinct layers of latent variable [24, 25], as illustrated
in Fig. 1. Therefore, we construct a generalized nested latent
model with a more flexible conditional entropy model, which
is easily parallelizable [26]. We demonstrate that the optimal
level of nested layers depend on the rate-distortion trade-off
desired. In addition to that, we showcase that for greater lev-
els of L a trainable prior is detrimental, thus, we explore a
predefined logistic prior along with a common dimension for
the latent variables to enhance generalized nested models.



Our approach is evaluated on a real-world industry prob-
lem. In particular, we study generalized nested models on
wind turbine imagery captured during blade inspections [27,
28]. Reducing the image size without compromising its qual-
ity is crucial to properly assess wind turbines and arrange
their repair [29, 30]. We showcase nested latent variables
models can successfully approximate autoregressive models
and, therefore, generalize them. Hence, our approach reaches
competing performance compared to state-of-the-art coders
on the presented challenging data, while substantially reduc-
ing its running cost, thus, it emerges as the optimal lossy cod-
ing solution for wind industry applications.

2. NESTED LATENT VARIABLE MODELS FOR
LOSSY CODING

We aim to learn a probabilistic model pθ(x) of our observed
data x to successfully apply an entropy coder capable of com-
pressing them, where θ denotes the model parameters. To
address this learning problem, fully-observed models can be
marginalized over a latent variable z1. Let us denote the like-
lihood distribution pθ(x|z1) and the prior distribution p(z1),
then, by the Bayes’ rule, pθ(x) can be expressed as the joint
distribution of the observed and latent variables as:

pθ(x) =

∫
pθ(x, z1)dz1 =

∫
pθ(x|z1)p(z1)dz1. (1)

This implicit representation can be recursively applied to
each latent variable zl to obtain an L-layer Markov model
(see Fig. 1), where l ∈ {1, . . . , L}. In this way, we can se-
quentially gather the distinct latent dependencies to express
the model evidence pθ(x) defined in Eq. (1) as:

pθ(x) =

∫
pθ(x|z1)pθ(z1:L−1|zL)p(zL) dz1:L, (2)

where we have defined for conciseness pθ(z1:L−1|zL) =∏L−1
l=1 pθ(zl|zl+1) and dz1:L = dz1dz2 . . . dzL−1dzL.

2.1. Generalized Relaxed Rate-distortion Loss

We seek to minimize the trade-off governed by λ ∈ R be-
tween the compression rate and the decompression error:

−Epθ(x) [log pθ(z1:L−1|zL) + log p(zL)]+λEpθ(x) [d(x, x̂)] ,

where d(x, x̂) indicates a distortion metric between the input
image x and the reconstructed one x̂.

The presented loss operates in the continuous space, how-
ever, entropy coders can only operate with finite discrete al-
phabets, requiring a quantization step. In our case, we de-
fine the quantizer Q as a rounding operation that is continu-
ously approximated through uniform random noise [10]. Let
z̃l = Q(zl) denote the noisy approximation, then we end up
with the following trainable rate-distortion loss:

−Epθ(x) [log pθ(z̃1:L−1|z̃L) + log p(z̃L)]+λEpθ(x) [d(x, x̂)] .

Note that the quantizer also compromises the distortion
term, because x̂ relies on the latent variable z̃1.

Fig. 2: Proposed architecture for a generalized nested la-
tent variable model. In the first layer, the decoder recon-
structs directly the input image x, while it estimates the like-
lihood distributions in the rest of the layers. The network is
built with building blocks that are composed of a convolution,
a down/upsampling operation and a nonlinear function.

2.2. Model Architecture
We design our encoder and decoder with symmetrical struc-
tures, ensuring that the output dimension matches the in-
put dimension. Both transforms employ a sequence of
three blocks for each latent layer: a convolutional layer,
a down/upsampling operation, and a non-linear activation
function. For the initial layer, we utilize the generalized di-
visive normalization with adaptable parameters as the chosen
non-linear function [10]. Subsequent layers employ ReLU.

Specifically, convolutions employ a 2-dimensional ker-
nel size of 5 × 5, except those on top of the latent layers
which operate with a 3-kernel. The padding and stride are
meticulously selected to ensure congruence between input
and output dimensions. To minimize computational time,
down/upsampling operations are seamlessly integrated with
linear convolutions through adjusting the convolution stride.
These convolutions utilize 70 filters, except for those interact-
ing with zl, which employ 150. A comprehensive illustration
of the network architecture is presented in Fig. 2.

