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Abstract In this paper, we simultaneously estimate camera
pose and non-rigid 3D shape from a monocular video, us-
ing a sequential solution that combines local and global rep-
resentations. We model the object as an ensemble of parti-
cles, each ruled by the linear equation of the Newton’s sec-
ond law of motion. This dynamic model is incorporated into
a bundle adjustment framework, in combination with sim-
ple regularization components that ensure temporal and spa-
tial consistency. The resulting approach allows to sequen-
tially estimate shape and camera poses, while progressively
learning a global low-rank model of the shape that is fed
back into the optimization scheme, introducing thus, global
constraints. The overall combination of local (physical) and
global (statistical) constraints yields a solution that is both
efficient and robust to several artifacts such as noisy and
missing data or sudden camera motions, without requiring
any training data at all. Validation is done in a variety of
real application domains, including articulated and non-rigid
motion, both for continuous and discontinuous shapes. Our
on-line methodology yields significantly more accurate re-
constructions than competing sequential approaches, being
even comparable to the more computationally demanding
batch methods.

Keywords Sequential Non-Rigid Structure from Motion ·
Particle Dynamics · Bundle Adjustment · Low-Rank Models

1 Introduction

Reconstructing deformable 3D shapes from single images
or monocular videos is an active area of research in com-
puter vision, with applications in very different domains.
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Medical imaging is maybe one of the most motivating ex-
amples where these techniques shall be deemed to be ap-
plied, for instance to obtain full 3D reconstructions of the
organs in non-invasive surgery Maier-Hein et al. (2014). For
instance, a sequential estimation is mandatory in endoscopy
to achieve an interaction between the estimated 3D model
and the doctor in real time. Augmented reality and the enter-
tainment industry are other fields that could greatly benefit
from such techniques, by e.g. filming a person with standard
cameras and capturing his/her motion or the deformation
of the clothes Koh et al. (2014). Unfortunately, recovering
non-rigid shape from a single viewpoint is a severely under-
constrained problem, in which many different 3D configura-
tions can have very similar image projections. The problem
becomes even more challenging if the camera is allowed to
move, and on top of the ambiguities induced by the deforma-
tion itself, we also need to consider those introduced by the
camera motion. This is the scenario addressed by Non-Rigid
Structure from Motion (NRSfM) approaches, and which we
contemplate in this paper. In short, the goal of the NRSfM is
to simultaneously recover the camera motion and 3D shape
of a deformable object from monocular images. Solving the
inherent large number of parameters and ambiguous solu-
tions of this problem requires introducing prior knowledge
about the camera trajectory and scene deformation.

The most standard approach to solve these ambiguities is
using statistical priors to approximate the global deformable
structure as a linear combination of low-rank bases of shapes
(Brand 2001; Bregler et al. 2000; Moreno-Noguer and Porta
2011; Torresani et al. 2008), by means of a linear combina-
tion of 3D point trajectories (Akhter et al. 2008; Park et al.
2010; Valmadre and Lucey 2012), or even using a shape-
trajectory combination (Gotardo and Martı́nez 2011b). This
is typically used with additional smoothness constraints that
further disambiguate the problem (Bartoli et al. 2008; Garg
et al. 2013; Paladini et al. 2009). Yet, while low-rank meth-
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Fig. 1 3D Reconstruction of time-varying shapes using our physically-inspired velocity model for different types of deformations. We show
that our approach is applicable in a wide range of domains, from non-rigid motion (for continuous shapes such as faces, back, paper and a beating
heart) to articulated motion (drink and stretch). Top: 3D reconstruction of one specific frame, and particle trajectories (each represented with a
different color). Bottom: A specific frame of the input sequence with 2D tracking data. The reader is referred to the experimental section for more
details. The figure is best viewed in color.

ods can effectively encode global deformations, they cannot,
in general, handle non-linear motion patterns and strong lo-
cal deformations. Piecewise strategies (Chhatkuli et al. 2014;
Russell et al. 2011; Taylor et al. 2010; Varol et al. 2009) al-
low recovering larger deformations, although their perfor-
mance highly depends on having overlapping features in
neighboring patches, or require large number of correspon-
dences to enforce local rigidity constraints (Chhatkuli et al.
2014; Taylor et al. 2010; Varol et al. 2009), which can be
hard to obtain in practice. In any event, these previous ap-
proaches batch process all frames of the sequence at once,
after video capture, preventing them from being used on-
line and in real-time applications, where NRSfM may have
an enormous potential. This has been recently addressed in
(Agudo et al. 2014a, 2012; Paladini et al. 2010; Tao et al.
2013), which, however, still focus on global models only
valid for relatively small deformations (Paladini et al. 2010;
Tao et al. 2013) or continuous warps (Agudo et al. 2014a,
2012).

An alternative to statistical and low-rank approaches is
to directly model the physical laws that locally govern ob-
ject kinematics. Drawing inspiration from computer graph-
ics (Popovic and Witkin 1999), there have been several at-
tempts at using these models for tracking non-rigid motion
(Metaxas and Terzopoulos 1993) and modeling human ac-
tivities (Brubaker et al. 2009). Unfortunately, these methods
are usually focused to specific types of motion, and their
underlying laws rely on non-linear relations complex to op-
timize. An interesting exception is (Salzmann and Urtasun
2011), which directly uses the Newton’s second law of mo-
tion to build a convex formulation for tracking purposes.

This work, though, is not sequential, does not estimate the
camera pose, as we do, and depends on priors computed
from training data, specially when dealing with complex
models such as human motion.

