
Total Estimation from RGB Video: On-line Camera
Self-Calibration, Non-Rigid Shape and Motion

Antonio Agudo
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Abstract—In this paper we present a sequential approach to
jointly retrieve camera auto-calibration, camera pose and the 3D
reconstruction of a non-rigid object from an uncalibrated RGB
image sequence, without assuming any prior information about
the shape structure, nor the need for a calibration pattern, nor
the use of training data at all. To this end, we propose a Bayesian
filtering approach based on a sum-of-Gaussians filter composed
of a bank of extended Kalman filters (EKF). For every EKF, we
make use of dynamic models to estimate its state vector, which
later will be Gaussianly combined to achieve a global solution.
To deal with deformable objects, we incorporate a mechanical
model solved by using the finite element method. Thanks to these
ingredients, the resulting method is both efficient and robust
to several artifacts such as missing and noisy observations as
well as sudden camera motions, while being available for a wide
variety of objects and materials, including isometric and elastic
shape deformations. Experimental validation is proposed in real
experiments, showing its strengths with respect to competing
approaches.

I. INTRODUCTION

The simultaneous 3D reconstruction of a shape structure
together with the full 3D trajectory of a RGB camera is a well-
studied problem in computer vision and robotics. Early works
assumed the observed shape is rigid, achieving robust solutions
even in real time. In this context, two type of formulations
were proposed: global-optimization approaches based mainly
on bundle adjustment [1], [29], [30], and filtering ones such
as those based on the Extended Kalman Filter (EKF) [18],
[37]. While some degree of success has been obtained in rigid
scenarios, retrieving the 3D geometry of the vivid moving real
world is still in its infancy. In those cases, the problem is
inherently ill-posed since many different 3D representations
can have very similar image observations, producing severe
ambiguities that can only be avoided by incorporating the art
of the priors about the camera trajectory and shape defor-
mation. Unfortunately, since including deformation priors is
substantially more difficult than using simple rigidity, solving
for a deformable shape is very weakly constrained compared
with retrieving a rigid structure.

Many efforts have been done in the last decade [6], [9],
[17], [38], proposing a wide variety of priors to constrain the
solution space. Alternatively, a better representation of the un-
derlying dynamics involved in non-rigid deformations can be
obtained through physically-grounded models, such as force-
based kinematics [15], inextensibility-based deformations [39],
linear [26] or non-linear [20] elastic models, and numerical

Fig. 1. Total estimation from RGB video. In this paper we address the
problem of simultaneously and sequentially retrieving camera self-calibration,
camera motion, and the 3D reconstruction of a deformable object from a se-
quence of RGB images. This is a very challenging problem in computer vision
and robotics, especially when neither training data nor a calibration pattern
are assumed in advance. Medical applications (such as the laparoscopy) are
a typical case where the amount of priors to be exploited is reduced, and an
on-line estimation is mandatory.

techniques based on the Finite Element Method (FEM) [3],
[8], to name just a few.

In any event, most of these approaches batch process all
images of the video at once, after video capture, preventing
them from being used on-line and in real-time applications.
In this case, only the observations until the current image
can be considered, doing even more complex the problem
to be sorted out. To solve this limitation, some works for
sequential estimation were proposed [2], [32], sharing a couple
of limitations with the previous ones. On the one hand, these
formulations relied on an orthographic camera model, which
is only a good approximation when the object depth is much
smaller than the distance from the camera. On the other
hand, the previous approaches used image points that can
be observed and tracked over the sequence, being a standard
practice to assume these measurements as input. An interesting
exception is [8], where a sequential formulation was presented,
including the use of a projective-camera model and a strategy
in order to solve data association. The only limitation is that
the calibration of the camera needs to be known a priori, i.e.,
to be effectively used, the method requires an off-line step
to be calibrated, limiting its applicability in real scenarios. In
practice, self-calibration allows the computation from scratch



of some projective parameters, such as the focal length,
principal point, and skew; and even including the distortion
parameters to improve the metric reconstruction.

In this paper, we propose a solution in order to jointly
retrieve camera self-calibration, camera trajectory and the 3D
reconstruction of a non-rigid shape (a typical case we handle
is displayed in Fig. 1). All of them, it is estimated in a se-
quential fashion, computing automatically the correspondences
between consecutive images, for a full-perspective camera, and
without assuming any training data at all nor a calibration
pattern. We are not aware of any other approach solving
simultaneously the three problems. To this end, we use a Sum-
of-Gaussians (SoG) filter in combination with a mechanical
model to encode shape deformations, and a motion model
to code the camera parameters. We extensively evaluate our
approach on real sequences. Moreover, as we will show later,
our solution exhibits a good trade-off between global accuracy
and generality in comparison with competing techniques.