The standard logistic distribution with statistical indepen-
dence across its components serves as the prior p(z̃L). The
likelihood pθ(z̃l|z̃l+1) for l ∈ {1, . . . , L − 1} are character-
ized as conditional independent zero-mean Gaussian distribu-
tions. Hence, these distributions are modelled by a convolu-
tional network for every standard deviation {σl}l∈{1,...,L−1}.



Fig. 3: Four instances of wind turbine blade images. The
pictures showcase distinct blade surfaces and locations with
respect to the rotor of the turbine.

2.3. Compression Scheme

Each latent variable zl = (zl,1, . . . , zl,2P ) undergoes inde-
pendent discretization into 2P distinct bins, where P = 10
is a predefined precision. Within each latent layer and for
every component zl,j , the bins exhibit uniform and identical
widths. Defining B(zl,j) as the bin encompassing zl,j , we
establish the discretized value for zl,j as the midpoint of bin
B(zl,j). Consequently, the discretized distributions become
highly smooth, particularly as the number of discretization
bins increases. These distributions are combined with asym-
metric numeral systems for entropy coding [31].

2.4. Autoregressive Universal Approximators

Let x(t) denote the t-th pixel component of x, autoregressive
models [32] leverage the previously decoded components to
enhance the coding performance reconstruction of the next
pixel component in order to learn pθ(x) from Sec. 2.

pθ(x) =
∏

pθ(x
(t)|x(t−1), . . . , x(1)), (3)

where x(t−1), x(t−2) . . . , x(1) are the previously decoded
pixel components from x.

Without loss of generality, we assume each latent variable
zl only has a single component. Nested latent variable models
can approximate autoregressive models by simply decoding
each pixel component through an additional latent variable.
In this way, we can reproduce the sequential decoding order
of an autoregressive model: the first pixel component x1 is
decoded by zL through p(zL), the second component x2 is
decoded by zL−1 through p(zL−1|zL), and so on. In general
terms, the t-th pixel component x(t) is decoded by zL−t+1

through p(zL−t+1|zL−t+2, . . . , zL). Hence, the model evi-
dence pθ(x) in Eq. (3) can be expressed as:

pθ(x) =
∏

p(zL−t+1|zL−t+2, . . . , zL). (4)

The provided rationale can be applied to approximate any
autoregressive variation, including channel-wise [33] or
checkerboard [34] autoregressive models. A thorough proof
is detailed in [35].

Autoregressive models, while formally capable of con-
ditioning predictions on all previous decoded components,
commonly utilize a fixed context, such as 5 × 5 convolution
kernels [15]. Thus, autoregressive lossy models can be ap-
proximated by incorporating a limited number of zl variables.

(a) L = 3 (b) L = 4

(c) L = 5

Fig. 4: Ablation study results. “Baseline” extends exactly
the architecture from [11]; “M dimensional” denotes estab-
lishing all latents zl as M-dimensional variables; “Logistic
prior” indicates employing a standard logistic for p(zL).

(a) PSNR quality measure (b) MS-SSIM quality measure

Fig. 5: Quantitative performance comparison with respect
to L over the validation set. HP [11] employs L = 2. Plots
are divided based on the training’s distortion metric. MS-
SSIM graphic contains another plot comparing loss differ-
ences between each L to HP [11].

3. EXPERIMENTAL RESULTS
3.1. Dataset
We possess a collection of 64,438 high-resolution blade
images in raw format, each with an RGB resolution of
6,744×4,502 pixels (see examples in Fig. 3). These images
are categorized into three sets: a training set encompassing
∼80% of the data, along with validation and test sets, each
containing ∼10%. To ensure unbiased performance and ef-
fective generalization for new acquired data, images from the
same inspection campaign are exclusively present in one set.
During training, random crop selections are utilized.

3.2. Implementation Details

The model processes 256×256 pixel patches using an NVIDIA
GeForce RTX 3080 Ti. Training employs the Adam opti-
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Fig. 6: Visual comparison of distinct blade instances with respect to L. Subcaptions denote the PSNR, MS-SSIM and bit/px.
HP [11] employs L = 2. Zoomed region contrast is increased in the images on the first and fourth rows.

mizer [36] with an initial learning rate of 10−4. Two dis-
tortion metrics are used: Mean Squared Error (MSE) and
negative Multi-Scale Structural SIMilarity (MS-SSIM) [37].
To ensure stable training and control the gradients, the rate
terms have a minimum bound of 10−9. Overfitting prevention
involves early-stopping [38] and diversified training data via
random cropping from full-resolution images in each epoch.