In this paper, we combine the best of global-statistical
and local-physical approaches. In particular, we exploit New-
ton’s second law of motion to introduce a force perturbed
second-order Markov model that rules the local motion of
every particle conforming the shape. The joint dynamics are
then optimized using a Bundle Adjustment (BA) framework,
with simple regularization terms that ensure temporal and
global spatial consistency of the estimated shape and cam-
era poses. This yields a sequential estimate of the shape and
camera poses, while also allowing to progressively learn a
low-rank global model of the shape, which is fed back into
the optimization scheme. The overall approach is still se-
quential, fast, can cope with missing data and with differ-
ent types of deformations such as articulated, isometric and
stretchable, without requiring pre-trained data. We demon-
strate its effectiveness on a variety of scenarios such as those
depicted in Fig. 1, ranging from full body and face human
motion capture to 3D reconstruction of organic tissues. In all
cases, we show comparable results to competing batch algo-
rithms, but at a much smaller cost and a potential real-time
applicability. Additionally, our approach yields remarkable
improvement when compared to other sequential NRSfM tech-
niques.

The part of this work regarding the use of local models
based on particle dynamics was already presented in (Agudo
and Moreno-Noguer 2015). Here, we have combined these
local constraints with global low-rank shape representations
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depicted in Fig. 1, ranging from full body and face human
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cases, we show comparable results to competing batch algo-
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XXXXXXXXChar.
Method

EM-PPCA MP PTA CSF2 KSTA SPM SBA BA-FEM GLSMM

Sequential X X X X X X X X X
Rank X X X X X X X X X
Missing Data X X X X X X X X X
Articulated X X X X X X X X X
Learning X X X X X X X X X

Table 1 Qualitative comparison of our approach with other state-of-the-art techniques. We consider the methods: EM-PPCA (Torresani et al.
2008), MP (Paladini et al. 2009), PTA (Akhter et al. 2008), CSF2 (Gotardo and Martı́nez 2011b), KSTA (Gotardo and Martı́nez 2011a), SPM (Dai
et al. 2012), SBA (Paladini et al. 2010), BA-FEM (Agudo et al. 2014a) and our approach denoted as GLSMM. The comparison is done in terms
of whether: the solution is sequential or not (sequential), a specific rank of a deformation model is required to constrain the solution (rank), it can
handle missing observations (missing data), it can cope with articulated motion and finally, whether the method can learn a deformation model on
the fly (learning).

that are progressively and on-line learned. Additional the-
oretical discussions and mostly, synthetic and real results
demonstrating the wide range of scenarios where our ap-
proach is applicable, are included in this version.

2 Related work

NRSfM is an inherently ambiguous problem that to be solved
requires a priori knowledge of either the nature of the defor-
mations or the camera motion properties. Early NRSfM ap-
proaches extended the Tomasi and Kanade (1992) factoriza-
tion algorithm to the non-rigid case by representing defor-
mations as linear combinations of basis shapes under ortho-
graphic projection (Bregler et al. 2000; Xiao et al. 2006). On
top of this, spatial (Torresani et al. 2008) and temporal (Bar-
toli et al. 2008; Del Bue et al. 2006; Torresani et al. 2008)
smoothness priors have been considered to further limit the
solution space. Later, Dai et al. (2012) relaxed the amount of
extra prior knowledge by directly imposing a low-rank con-
straint on the factorization of the measurement matrix. Other
approaches have modeled deformation using a low-rank tra-
jectory basis per 3D point (Akhter et al. 2008), including
priors on trajectories in terms of 3D point differentials (Val-
madre and Lucey 2012) and enforcing smoothness on their
paths (Gotardo and Martı́nez 2011b). One inherent limita-
tion of these methods, is that they are highly sensitive to the
number of bases chosen to represent the trajectory, making
them very problem specific. Additionally, while being ad-
equate to encode global deformations, low-rank methods’
applicability is limited to smoothly deforming objects.

Recently, results from this field have significantly ad-
vanced. Stronger deformations have been tackled using piece-
wise models (Chhatkuli et al. 2014; Fayad et al. 2010; Rus-
sell et al. 2011; Taylor et al. 2010), even combining segmen-
tation and reconstruction under local rigidity (Russell et al.
2014), or eliminating the rank dependency by means of Pro-
custean normal distributions (Lee et al. 2013). In (Garg et al.
2013), a variational approach integrating a low-rank shape

model with spatial smoothness allowed per-pixel dense re-
constructions.

In any event, all aforementioned NRSfM works are batch
and they process all frames of the sequence at once, pre-
venting thus, on-line and real-time computations. While se-
quential solutions exist for the rigid case (Newcome and
Davison 2010; Lim et al. 2011), sequential estimation of
deformable objects based only on the measurements up to
that moment remains a challenging and unsolved problem.
There are just a few attempts along this direction (Agudo
et al. 2016, 2014a, 2012; Paladini et al. 2010; Tao et al.
2013). Specifically, Paladini et al. (2010) proposed a 3D-
implicit low-rank model to encode the time-varying shape,
estimating the remaining model parameters by BA over a
temporal sliding window. Based on a similar framework,
Tao et al. (2013) proposed an incremental principal com-
ponent analysis to recursively update the low-rank model.
Linear elasticity by means of finite element models was in-
troduced into an extended Kalman filter to encode exten-
sible deformations in real time (Agudo et al. 2012), even
computing the full camera trajectory (Agudo et al. 2016).
Very recently, (Agudo et al. 2014a,b) presented the first ap-
proach to reconstruct both sparse and dense 3D shapes in
a sequential manner, relying on a linear subspace of basis
shapes computed by modal analysis. However, despite be-
ing very promising, these methods are only valid to handle
smoothly deforming objects, as is the case of (Paladini et al.
2010; Tao et al. 2013), and cannot be applied to articulated
motion (Agudo et al. 2012, 2014b, 2016).