II. RELATED WORK

Estimating the non-rigid 3D shape from a single RGB cam-
era has been an active research area in the past two decades. In
the literature, two main classes of techniques have proved most
effective so far: template-based formulations and non-rigid
structure from motion (NRSfM). On the one side, template-
based approaches rely on establishing correspondences with
a reference image in which the shape is already known in
advance [31], [36]. To avoid ambiguities, additional constraints
are included in the optimization, such as the inextensibility,
providing very robust solutions but limiting its applicability
to inelastic surfaces [31], [39]. More recently, some solutions
have been proposed to handle elastic deformations [20], [26]
by enforcing physical priors. While these formulations nor-
mally use a perspective camera model, the internal parameters
have to be known a priori, being a good calibration a key factor
to achieve accurate solutions. Enforcing also inextensibility,
some works [14], [33] have been also extended to include the
focal length in the estimation.

On the other side, NRSfM has been proposed to solve the
problem from 2D tracking data in a monocular video (in
the literature, feature points are collected in a measurement
matrix). Most approaches have incorporated additional priors
in different optimization frameworks. The most important prior
is to assume the shape to lie in a low-rank subspace [6],
[9], [17], [38], incorporating spatial [38] or temporal [13]
shape smoothness; by imposing the 3D shapes to be closely
aligned [24], or by means of a union of subspaces [40].

However, in contrast to their rigid counterparts [1], [29],
previous approaches to NRSfM process all the images at once,
remaining the sequential estimation as a challenging problem.
Some sequential formulations have emerged in the non-rigid
domain [2], [32], providing striking results. Unfortunately,
these approaches rely on orthographic camera models, or
they are not capable of solving feature tracking and outliers
detection in a single process. More recently, in [8] was
proposed a sequential solution to recover both inelastic and
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[12], [34] X X X X
[16] X X X X
[19], [25], [38] X X X X
[2], [32] X X X X
[8] X X X X X
[14], [33] X X X X X
Ours X X X X X X

TABLE I
QUALITATIVE COMPARISON OF OUR APPROACH WITH RESPECT TO

COMPETING METHODS. OUR APPROACH IS THE ONLY ONE THAT JOINTLY
RETRIEVES 3D RECONSTRUCTION OF BOTH RIGID AND NON-RIGID

OBJECTS (FROM ISOMETRIC TO ELASTIC DEFORMATIONS), ESTIMATES
THE FULL SELF-CALIBRATION OF THE CAMERA IN A SEQUENTIAL

FASHION, AND AUTOMATICALLY SOLVES THE TRACKING (THE
MEASUREMENT MATRIX IN A NRSFM CONTEXT) IN THE SAME LOOP.
NOTE THAT [14] IS A SHAPE-FROM-TEMPLATE METHOD, I.E., A 3D

TEMPLATE IS KNOWN A PRIORI TO ESTABLISH FEATURE
CORRESPONDENCES.

elastic materials while tracks the feature points. In addition,
this approach includes a full projective camera model where
the calibration is pre-computed after video capture. Again,
while self-calibration has been addressed for decades in rigid
shapes [12], [16], [22], [34], its incorporation in non-rigid
scenarios is very limited. Table I summarizes a qualitative
comparison in terms of available characteristics of our ap-
proach and the most relevant competing approaches. It is
worth noting that our approach is the only one that has all
characteristics.

In this paper we depart from previous work in that our
solution can, in a sequential manner, jointly estimate the
3D reconstruction of a non-rigid object (both inelastic and
elastic deformations are considered), camera pose, and camera
self-calibration. To the best of our knowledge, no previous
approach has jointly addressed all these problems in a unified
framework, and directly from a monocular video.

III. REVISITING SOG FILTER

We next revisit the basics on SOG filtering [11] which will
be employed later to propose our filter-based approach for
estimating the state vector.