3.3. Ablation Study

We conduct an ablation study of the lossy neural architecture
trained on MSE for L = {3, 4, 5}; presented in Section 2.2.
In particular, Fig. 4 explores the performance of four distinct
architectures on the validation set in terms of rate-distortion
curves: the baseline extends HP [11] for any L, an architec-
ture featuring equal dimensionality M = 150 across all latent
variables, an architecture employing a standard logistic prior,
and a hybrid architecture integrating the two previous ones.

Both architectural modifications significantly enhance
compression performance, especially in scenarios with a
large value of L, higher bit rates, or even more when both
factors are combined. For L = 3, this hybrid architecture

demonstrates that an equal compression performance com-
pared to the baseline is achieved, thus, the prior entropy
network [11] is no longer required to achieve top-performing
results. When L = 4, we observe that for the highest bit
rate model, the hybrid architecture surpasses the rest and,
for L = 5, this outperforming behaviour extends to all the
rate-distortion curve, showing that the prior entropy network
is indeed detrimental.

The hybrid architectures of L = {3, 4, 5} and HP [11],
which corresponds to the baseline with L = 2, are compared
in Fig. 5. The evaluation is made depending on the distortion
metric used during the training: Peak Signal-to-Noise Ratio
(PSNR) for d =MSE and MS-SSIM for d = 1−MS-SSIM.

Figure 5a illustrates that higher bit rates demand a larger L
for optimal results. Specifically, L = {4, 5} excel on highest
bit rate scenarios, L = 3 outperforms on intermediate bit rate
cases, and comparable compression performance is exhibited
for any L at the lowest bit rate. This observed behavior can
be attributed to the network’s inherent struggle to minimize
distortion versus reducing the bit rate. To elucidate, when in-
creasing λ and intensifying the requirement for image quality,



(a) PSNR quality measure (b) MS-SSIM quality measure
Fig. 7: Test rate-distortion curves for distinct lossy coders. Plots are divided by the distortion metric. Best viewed in color.

the network necessitates more epochs to converge. Therefore,
a higher image quality demand entails a more complex net-
work, which translates in a larger L.

A similar trend is noticeable in Fig. 5b. Nevertheless, the
distinctions between the architectures are less pronounced in
MS-SSIM, and its graphical representation is somewhat im-
paired. Within this figure, we offer a more comprehensive
visualization by directly comparing the losses of each L, re-
vealing that the optimal L increases when the bit rate does.

3.4. Visual Analysis
To shed light on how generalized nested models impact the
visual perspective, Fig. 6 depicts blade picture instances
compressed with a distinct number of latent variables L =
{2, 3, 4, 5}. For L = {3, 4, 5}, the network incorporates the
hybrid modifications discussed in Section 3.3. Because these
pictures are high-resolution images, the figure focuses on the
comparison of the distinct models on image patches with high
frequency information, so we can facilitate its comparison.
The contrast may be increased for the same reason.

To start with the first row, we can clearly see on the orig-
inal image a perfect line boundary between the blade region
and the blue sky. However, when the image is compressed us-
ing HP [11] (L = 2), much noisy distortion is introduced on
the blade; and also on the background. When applying gen-
eralized networks, this distortion is iteratively reduced when
we increase L. Within the same bit rate range, by utilizing
L = 3, the distortion metrics are reduced and its perceptual
view is enhanced. What is more, our 4-layer latent model sub-
stantially drops this distortion noise and even improves the
quality measures. Note that for L = 5, we reach an equal
level of compression performance as L = 4, showing the op-
timal layer depth for this rate-distortion trade-off is L = 4.

Another common distortion iteratively reduced when in-
corporating additional latent variables is blocking artifacts;

caused due to compressing the images through individual im-
age patches. As seen from the second to the last row, nested
models can selectively enhance those regions. In all cases, we
obtain again L = 4 as the optimal number of latent variables.

3.5. Quantitative Comparison

In order to contextualize our approach, we present a concise
comparison with state-of-the-art lossy coders in Fig. 7. To
this end, we selected the optimal layer depth L over the vali-
dation set (Fig. 5) for each rate-distortion model to build our
proposed lossy coder; which is now evaluated on the test set.

Learning-based coders highlight superior performance
than traditional ones, except for BPG [4] evaluated on
PSNR, which surpasses the rest on low bit rate scenarios.
Our approach excels on compression performance in both
quality measures, accomplishing comparable results to top-
performing autoregressive coders, such as JA [15]. However,
JA’s autoregressive nature weakens its applicability due to its
high computational cost, as we will see in Section 3.6. De-
spite outperforming our model in high bit rates, QARV’s [14]
embedding layer is not sufficient to generalize for distinct
rate-distortion terms, therefore, it performs poorly on low bit
rates. In addition to that, its computational cost is higher than
a typical autoregressive model, as discussed later.