An alternative to these approaches is to consider the ob-
ject as a system of individual particles and represent global
deformation by locally modeling the underlying physical
laws that govern each of the particles. This has been typ-
ically used in computer graphics for simulation purposes
(Baraff 1989; Popovic and Witkin 1999), and further ex-
ported to computer vision applications, for non-rigid track-
ing of surfaces (Metaxas and Terzopoulos 1993) or articu-
lated bodies (Brubaker et al. 2009; Salzmann and Urtasun
2011; Vondrak et al. 2008). Yet, none of these approaches
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tackles the problem of besides retrieving shape, estimating
the camera pose parameters.

Contribution: In this paper we propose a way to combine
the best of local and global methods, yielding an approach
that is able to overcome most of the limitations of previ-
ous methods. In particular, our technique: 1) is sequential
and efficient, 2) is applicable to articulated bodies and non-
rigid surfaces, 3) handles local non-linearities and deforma-
tions of different nature including isometric, extensible and
breakable surfaces, 4) does not require training data, and 5)
can cope discontinuous tracks and missing data. We are not
aware of any previous NRSfM approach able to simultane-
ously tackle all these challenges. Table 1 provides a quali-
tative comparison of our approach with respect to the most
relevant state-of-the-art approaches.

3 Overview of the approach

In this paper, we present an approach that combines the strengths
of local-physical models with those of global-statistical shape
representations. It has the following main features:

- Local physical model: We model the local behavior of
the deformable shape by considering particle dynamics
equations. This allows recovering accurate shape rep-
resentations and dealing with local non-linearities and
even discontinuous motions. Also remarkable, is the fact
that our model is based on simple classical mechanics
equations which do not require using training data.

- Global statistical model: We progressively learn a global
low-rank shape model that is used to obtain a coarse but
fast approximation of the shape.

- Integration of local and global models: We integrate
both global and local constraints in a coarse-to-fine se-
quential manner, estimating shape and camera pose upon
the arrival of a new image.

In the next sections we describe each of these ingredients
and how they are combined.

4 Local physical model

In this section, we first describe some basic concepts from
dynamics in classical mechanics, which will then be used
to introduce a local motion model for deformable objects
approximated as a system of particles.

4.1 Classical mechanics motion model

The local deformation model we propose holds on the New-
ton’s second law of motion, which is satisfied by particles

Fig. 2 Force-perturbed motion model for a system of particles. We
use a kinematic model derived from Newton’s second law of motion. A
particle is moving with constant velocity while no forces are acting on
it (blue particles). External forces f t can change the dynamical behav-
ior dt of a single particle (red and green particles), and hence, change
the configuration yt of the deformable object.

moving in an inertial frame of reference. We next review its
general formulation.

We assume our object is represented as an assemblage
of n discrete particles (as shown in Fig. 2). Let yti ∈ R3 be
the 3D position of the i-th particle at a time instant t and mi

its mass, assumed to be constant. When a force f ti is applied
to this particle, Newton’s second law of motion states that it
produces a proportional acceleration ai:

f ti = mia
t
i = mi

dvti
dt

, (1)

where vti is the instantaneous velocity of the particle, and f ti
is the sum of all external forces applied to the particle.

In order to derive the formulation of our kinematic model
we first approximate the acceleration at time t using back-
ward second-order finite differences:

f ti ≈ mi

[
yt−2i − 2yt−1i + yti

(∆t)2

]
, (2)

that relates the current force f ti with the current 3D loca-
tion yti and the locations at previous time instances yt−1i and
yt−2i . We also considered a wider temporal window by using
a third-order finite difference model 1. Nevertheless, for the
experiments we report in the results section, we did not ob-
serve major differences in the reconstruction accuracy, and
hence, we kept the second order model, as it is computation-
ally less expensive.

We next extend the model to all the n particles of the
deformable object.

Let yt=[(yt1)
>, . . . , (ytn)

>]> be a 3n dimensional vec-
tor composed of the 3D locations of all particles at time t;
and f t=[(f t1)

>, . . . , (f tn)
>]> a 3n dimensional vector con-

taining all instantaneous forces. We can then re-write Eq. (2)

1 A third-order backward model to code the displacement vec-
tor can be expressed by considering 4-time instances as fti ≈
mi

[
−yt−3

i
+4yt−2

i
−5yt−1

i
+2yt

i

(∆t)2

]
.
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for all the particles using the following linear system:

f t =
[
M −2M M

] yt−2yt−1

yt

 , (3)

where M is a 3n × 3n diagonal matrix with entries being
the masses of each particle. In practice, we omit them and
set M = I, the 3n × 3n identity matrix. We also omit the
term ∆t in Eq. (2). By doing both these approximations, the
forces we estimate will be up to scale, and will be expressed
per unit of mass and increment of time, or equivalently, in
length units2. This lets us to directly relate forces applied to
the particles to their displacement. Note that this relation can
be obtained without the need to compute any inverse matrix.
This is in contrast to other physically-based methods where
the inversion of a stiffness matrix can be a computationally
expensive step. In our case the 3D position of the particles
at time t can be written based on the following dynamical
model:

yt = f t + 2yt−1 − yt−2 = f t + dt , (4)

where dt = 2yt−1 − yt−2 is a displacement vector. Ob-
serve that when f t = 0 this dynamical model boils down
to a second-order Markov model in which each particle will
move with a constant velocity dt (see the blue particles in
Fig. 2). However, when external forces are acting f t 6= 0,
the particles can change their dynamics, accelerating or even
reaching the rest. It is worth to point that a similar kinematic
model was already used in (Agudo et al. 2012), but in con-
trast to our paper, it was a first order Markov model and used
to encode the camera motion, and not to encode the motion
of each particle conforming the time-varying shape, as we
do here.

4.2 Local deformation model for NRSfM

We next describe how to employ the proposed dynamic model
to simultaneously, and in a sequential manner, estimate de-
formable shape and camera pose.