Let us denote a probability density function of x by p(x).
In a general case, we could approximate this function as a
combination of G weighted functions, where every function in
the subspace is represented by a multivariate Gaussian, such
that:

p(x) =

G∑
g=1

γg N (xg;Pg) , (1)

where xg and Pg represent the mean and covariance matrix,
respectively, for the g-th Gaussian. γg is a weight coefficient,
subject to the conditions

∑G
g=1 γ

g = 1 and γg ≥ 0. It is
worth mentioning that p(x) could represent any probability
density function, being theoretically well-approximated for
high values of G.

As it can be seen in Eq. (1), p(x) can be updated by
modifying everyone of the Gaussian probability density func-
tions (pdfs) in the combination. For instance, every Gaussian
distribution can come from an EKF filter [23], where both
mean and covariance are estimated by means of the use of



new observations in a prediction-update strategy. Then, the
SOG algorithm combines several EKF solutions (a filter bank)
running in parallel as it is displayed in Fig. 2.

IV. SELF-CALIBRATION NON-RIGID SOG

Our key contribution is to present a novel technique for
simultaneously estimating the shape of a non-rigid object, the
full trajectory of a moving camera, and its auto-calibration.
To do this, we embed a FEM formulation that encodes shape
deformations within the Bayesian framework of a SOG. This
combination will provide a mechanism to sort out the problem
in a unified manner. As it was commented before, our SOG
filter exploits a bank of EKF filters for Bayesian estimation.

A. Bank of EKF Filters

To improve understanding, in this subsection IV-A we will
drop super-indexes g to denote the g-th EKF component, since
all definitions that we consider are the same for every filter.

1) Problem Formulation: The state of the camera is repre-
sented by a 18-dimensional vector, considering both intrinsic
and extrinsic parameters such as:

m = [c>, r>,q>,v>,ωC
>

]> , (2)

where c includes the internal calibration parameters, r and q
denote the position and orientation quaternion, respectively, in
order to express the pose of the camera relative to the world
coordinate system W . Eventually, v and ω are the linear and
angular velocities relative to W and to a frame C fixed to the
camera, respectively.

In addition to the state of the camera, we also consider the
surface of a non-rigid object that it is represented by means
of a triangulated mesh with N vertices gn = [xi, yi, zi]

> con-
catenated in a 3N vector y = [g1, . . . ,gN ]>. As we propose
to solve for the full 3D camera trajectory, without loss of
generality, we assume that R << N of these points are rigid,
i.e., they always remain steady. It is worth pointing out that
without this assumption, we could not disambiguate between
camera motions and rigid displacements of the object [4], [7].

To jointly estimate both camera and shape, we define by
mk, yk, and Ik the camera state vector, the 3D mesh state
configuration, and the input image at frame k. Our problem
consists in using the current state and the input image Ik+1

at frame k + 1, to retrieve both mk+1 and yk+1. To this
end, the state vector for every EKF filter is represented by
x = [m>,y>]>, i.e., the full state vector includes both camera
(calibration and location) and the 3D point locations. Upon the
arrival of a new input frame, the corresponding estimation is
iteratively updated and can be written as x̂ = [m̂>, ŷ>]>,
denoting by P its covariance matrix. We next describe the
main ingredients of this process, introducing the dynamic
models we use to predict the state vector.

2) Camera and Surface Motion Models: As it was in-
troduced before, the camera state vector can be split in
two terms: the vector c to represent the intrinsic parameters
and the rest of the elements to encode the extrinsic ones
and the dynamic. On the one hand, c is a 5-dimensional
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Fig. 2. Non-Rigid SOG filter. Our non-rigid SOG filter can be applied
directly to a monocular video to jointly estimate camera trajectory, camera
self-calibration and the 3D reconstruction of a deformable object. To this
end, the SOG filter is composed of a bank of EKF filters (state prediction,
measurement prediction and updating are performed for every of them), that
Gaussianly are combined to produce an overall solution. Data association is
also solved automatically in the same loop by combining the contribution
of every filter in the bank. The most important equations in our model are
displayed for the k-th frame. To improve efficiency, bad filters in term of
weight contribution are pruned. Best viewed in digital version.