Focusing on the baseline codecs of our proposed general-
ized networks, we substantially outperform in compression
performance Bls2017 [10], which corresponds to L = 1,
and show significant improvement also compared to HP [11]
(which is L = 2). As mentioned in Section 3.3, generalized
nested models significantly enhance the compression perfor-
mance on high bit rate scenarios, when the image quality re-
quirements imply a large L as optimal. In this range of image
quality is relevant to accomplish a high compression perfor-
mance, because they ensure an acceptable image quality to
perform defect detection during blade assessments.



Compression Time Decompression Time
Coding Minimum Maximum Mean Slope Minimum Maximum Mean Slope
scheme time [s] time [s] time [s] growth [s/bit] time [s] time [s] time [s] growth [s/bit]

HP [11] 5.76 6.17 5.96 0.25 6.51 15.60 12.83 5.57
JA [15] 200.68 204.19 203.01 1.96 442.74 458.26 451.08 8.69
GMM-Anchor [22] 227.91 235.96 233.04 5.51 480.62 495.27 487.40 10.02
GMM-Attn [22] 247.97 258.12 252.81 6.78 500.60 523.14 508.58 15.06
Bls2017 [10] 0.27 0.35 0.30 0.07 2.85 11.94 9.12 7.36
QARV [14] 371.08 374.68 373.28 2.21 238.08 240.99 239.70 1.79
BPG [4] 2.47 8.80 4.75 3.25 1.08 12.78 5.91 6.01
JPEG2000 [1] 7.02 7.03 7.02 0.01 24.40 58.48 38.92 16.66
VTM [5] 102.57 9943.02 4584.58 5309.94 1.42 4.32 2.73 1.57
WebP [2] 2.49 9.40 4.17 3.59 1.26 10.87 5.56 4.99
Ours 9.10 13.12 10.73 2.71 9.51 18.82 15.24 6.26

Table 1: Running time comparison of a full-resolution image for distinct state-of-the-art lossy coders.

3.6. Computational Cost
Table 1 shows the computational cost of coding a wind turbine
blade image using an NVIDIA RTX 3080 Ti GPU and a 20-
core Intel Core i9-10900 KF processor at 3.70 GHz, assuming
pre-loaded model weights to simulate a drone inspection.

We analyzed the computational cost of adding an extra
nested latent variable. Using HP [11] as a reference, our gen-
eralized hyperprior model shows a linear increase in cost with
each new latent variable, as its parameter count grows linearly
and the architecture structure is a pure extension. Notably, a
new latent variable results in an additional demand of approx-
imately 4s during the encoding and 2s during decoding.

In Table 1, we showcase the minimum, maximum, and
average coding run times in seconds. Recognizing the typical
trend of increased computational time with higher bit rates at-
tributed to the entropy coder, we also present the growth slope
observed as the bit rate increases. Our objective is to achieve
a high-performing coder characterized by swift compression
and decompression times, exhibiting minimal sensitivity to
the desired bit rate; signified by a low slope growth.

Our nested latent variable model meets these criteria
effectively, demonstrating outstanding compression perfor-
mance, while not significantly increasing the coding time,
except compared to Bls2017 [10]. It exhibits modest com-
pression slope growth and maintains reasonably low average
decompression time. In contrast, autoregressive models prove
to be considerably slower due to their sequential contextual
prediction process. Notably, QARV [14], despite not being
autoregressive, fails to strike a favorable balance between
coding performance and computational cost. Consequently,
our approach matches autoregressive models in compression
performance while reducing computational cost.

4. CONCLUSION
This paper extends the scope of the deep hyperprior for
neural lossy coding, introducing a versatile L-level nested
latent model. Our method captures the intricate dependen-
cies among latent variables with greater fidelity and marked
compression improvement. By carefully designing the archi-

tecture and selecting the optimal layer depth depending on
the rate-distortion trade-off, these generalized models surpass
the hyperprior performance without a trainable prior and suc-
cessfully approximate autoregressive models, accomplishing
state-of-the-art results while reducing substantially the com-
putational cost. Our framework effectiveness is solidified
through empirical evaluation in a real-world context. Specif-
ically, we have demonstrated its applicability within visual
wind turbine inspection data by yielding compelling results,
serving as a testament to its robustness and practicality.
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