Let us consider a deformable object as an ensemble of n
particles. At time t we represent the 3D position of all par-
ticles with the (previously defined) 3n dimensional vector
yt. If we assume an orthographic camera model, the image
projection of this object can be written as:

Pt = [pt1, . . . ,p
t
n] = RtYt +Tt , (5)

where Pt is the 2 × n measurement matrix, pti = [uti, v
t
i ]
>

are the image coordinates of the i-th particle, Rt is a 2 × 3

truncated version of the rotation matrix, and Tt is a 2 × n
matrix that stacks n copies of the bidimensional translation

2 [force]
[mass][time]−2 = [mass][length][time]−2

[mass][time]−2 = [length]

vector tt. To represent the 3D shape Yt, we use a permuta-
tion operator P(yt) that rearranges the entries of yt into a
3×n matrix such that the i-th column of Yt corresponds to
the 3D coordinates of the point i.

Problem Formulation: Given 2D point tracks up to frame t
of a monocular video, our problem consists in sequentially
and simultaneously estimating the camera motion (Rt, tt)

and the deformable 3D shape Yt.

To solve this under-constrained problem, we initially rep-
resent the deformable object using Eq. (4), which after ap-
plying the operator P(·), can be rewritten as:

Yt = Ft +Dt , (6)

where Dt = 2Yt−1−Yt−2 is the displacement vector, that
at frame t is already known, as it only involves the particles
position at previous time instances. Therefore, the current
3D shape estimation is reduced to estimating the forces Ft.

In order to estimate Ft and the pose parameters Rt and
tt, we perform a bundle adjustment over a temporal sliding
window on the last frames. This is indeed similar to what
was done in other sequential NRSfM approaches (Agudo et al.
2014a; Paladini et al. 2010), with the key difference that at
this point we do not rely on a low-rank model to parameter-
ize the object deformation. The use of the Newton’s second
law of motion yields to our method higher generalization
properties and major resilience to large non-linear deforma-
tions. Indeed, as we will discuss in the following section,
we will eventually use a low-rank model to initialize the op-
timization, but after this initialization is done, the low-rank
model does no longer constrain the shape.

Our BA optimization is performed over a temporal win-
dow on the last three frames, in which we jointly represent
the projection equations as:[
Pt−2

Pt−1

Pt

]
=

[
Rt−2

Rt−1

Rt

][
Yt−2

Yt−1

Ft +Dt

]
+

[
Tt−2

Tt−1

Tt

]
. (7)

Since the measurement matrix Pt may contain lost tracks
due to occlusions or outliers, we define Vt as the set of vis-
ible points at time t. We then estimate the model parame-
ters by minimizing the following energy function in terms
of {Rj , tj ,Ft}, with j = {t− 2, t− 1, t}3:

E = Eimg + αpEpose + αsEshape + αeEext (8)

where:

Eimg =
t∑

j=t−2

∑
ν∈Vj

‖pjν −Rj(qj)yjν − tj‖2F (9)

3 Note that although Rj and tj for j = {t− 2, t− 1} are allowed
to change while optimizing the pose and shape at frame t, their value
is not propagated back in time. That is, our approach remains purely
sequential.
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minimizes the reprojection error of all observed points in
Vj . ‖ · ‖F represents the Frobenius norm and Rj are the ro-
tation matrices, which are parameterized using quaternions,
Rj(qj), to guarantee orthonormality RjRj> − I2 = 0. A
second energy term, Epose, serves for regularizing the esti-
mated pose enforcing the rotation matrices and translation
vectors of consecutive frames to be similar:

Epose =
t∑

j=t−1
‖qj−qj−1‖2F+αt

t∑
j=t−1

‖tj−tj−1‖2F , (10)

where αt is the specific weight for the translation energy
term. Similarly, we have introduced a regularization for the
shape, to penalize strong variations in consecutive frames:

Eshape = ‖Yt(Ft)−Yt−1‖2F , (11)

where the current shape Yt is only function of the estimated
force (see Eq. (6)). Finally, we have also considered spatial
priors to control the extensibility of the surface. To this end,
we regularize the change in the euclidean distance over ne
edges of the object using a Gaussian kernel, where dre repre-
sents the initially estimated reference length for edge e, and
dte is the length at the current frame:

Eext =
ne∑
e=1

1√
2πσ

exp
(
− d

r
e
2

2σ2

)
|dre − dte(Ft)| . (12)

Note that this prior is not a hard constraint, and hence it still
permits non-isometric deformations.

The proposed approach relies on a few hyper-parameters:
the regularization weights αp, αt, αs and αe in Eq. (8) and
the standard deviation σ in Eq. (12). All these parameters
are determined empirically using a validation sequence, and
kept constant for the rest of all experiments. Specifically, we
will set σ = 0.1, and the regularization weights will be ad-
justed to bring the error of each energy term in Eq. (8) to a
similar order of magnitude.

4.3 Non-linear optimization

We optimize the energy E(Rj , tj ,Ft) in Eq. (8) using sparse
Levenberg-Marquardt. Note, again, that in contrast to com-
peting approaches (Bregler et al. 2000; Dai et al. 2012), we
can deal with missing data and do not require all points to
be tracked throughout the whole sequence.