vector and includes the focal length α, the principal point
coordinates (βx, βy), and two parameters to model radial
distortion (k1, k2), as it was done in the literature [16]. On
the other hand, to model the extrinsic parameters, we use
a constant velocity model [8], [18], introducing an impulse
of both linear and angular velocities at every frame step ∆t
as ∆v = v̇∆t and ∆ωC = ω̇C∆t, respectively. v̇ and ω̇C

denote unknown linear and angular acceleration variables,
and are modeled by a zero-mean Gaussian distribution with
covariance matrix Qm. Finally, the camera state function
mk+1 ≡mk+1(mk,0,∆v,∆ωC) is represented by:

mk+1 =



αk+1

βxk+1

βyk+1

k1k+1

k2k+1

rk+1

qk+1

vk+1

ωCk+1


=



αk

βxk

βyk

k1k

k2k

rk + (vk + ∆v)∆t
qk × q((ωCk + ∆ωC)∆t)

vk + ∆v
ωCk + ∆ωC


, (3)

where q((ωCk + ∆ωC)∆t) indicates the quaternion defined by
the rotation vector (ωCk + ∆ωC)∆t.

To model the surface localization, the object state is en-
coded using a FEM model with unknown Gaussian forces.
Following [8], we can introduce a compliance matrix Ck to
correlate all the points in the map. Let us consider that an
unknown force vector ∆f is applied on the shape, producing
a displacement field coded by the vector ∆d. Both terms can
be related by using the compliance matrix as ∆d = Ck∆f



(recall that its inverse, the stiffness matrix Kk, may map
displacements into forces).

With these ingredients, the surface configuration yk at a
time step k, and its associated compliance matrix Ck, can be
used to obtain the new state estimation via the state function:

yk+1 ≡ yk+1 (yk,∆f) = yk + Ck∆f , (4)

where ∆f is assumed to be a random variable with zero
mean and Gaussian distribution. As it can be seen, we re-
compute the compliance matrix Ck at each iteration, thus
being adapted to the deforming geometry of the structure. In
order to compute Ck, we follow the FEM model proposed
by [8] that is available for both inelastic and elastic materials
by means of the use of normalized Gaussian forces. Thanks
to this model, we can correct accumulative errors produced
by the inherent linearization of every EKF in our filter bank,
that might cause drifting problems. Finally, it is necessary
to associate a covariance matrix Qy to this non-rigid model,
whose elements encode deformation variances except for the
rigid points where the entries will be zero.

3) Measurement Model: We next describe how the process
of observing the deformable points is modeled in a generic
image frame. Considering the 3D coordinates of a point ex-
pressed in the world coordinate system W , gi = [xi, yi, zi]

>,
we initially use the extrinsic components (q and r) of the
camera state vector to compute gCi , the expected position of
the feature in the local coordinate system of the camera C is:

gCi = [xCi , y
C
i , z
C
i ]> = O>(gi − r), (5)

where O denotes the rotation matrix corresponding to the
quaternion q. The measurement function bi (m,gi) computes
the 2D projection of gCi onto the image, knowing the camera
and shape estimations in the current state vector:

bi ≡ bi (m,gi) =

 βx − αxC
i

zC
i

βy − α yC
i

zC
i

 . (6)

In addition, in order to compensate for radial distortion,
we introduce a first order radial distortion model [27]. The
undistorted projective coordinates bi can be computed from
the distorted ones bd

i ≡ (ud, vd)> acquired by the camera as:

bi(b
d
i ) =

[
βx + (ud − βx)(1 + k1r

2
d + k2r

4
d)

βy + (vd − βy)(1 + k1r
2
d + k2r

4
d)

]
, (7)

where rd =
√

(dx(ud − βx))2 + (dy(vd − βy))2 with
(dx, dy) the pixel size. Without loss of generality, we assume
square pixels, i.e., dx ≡ dy , tuning this value from the camera
specifications.

The measurement equations for the visible q mesh vertexes
are stacked together into a unique non-linear measurement
function of the state vector as:

ĥk|k−1(x̂k|k−1) =
[
b1 . . . bi . . . bq

]>
. (8)

A zero-mean Gaussian error with diagonal 2×2 covariance
matrix Σbi is assigned to every measurement. The overall
measurement noise covariance Rk is built by assembling the
previous covariances into a block diagonal matrix.