Since we estimate a perturbation force per point, the
complexity of our BA algorithm is dominated by the solu-
tion of the linearized system. This system is governed by a
Jacobian matrix JE of size Nc × (3n + 6w), where w is
the size of the temporal window, w = 3 in our case. Nc are
the number of constraints introduced by the four terms of
the energy function E , including the total number of visible
observations over the temporal window, and the number of

Jacobian Hessian

Fig. 3 Structure of Jacobian and Hessian matrices. We sketch the
patterns of the Jacobian JE and Hessian HE matrices for the stretch
sequence. In this case, the number of 3D points of the shape is n =
41 and no missing tracks are assumed. The number of links between
particles is 51. This yields a total of Nc = 302 constraints for the
Jacobian matrix, corresponding to the number of rows. They are split
into the reprojection error term (shown in red), the pose (green) and
shape (blue) smoothness priors and the extensibility (magenta) term.
The number of columns of JE corresponds number of unknown shape
and pose parameters, which is 3n + 18 = 141 in this case. Note,
that the Jacobian is very sparse, and only 4.53% of its elements are
non-null. In contrast, the approximation J>E JE to the Hessian matrix
is almost fully dense. Best viewed in color.

constraints to enforce pose and shape smoothness. For in-
stance, in Fig. 3(left) we depict the structure of the Jacobian
corresponding to the stretch sequence, in which n = 41 and
Nc = 302, yielding a matrix of size 302×141. Note that this
matrix is very sparse, with only 4.53% of non-null elements.

Solving the BA problem requires computing the Hessian
matrix, approximated by HE = J>E JE , of size (3n+ 6w)×
(3n + 6w). This matrix multiplication can be done very ef-
ficiently4, by exploiting the high degree of sparsity of JE .
Indeed, the most computationally demanding step of the BA
is in inverting HE , which is an almost fully dense matrix, as
seen in Fig. 3(right). Computing this inverse can be done in
O((n + w)3) time, which considering that n >> w boils
down to a O(n3) cost. With these values, we may achieve
real-time performance for models with less than n = 100

4 The computational complexity of the product A>A, where
A is a sparse m × n matrix with nnz non-zero elements is
O(nnz + m + n), that is, it depends linearly on nnz , the row
size m and column size n of the matrix, but is independent of the
product mn. See: http://es.mathworks.com/help/matlab/math/sparse-
matrix-operations.html#f6-13058.
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points. For instance, in the experiments we report in the next
section, we achieve a frame rate of about 5 fps when dealing
with a model of approximately 40 points. Since these results
are obtained with non-optimized Matlab code, they can still
be significantly speeded up.

4.4 Shape at rest and per frame initialization

Since the minimization of our energy function is highly non-
convex, a very important element will refer to the initializa-
tion required at each frame. In Section 6 we will discuss how
this initialization is performed using a coarse approximation
of the shape provided by a global model that we iteratively
learn and refine.

Additionally, we need to estimate the shape at rest and
the initial pose values of the first frames. For this purpose,
we follow (Agudo et al. 2014a,b; Paladini et al. 2010), and
assume that the sequence contains a few initial frames where
the object does not undergo large deformations. We use a
standard practice done in NRSfM, that is running a rigid fac-
torization algorithm (Marques and Costeira 2008) on these
first frames to obtain a shape and pose estimate. Let us de-
note by s0 the shape at rest. Once this initialization is done,
we then run our approach, which just for the first incom-
ing image uses the assumption that yt−2 = yt−1, i.e., it
assumes each particle has null velocity.

5 Global statistical model

The main contribution of our work is that the optimization
we just described is performed at a local level, for each par-
ticle, and we just consider constraints induced by their close
neighborhood. This is in contrast to most existing NRSfM
approaches, that typically apply constraints in a global man-
ner, usually in the form of low-rank models. For batch meth-
ods (Dai et al. 2012; Del Bue et al. 2006; Garg et al. 2013;
Torresani et al. 2008), these low-rank models are learned
after processing all frames of the sequence at once. For se-
quential ones (Paladini et al. 2010; Tao et al. 2013), the low-
rank model is incrementally learned.

In this paper we show that we can also use a low-rank
model as a soft-constraint, but in contrast to other sequen-
tial approaches (Agudo et al. 2014a), we do not assume any
initial generic mode, and learn them from scratch, and pro-
gressively learn them upon the arrival of new data.

The scheme for building and growing this low-rank model
is very simple. Let us assume that at frame t, a shape basis
S = [s1, . . . , sr] of r modes is available. The modes si are
3n-dimensional shape vectors. We then estimate the input
shape yt using the procedure described in the previous sec-
tion. This shape can be approximated in terms of a low-rank

model:

ŷt = s0 + Sψt , (13)

where s0 is the shape at rest and ψt is an r-dimensional
vector with the weights of the linear combination. Denoting
by (·)† the pseudoinverse operation, these weights are com-
puted as:

ψt = (S>S)−1S(yt − s0) = S†(yt − s0) . (14)

Given the current estimated shape yt, we then define its
geometric error as the vector difference between yt and ŷt,
its best approximation using the low-rank model:

gt = yt − ŷt . (15)

If the magnitude of this error is above a certain threshold ε,
we then incorporate the geometric error into the basis. That
is:

if ‖gt‖ > ε then
S← [S,gt/‖gt‖] . (16)

Note that we are just incorporating into the low-rank model
the part of yt (i.e., a 3D displacement) which cannot be
modeled with the current basis. By doing this, we avoid aug-
menting the basis with redundant information.

Additionally, it is worth to point that since the estima-
tion of yt using local constraints is robust to missing obser-
vations, the estimation of the global basis, which takes as
inputs the estimations of the local model, will also be robust
to missing data.

6 Initializing local optimization with global constraints

The energy function we have defined in Eq. (8) involves
seven different parameters within a temporal window of three
frames: Rt−2, Rt−1, Rt, tt−2, tt−1, tt and Ft. Upon the ar-
rival of a new image, and its associated measurement matrix
Pt, these parameters need to be given an initial value. In
particular Rt−2, Rt−1, tt−2 and tt−1 are initialized to the
values we have estimated when evaluating frames t− 2 and
t − 1. The translation vector tt is simply initialized to the
mean of the measurement matrix Pt.

The initialization of Rt and Ft is a bit trickier, and is
precisely at this point where we integrate global and local
constraints (see Fig. 4). The idea is to first initialize the cam-
era rotation assuming the deformation is spanned by the es-
timated linear subspace. This is done by iterating between
the rotation matrix Rt and the weights of the subspace ψt.
Once these parameters are fixed, estimating Ft is straight-
forward. We next detail these steps.

The initialization of Rt is by itself an iterative process.
We first start by estimating the rotation matrix that yields



8 A. Agudo and F. Moreno-Noguer

Fig. 4 Global-to-local optimization. 3D reconstruction of two frames
for the stretch sequence using our global-to-local approach. The
learned low-rank model is used to obtain a coarse solution of the defor-
mation (green crosses), and then the local-physical model is applied to
refine the solution (red dots). The zoomed views of specific joints are
shown on the side of each figure. The ground truth is represented with
purple circles. Best viewed in color.

the best fit of Yt onto the current observations Pt, assuming
just a rigid motion. That is, we initially seek to retrieve the
value of Rt such that:

argmin
Rt

∑
ν∈Vt

‖ptν −Rtytν − tt‖2F (17)

where all parameters but Rt are known. Recall that Rt is a
2 × 3 truncated matrix, which can be computed from a full
rotation matrix Qt ∈ SO(3) using Rt = ΠQt, and where Π
is the orthographic camera matrix. In order to solve Eq. (17),
while ensuring the resulting Qt to lie on SO(3) group, we
have followed a standard Newton algorithm for optimizing
on manifolds (Ma et al. 1999; Shaji and Chandran 2008),
which usually converges in one single iteration. We refer the
reader to these for further details.

Once we have an initial estimate for Rt, we compute an
initial solution for the shape, and constrain it to lie on the
linear low-rank model we have learned. To do this, let Sν
and s0,ν be the ν-th 3D point on all vectors of the subspace
and on the shape at rest, respectively. We estimate the modal
weights ψt using the following minimization over all set of
visible point Vt:

argmin
ψt

∑
ν∈Vt

‖ptν −Rt
(
s0,ν + Sνψ

t
)
− tt‖2F . (18)

This can be solved in closed-form using a Cholesky factor-
ization:

ψt =

(∑
ν∈Vt

RtSν

)−1(∑
ν∈Vt

(
ptν −Rts0,ν − tt

))
(19)

Equations (17) and (18) are alternated in order to com-
pute an initial value for Rt consistent with the low-rank
model. Finally, after convergence, we can initialize f t (or
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Fig. 5 Optimization steps. Reprojection error per frame of a mocap
sequence. Blue line: initial error after initializing the pose and shape at
frame t with the results of frame t− 1. Green line: error obtained after
optimizing shape and pose considering just global shape constraints.
Red line: error obtained after optimizing shape and pose considering
local shape constraints. Each step is initialized with the output of the
previous one.

equivalently the matrix Ft) by applying the proposed physics-
based model f t = yt−dt, where the shape is obtained from
yt = s0 + Sψt.

The outcome of this iterative procedure is an initializa-
tion of the pose and shape parameters, assuming a smooth
camera motion and a global deformation model for the shape.
This is then further refined based on the local deformation
model defined in Eq. (8). Fig. 5 shows the progressive re-
duction of the reprojection error after each of these stages.

7 Experimental evaluation

In this section we present experimental results for different
types of deformations, including articulated and non-rigid
motion (some examples are shown in Fig. 1). A video sum-
marizing all results can be found in 5. We provide both quali-
tative results and quantitative evaluation, where we compare
our method to several state-of-the-art approaches. In partic-
ular, we report the standard 3D reconstruction error, which
is computed as:

ε3D =
1

nf

nf∑
t=1

‖Ỹt − Ỹt
GT ‖F

‖Ỹt
GT ‖F

, (20)

where Ỹt is the estimated 3D reconstruction, Ỹt
GT is the

corresponding ground truth, and nf is the total number of
non-rigid frames in the sequence (i.e., we do not consider
the initial rigid frames used to estimate the shape at rest).
The ε3D is computed after aligning the estimated 3D shape

5 http://www.iri.upc.edu/people/aagudo

http://www.iri.upc.edu/people/aagudo
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Process: Batch Sequential
PPPPPPSeq.

Met.
EM-PPCA MP PTA CSF2 KSTA SPM SBA BA-FEM GSMM LSMM GLSMM

Drink 5.56(5) 4.14(6) 1.38(13) 1.14(6) 0.94(12) 1.60(12) 11.25(12) - 4.48 1.93 1.92
Jacky 1.80(5) 2.74(5) 2.69(3) 1.93(5) 2.12(4) 1.82(7) 2.90(16) 3.43(15) 2.84 2.80 2.79
Face 7.30(9) 3.77(7) 5.79(2) 6.34(5) 6.14(8) 2.67(9) 6.92(27) 6.89(2) 4.82 4.49 4.33
Stretch 13.72(15) 8.13(5) 3.85(8) 2.46(8) 2.00(7) 1.86(11) 17.61(20) - 6.52 5.76 5.65
Yoga 11.89(14) 12.98(8) 2.42(8) 1.84(7) 2.12(7) 1.65(10) 15.84(20) - 7.89 6.65 6.65
Shark 1.82(2) 9.34(23) 5.91(6) 1.09(5) 1.03(3) 6.29(2) 8.81(5) - 6.89 6.99 6.73

Table 2 Quantitative comparison on motion capture sequences. Reconstruction error ε3D[%] for batch methods EM-PPCA (Torresani et al.
2008), MP (Paladini et al. 2009), PTA (Akhter et al. 2008), CSF2 (Gotardo and Martı́nez 2011b), KSTA (Gotardo and Martı́nez 2011a) and
SPM (Dai et al. 2012); and for sequential methods SBA (Paladini et al. 2010), BA-FEM (Agudo et al. 2014a) and our approach denoted as
GLSMM. We also report the results of GSMM and LSMM, our implementations when just considering global or local constraints, respectively.
For low-rank based methods, we chose the basis rank (in brackets) that yielded the lowest ε3D error.