4) Jacobian Computation: The proposed sequential monoc-
ular non-rigid SOG-FEM algorithm needs information about
how the Jacobian matrices for every EKF are assembled.
Considering our motion model described in section IV-A2,
the Jacobian matrices of the dynamic model can be defined
as:

Fk =



I5 0 0 0 0 0
0 I3 0 ∆t I3 0 0

0 0 ∂qk+1

∂qk
0 ∂qk+1

∂ωC
k

0

0 0 0 I3 0 0
0 0 0 0 I3 0
0 0 0 0 0 I3n

 , (9)

Gk =



0 0 0
∆t I3 0 0

0 ∂qk+1

∂∆ωC 0
I3 0 0
0 I3 0
0 0 Ck

 , (10)

where In denotes a n × n identity matrix. Let n =

[∆v>,∆ωC
>
,∆f>]> be the state vector noise whose covari-

ance matrix Q is block diagonal, and it can be composed
of Qm and Qy, respectively. The full prediction stage is
summarized in Fig. 2-left.

Considering the set of q measurements of Eq. (8), the
Jacobian matrix Hk can be expressed as:

Hk =
[
∂h
∂x

]
=


∂b1

∂m
∂b1

∂y1
0 · · · 0

· · · · · · · · · · · · · · ·
∂bi

∂m 0 0 ∂bi

∂yi
0

· · · · · · · · · · · · · · ·
∂bq

∂m 0 · · · 0
∂bq

∂yn

 , (11)

that it will be used in the measurement prediction stage and
in the EKF-FEM update (see Fig. 2-middle/right).

B. Data Association

In order to perform data association we proceed as fol-
lows. We first predict the image coordinates bg

i of every
keypoint feeding the current prediction estimate x̂g

k|k−1 into
the measurement model in Eqs. (6)-(7), to obtain the predicted
measurements in Eq. (8). In addition, the Jacobian of this
function, Hg

k in Eq. (11), is used to compute the uncertainty
of the prediction, represented by the innovation covariance
Sg
k|k−1 = Hg

k|k−1P
g
k|k−1H

g
k|k−1

>
+Rg

k. Finally, the predicted
measurements for every EKF are Gaussianly combined to
obtain ĥk|k−1 and Sk|k−1 as:

ĥ ≡ ĥk|k−1 =

G∑
g=1

γgk|k−1 ĥg
k|k−1 ,

Sk|k−1 =

G∑
g=1

γgk|k−1[Sg
k|k−1 + [ĥg

k|k−1 − ĥ][ĥg
k|k−1 − ĥ]>],

that we use to define the ellipses in the image plane where a
guided search of matches is performed.



C. Gaussian Update

The contribution of every EKF filter is Gaussianly combined
by means of the weight coefficient γgk|k−1, that are updated
for every frame. To this end, we obtain an innovation mean
for every EKF defined by igk|k−1 = zk − hg

k(x̂g
k|k−1), where

zk denotes the current observations and hg
k(x̂g

k|k−1) indicates
the predicted ones as a function of the predicted state x̂g

k|k−1.
Finally, every weight coefficient at frame k can be updated as:

γgk|k =
γgk|k−1 N (igk|k−1;Sg

k|k−1)∑G
g=1 γ

g
k|k−1 N (igk|k−1;Sg

k|k−1)
. (12)

Once the weight coefficients are known (see Gaussian
update stage in Fig. 2), an overall mean and covariance for
the SOG filter can be represented as:

x̂k|k =

G∑
g=1

γgk|k x̂g
k|k , (13)

Pk|k =

G∑
g=1

γgk|k [Pg
k|k + [x̂g

k|k − x̂k|k][x̂g
k|k − x̂k|k]>], (14)

which it can be seen as the global estimation of our algorithm.
Note that, though, we will never use this estimation in the bank
of EKF filters.

D. Gaussian Pruning

Assuming that the final pdf should follow a unimodal
Gaussian distribution with small covariance, we gradually
reduce the number of Gaussian pdfs in our model that obtained
a low weight factor γgk|k [23]. That can be done via a sequential
probability ratio test, improving so the efficiency of our
algorithm. Considering every Gaussian in the SOG filter, we
can define a null H0 and an alternative H1 hypothesis, in order
to denote when a Gaussian filter represents the true state or not,
respectively. To this end, we define Wald’s boundaries [10] in
terms of decision errors of false alarm ψa and missed detection
ψb, accepting the null hypothesis if:

K∏
k=1

Lg
k(H0)

Lg
k(H1)

>
1− ψb

ψa
, (15)

or the alternative one if:

K∏
k=1

Lg
k(H0)

Lg
k(H1)

<
ψb

1− ψa
, (16)

where Lg
k(H0) and Lg

k(H1) represent the likelihoods of the
data under hypothesis H0 and H1, respectively, and they can
be computed as:

Lg
k(H0) = N (igk|k−1;Sg

k|k−1),

Lg
k(H1) =

G∑
a=1;a 6=g

γak|k∑G
b=1;b6=g γ

b
k|k

N (iak|k−1;Sa
k|k−1).
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Fig. 3. Probability density function for calibration parameters. In all
cases, it is represented the bank of filters that is used in our experiments.
Left: p(α) for the focal length. Middle-Right: p(k1) and p(k2) for the first
and second distortion parameters, respectively: sensors in general scenarios
(top), the rest of cameras (bottom). See numerical axis to observe the scale
deviation. For {βx, βy}, we assume a unimodal Gaussian distribution.

E. Initialization

Following [8], we initialize with a null force model in the
first frames of the monocular video, i.e., the initial surface
is computed by assuming a rigid map yg

k+1 = yg
k setting

the covariance matrix as Qg
y = 0 for the g-th EKF filter.

In this part, we use inverse depth parametrization [28] from
the detected FAST interest points [35] to encode the map
locations (see estimations on the left in Figs. 4-8 to visualize
initializations), transforming them to euclidean coordinates
when the points are observed with enough parallax. Once the
initialization is done, a Delaunay’s tessellation of 3D points
is performed to obtain a soup of irregular triangles. Camera
covariance Qg

m is set to a constant diagonal matrix, a standard
practice in rigid SLAM formulations [18].

V. EXPERIMENTAL EVALUATION

We now present experimental results on real RGB videos,
providing both quantitative or qualitative evaluation. Unfortu-
nately, as we saw in the qualitative evaluation in table I, we
cannot provide a quantitative comparison with respect to other
approaches since none of them can solve the full problem
directly from video. First of all, we define the SOG filter
that we use in our experiments, in spite of using different
cameras for acquisition. Particularly, we use a dataset that were
acquired with four different cameras, where two of them are
used in general scenarios and the rest to visualize closer ones.

For the focal length α, we consider an interval from 160
to 520 pixels, dividing it into 14 Gaussians with standard
deviation of 7.5 pixels and a separation between means of
30 pixels. In a similar manner, we do to model the distortion
parameters k1 and k2, considering for the first one an interval
from 0.002 to 0.008 mm−2 into 3 Gaussians with standard
deviation of 0.0008 mm−2 and a separation between means
of 0.003 mm−2, and an interval from 0.0001 to 0.0003 mm−4

into 2 Gaussians with standard deviation of 0.00005 mm−4

and a separation between peaks of 0.0002 mm−4 for the
second one. For the sensors that observed general scenarios,
the distortion parameters are considerably bigger and we
scaled them maintaining the same number of filters. The
corresponding probability density function for everyone of
these parameters is displayed in Fig. 3, showing in the top



XXXXXXXXParam.
Data Non-Critical Motion Sequences Critical Motion Sequences

Indoor Loop Closing Silicone Cloth Laparoscopy Pure Rotation Pure Translation Parallel Optical Axis
Off-line On-line (Ours) Off-line On-line (Ours) Off-line On-line (Ours) Off-line On-line (Ours) Off-line On-line (Ours) Off-line On-line (Ours) Off-line On-line (Ours)

α[pixels] 194.10 195.24±1.27 196.90 196.97±0.53 312.89 309.30±0.30 280.91 274.36±0.32 194.10 211.65±12.90 194.10 204.14±4.44 194.10 202.84±8.31
βx[pixels] 160.20 158.94±0.92 153.50 159.14±1.41 157.66 158.60±0.11 184.48 166.00±0.18 160.20 158.68±6.07 160.20 156.47±3.48 160.20 158.89±7.08
βy[pixels] 128.90 128.85±0.99 130.80 131.22±1.19 121.32 119.21±0.11 133.48 136.06±0.17 128.90 121.48±6.92 128.90 129.14±3.13 128.90 116.51±5.98
k1[mm−2] .0623 .0661±.0023 .0693 .0721±.0028 .0094 .0056±.0002 .0054 .0078±.0004 .0623 .0626±.0073 .0623 .0676±.0048 .0623 .0679±.0109
k2[mm−4] .0139 .0122±.0008 .0109 .0107±.0007 .00011 .00036±.00003 .00026 .0004±.00004 .0139 .0098±.0024 .0139 .0088±.0015 .0139 .0121±.0032