Drink Stretch Yoga

ε 3
D

2.14 1.25 1.39 5.62 5.93 3.66 1.82 4.69 6.86
Fig. 6 Motion capture sequences. 3D reconstruction results for three sample frames in each of the human mocap sequences (drink, stretch and
yoga). We also show the corresponding 3D reconstruction error. Red dots correspond to the shape estimated with our approach, and purple circles
are the ground truth. Below each result we display the corresponding reconstruction error.

with the 3D ground truth using Procrustes analysis over all
frames.

7.1 Motion capture data

We first evaluate our method on several existing datasets
with 3D ground truth. We use the following motion cap-
ture sequences: Drink, Stretch and Yoga from (Akhter et al.
2008), for evaluating articulated motion; the face deforma-
tion sequences Jacky and Face, from (Torresani et al. 2008)
and (Paladini et al. 2009), respectively; and finally the syn-
thetic bending Shark sequence from (Torresani et al. 2008).

We compare our GLSMM approach (from Global-to-
Local Sequential Motion Model) against GSMM and LSMM
which correspond to our approaches but just considering ei-
ther global or local constraints, respectively), and against
eight state-of-the-art methods, both batch and sequential ap-
proaches. Among the batch algorithms we consider: EM-
PPCA (Torresani et al. 2008), the Metric Projections (MP)
(Paladini et al. 2009), the DCT-based 3D point trajectory
(PTA) (Akhter et al. 2008), the Kernel Shape Trajectory Ap-
proach (KSTA) (Gotardo and Martı́nez 2011a), the Column
Space Fitting (CSF2) (Gotardo and Martı́nez 2011b) and the
block matrix method for SPM (Dai et al. 2012). We also
consider the following sequential methods: Sequential BA

(SBA) (Paladini et al. 2010), and the BA with Finite Ele-
ments formulation (BA-FEM) of (Agudo et al. 2014a). The
parameters of these methods were set in accordance with
their original papers. We exactly use the same initialization
for our proposed method, SBA (Paladini et al. 2010) and
BA-FEM (Agudo et al. 2014a).

Table 2 summarizes the results. As expected, the version
of our approach that considers both local and global con-
straints, outperforms by a large margin the version that only
considers global constraints, and by a smaller margin the
version with local constraints. Additionally, our GLSMM
method sequentially learns an incremental low-rank model,
which is not possible by the other two modalities. GLSMM
also consistently outperforms the other sequential methods,
specially SBA (Paladini et al. 2010) while being more gener-
ally applicable than BA-FEM (Agudo et al. 2014a), that can-
not model articulated motion. Our results are indeed compa-
rable to batch methods, where all frames need to be available
in advance. Note that trajectory-based methods were pro-
posed to exploit the time-varying evolution of a single point,
so a batch estimation with all frames available is required.
Additionally, most of these methods are very sensitive to the
choice of the specific rank of the deformation model. We do
not require any of this fine tuning. Figure 6 shows the 3D re-
construction results on several frames of some of the mocap
sequences.
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PPPPPPSeq.
ρ

0 0.5 1 1.5 2

Drink 1.92 1.98 2.19 2.44 2.71
Jacky 2.79 2.85 3.14 3.58 4.08
Face 4.33 4.35 4.41 4.60 4.62
Stretch 5.65 5.68 5.72 5.82 5.85
Yoga 6.65 6.80 7.14 7.04 7.40
Shark 6.73 6.66 6.94 7.98 8.90

ρ = 0 ρ = 1 ρ = 2

Table 3 Quantitative results against noisy observations. Top: Re-
construction error ε3D[%] for mocap sequences under noisy measure-
ments using the proposed approach. The level of noise is parameterized
by ρ. Bottom: To give meaning to the noise values, we represent the
same input frame under different amounts of noise. Observe that for
ρ = 2 there are remarkable differences w.r.t. the ground truth (ρ = 0),
especially on the configuration of the legs, hips and right hand.

7.1.1 Robustness to Noisy Observations

We also use the mocap sequences to evaluate the robustness
of our approach against noise in the observations. For this
purpose, we corrupt the observations using Gaussian noise
with standard deviation σ = ρ

100γ, where ρ controls the
amount of noise. The parameter γ represents the maximum
distance of an image point to the centroid of all the points.
The results are summarized in Table 3. Note that the noise
also corrupts the initialization, thus changing the reference
lengths dre used in the extensibility energy term of Eq. (12).
Nevertheless, the solution we estimate is very stable even
for large levels of noise.

7.1.2 Robustness to Initialization

Regarding the initialization, we have carried out two types
of studies. On one side, we have evaluated the robustness
of the approach to the initial value of the force parame-
ter Ft. By setting it to zero in all mocap sequences, we
have observed that the reconstruction results remain virtu-
ally the same, compared to the initialization strategy de-
scribe in Sect. 6. There is, however, an increase in the num-
ber of iterations required to converge. In particular, the con-
vergence time has grown according to the following val-
ues: Drink (25.73%); Jacky (6.36%); Face (2.45%); Stretch
(36.45%); Yoga (58.79%); Shark (33.47%).