TABLE II
CAMERA SELF-CALIBRATION QUANTITATIVE EVALUATION. THE TABLE REPORTS THE CALIBRATION RESULTS BY USING AN OFF-LINE APPROACH (A

CALIBRATION PATTERN IS NEEDED) BASED ON NON-LINEAR OPTIMIZATION; AS WELL AS OUR ON-LINE ESTIMATION FOR BOTH NON-CRITICAL AND
CRITICAL MOTION SEQUENCES. IN ADDITION, OUR SOLUTION INCLUDES AN 95% UNCERTAINTY ESTIMATION.

the filter for sensors in general scenarios and in the bottom
the rest. As in real cases k1 has a bigger influence in the
solution, we use more filters than to model k2. Finally, as
the measurement equation is linear with respect to the optical
center {βx, βy}, both parameters are modeled by one single
Gaussian, whose mean is located in the middle of the image
with standard deviations of 3.3 pixels in every coordinate.
Considering altogether, the final SOG filter is composed of
84 filters. We also fix ψa = 0.01 and ψb = 0.05 for all
experiments. We next evaluate our approach on real videos
where rigid and both local and global deformations appear, as
well as including some critical motion sequences where the
auto-calibration is ambiguous.

A. Non-Critical Motion Sequences
First, we use four non-critical motion sequences denoted as:

Indoor, Loop Closing, Silicone Cloth, and Laparoscopy. The
first two were taken with a hand-held 320 × 240 IEEE1394
camera in general indoor conditions, representing one of them
a challenging indoor loop closing scenario [16]. The third were
provided by [5], where a hand-held camera with resolution 320
× 240 is observing an elastic silicone cloth fixed to a circular
stretcher. The last one is a laparoscopy sequence provided
by [8], where a rabbit abdominal cavity is observed by a
hand-held endoscope. The sequence consists in 400 frames of
resolution 288 × 384, and contains a combination of sudden
camera motions and strong deformations that often washes
out the observations. Before acquiring the video sequences,
another video was recorded with a calibration pattern that
was used to compute an off-line calibration by non-linear
optimization where the matches were provided by hand, and
we will use for validation. In contrast, data association was
automatically solved in our on-line approach as was discussed
in Sec. IV-B, being the 2D ellipses we obtain represented in
Figs. 4-5-8-top along with some input images.

Although our algorithm provides one estimation per frame,
the calibration becomes to converge as the frames arrive,
especially when the number of filters is reduced to one (this
usually happens after processing between 50 and 100 images).
Table II reports a quantitative comparison between our on-line
estimation and the off-line baseline. As it can be seen, our
results for the four cameras are very accurate even computing
automatically the correspondences. In the Indoor sequence we
can observe a correlation between the estimations of k1 and
k2, showing the difficulty to recover these values. This can be
also seen in the Silicone Cloth and Laparoscopy sequences,
where the estimation of these values is very challenging due to

Fig. 4. On-line camera self-calibration, shape and motion for Indoor and
Loop Closing sequences. In both cases, the same information is displayed.
Top: Some input images and estimated location of the points of interest, with
their associated uncertainty (red, blue and yellow ellipses mean matched, non-
matched and non-visible points, respectively). Bottom: Global representation
of 3D shape and camera trajectory (in yellow). As it can be seen, when a
point is observed in just one frame or with low parallax, its uncertainty is big
(see left part in both cases).

the strong deformations. It is worth noting that the estimation
of βx is worse in the Loop Closing sequence, since a cycle-
torsion motion is marginal in this case. In any case, despite
being some complex scenarios to be measured, our solution
is competitive with respect to off-line approaches while it
estimates the rest of parameters. Additionally, our approach
can also estimate both camera trajectory and shape structure.
A general estimation of 3D shape and motion is displayed in
Fig. 4 for general indoor scenarios. As it can be seen, our
algorithm recovers properly the loop trajectory in the Loop
Closing sequence.

Figure 5-middle/bottom displays the corresponding 3D re-
construction results for three images in the Silicone Cloth
sequence (a ground truth from stereo vision is available for
these frames). To improve visualization, we also provide two
cross sectional views where we represent our estimation with
uncertainty, and the corresponding ground truth. If we compare
the mean of our uncertainty distributions with the ground truth,
we obtain a mean 3D reconstruction error of 3.96 mm, which
is very accurate considering the diameter of the silicone cloth,
around 200 mm, and the distance to the camera, around 700
mm. In any case, this error is slightly greater than the 2.5 mm
reconstruction error reported by EKF-FEM [8], being, though,
compatible with the removal of priors since EKF-FEM needs a



Fig. 5. 3D reconstruction on the Silicone Cloth sequence. Top:
Input frames and estimated location of the points of interest, with their
associated uncertainty (red and blue ellipses mean matched and non-
matched points, respectively). Note that in some frames, a few points
could not be matched due to lack of visibility or some deformations.
The color lines indicate cross-sectional views that will be represented
below. Middle: General view of our 3D reconstruction shape. The
degree of extensibility of the mesh, compared to the rest shape, is
color-coded. Bluish regions are isometrically deformed, while reddish
areas have undergone larger elastic deformations. Bottom: Two cross
sections of the reconstructed shape, in which we show, for every
3D point, both the estimated location (blue circles) with its 95%
confidence region (red ellipses), and the corresponding ground truth
(black crosses).

calibrated camera instead of estimating it as we do here. Fig. 6
shows the 3D camera trajectory estimation, highlighting the
camera location in the three frames considered above. Finally,
we consider the Laparoscopy sequence. Following [8], we
select the points located far apart from the deformed region to
be assumed as rigid. This is a very challenging scenario, where
a self-calibrated camera is mandatory in practice. Figure 7
shows some input images together with the feature points that
we use to solve the problem, as well as the corresponding 3D
estimation we obtain.

B. Critical Motion Sequences

We now consider three 600-frame critical motion sequences
where it is not possible to completely determine the internal
parameters [21], and they were acquired with the IEEE1394
camera. The sequences are: 1) Pure Rotation where a fixed
camera is rotating over its optical center, i.e., without assuming
any translation, 2) Pure Translation over Optical axis where
the camera moves along the optical axis (the successive optical
centers are co-linear), and 3) Parallel Optical Axis where the
camera follows a linear trajectory while the optical-axis orien-
tation remains, i.e., the successive optical axes are parallel. Our

Fig. 6. Camera trajectory estimation on the Silicone Cloth
sequence. Two views, (X-Y) and (X-Z), are displayed. In both cases,
it is highlighted the camera location with a 95% confidence for three
selected camera locations (see the corresponding shape estimation in
Fig. 5) by means of blue crosses, and the ground truth by black ones.

Fig. 7. Joint 3D reconstruction and trajectory on the Laparoscopy
sequence. Top: Two images with the 2D estimated mesh. Matched
and non-matched feature points are represented by red and blue
ellipses, respectively. Bottom: An overall estimation.

calibration results are shown in table II, and the corresponding
3D shape and motion in Fig. 8. For Pure Rotation, the 3D
reconstruction is not theoretically possible due to lack of par-
allax, but in practice, due to noisy observations, our algorithm
produces a wrong estimation (see the green points in Fig. 8-
top, where two arbitrary points with very different depths are
estimated quite close). For Pure Translation over Optical axis
and Parallel Optical Axis sequences, as it is confirmed by
our results, the principal point {βx, βy} cannot be estimated
properly, obtaining estimations with bigger uncertainties with
respect to non-critical motions. As a consequence, the rest
of uncertainty estimations are also bigger, even though the
camera trajectories seem to be visually correct.

VI. CONCLUSION

In this paper we have proposed the first algorithm to jointly
retrieve camera self-calibration, camera motion, and the 3D
reconstruction of a non-rigid object, all of them, from a
monocular video and without assuming any training data at all.
To this end, we have embedded a physical model to encode
deformations, solved by means of finite elements, along with
a dynamic model to code the camera parameters. These
ingredients are exploited in a SOG filter that is composed
of a bank of EKF filters, being them Gaussianly combined



Fig. 8. Critical motion sequences: Pure Rotation, Pure Translation and
Parallel Optical axis, respectively. See caption in Fig. 4.

to provide a Bayesian estimation. Thanks to our model, we
can handle a large variety of deformations without knowing
their material properties. We have experimentally evaluated
our approach on real sequences, for rigid, isometric and elastic
deformations. While our approach provides joint competitive
3D reconstructions and motion estimation in comparison with
competing techniques, it can calibrate the camera from scratch
without considering any calibration pattern. An interesting
avenue for future research is to validate our formulation in
real time at frame rate.
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