Stretch Sequence
Number of frames 5 10 15 20 25 30 35 40
Non-rigid Motion [%] 2.29 4.15 6.75 9.22 9.95 9.98 9.99 9.99
ε3D[%] 5.94 6.00 5.80 5.65 5.52 5.48 5.44 5.40

Yoga Sequence
Number of frames 5 10 15 20 25 30 35 40
Non-rigid Motion [%] 0.43 1.05 1.73 2.46 3.22 4.00 4.77 5.51
ε3D[%] 6.01 6.46 6.57 6.65 6.81 6.96 7.09 7.32

Drink Sequence
Number of frames 5 10 15 20 25 30 35 40
Non-rigid Motion [%] 0.15 0.28 0.46 0.94 1.65 2.48 3.38 4.31
ε3D[%] 1.90 1.91 1.92 1.92 1.94 1.94 1.93 1.93

Table 4 Quantitative evaluation of our approach with respect to the
number of frames used to initialize, and the corresponding non-rigid
motion in [%]. Observe that our solution remains stable even when the
initial frames contain non-rigid motion.

Additionally, we have also evaluated the stability of the
approach to inaccuracies of the shape at rest computed us-
ing a rigid factorization (Sect. 4.4). In particular we have
considered the mocap sequences with larger non-rigid com-
ponents in the initial frames (i.e., stretch, yoga and drink)
and have produced different initializations with increasing
amount of frames. The more frames used for initialization,
the more non-rigid component was included in these frames,
and hence, the rigid factorization provided worse initial re-
constructions. The amount of non-rigid component is quan-
tified by ‖Unon-rigid‖F/‖YGT‖F , where Unon-rigid represents
the 3D non-rigid deviation of the shape fed to the non-rigid
algorithm with respect to the initial shape YGT. The results
are reported in Table 4. As expected, the amount of non-
rigid deformation grows with the number of frames used for
the initialization. Nevertheless, this has almost no effect on
the accuracy of our algorithm for the rest of the sequence,
which remains very stable.

7.1.3 Parameter Tuning

The contribution of each energy term in the cost function of
Eq. (8) can be controlled by means of the weights αp, αt,
αs. We tuned these parameters on the stretch sequence, and
used the same values for the rest of sequences. Yet, these
parameters do not need to be carefully tuned. In Table 5 we
report the 3D reconstruction error over all mocap sequences
after changing these weights by a±25% their original value.
Observe that the reconstruction results barely change.

7.2 Real videos

We next present qualitative evaluation on seven different real
sequences that demonstrate the appropriateness of our ap-
proach for shape recovery in varying situations, going from
surfaces undergoing smooth continuous warps to abrupt de-
formations produced by a newspaper being torn apart. We
also use these videos to provide a qualitative evaluation against
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Fig. 7 Actress sequence. Top: Frames #31, #48, #66, #84 and #91 with 2D tracking data and reprojected 3D shape represented by cyan
circles and red dots, respectively. Bottom: Original viewpoint and side views of our 3D reconstruction.

Seq. -25% Original Error +25%
Drink 1.87 1.92 2.25
Jacky 2.79 2.79 2.82
Face 4.19 4.33 4.82
Stretch 6.24 5.65 6.46
Yoga 6.85 6.65 6.59
Shark 6.26 6.73 7.29

Table 5 3D Reconstruction error ε3D[%] for motion capture se-
quences when adding ±25% noise in optimization weights.

missing observations (structured and random) and a quanti-
tative comparison with respect to state-of-the-art techniques
when 3D ground truth is available.

7.2.1 Actress sequence

The Actress sequence is made of 102 frames showing a woman
simultaneously talking and moving her head. We rely on
the sequence tracks from (Bartoli et al. 2008), and as is
also done in sequential methods (Agudo et al. 2014a; Pal-
adini et al. 2010), we use the first 30 frames to compute
the initial model. Figure. 7, shows the 3D reconstruction
we obtain, rotated according to the estimated rotation ma-
trices, that is comparatively very similar to those obtained
by (Agudo et al. 2014a; Paladini et al. 2010). However, we
model the deformation at a local level, and this will allow
us to code more non-linear deformations as we will show in
subsequent examples. In Fig. 14 we plot the number of bases
needed to represent the global model, reaching a maximum
number of 7.

7.2.2 Tear sequence

The Tear sequence (Taylor et al. 2010) contains 167 frames
of a paper being split in two parts. We use the point tracks
provided by (Russell et al. 2011). Again, the first 30 frames
of the sequence are used to initialize the model. For this spe-
cific experiment we set the weight αe of the extensibility
term in Eq. (8) to zero, to allow the model to be split in two,

Process: Batch Sequential
PPPPPPSeq.

Met.
PQ CSF2 KSTA NOM EM-PND GLSMM

Back 15.20‡ 8.80(2) 9.33(2) 9.17‡ 8.10 7.63

Table 6 Quantitative comparison on Back sequence. Reconstruc-
tion error ε3D[%] for batch methods PQ (Fayad et al. 2010),
CSF2 (Gotardo and Martı́nez 2011b), KSTA (Gotardo and Martı́nez
2011a), NOM (Russell et al. 2011) and EM-PND (Lee et al. 2013).
‡Numbers for PQ and NOM baselines are from (Russell et al. 2011).
We denote our approach as GLSMM. For low-rank based methods, we
chose the basis rank (in brackets) that yielded the lowest ε3D error.

without the need of exactly knowing the edges that suffer
the cut.

Since the deformation on this video is very local, it was
originally tackled using piecewise techniques (Taylor et al.
2010; Russell et al. 2011). Our particle-based approach also
handles this type of deformation without much difficulty.
Figure 8 shows a few 3D reconstructions obtained with our
approach and with CSF2 (Gotardo and Martı́nez 2011b) us-
ing a low-rank basis of dimension 5. Although both solu-
tions are similar, CSF2 renders the cut before the actual sep-
aration in two parts is produced. This is because this method
processes all frames at once, which can produce certain de-
synchronization between the actual 2D observations and the
retrieved shape. Interestingly, note it Fig. 14 how the rank of
the global model rapidly increases when the paper is split in
two, between frames #40 and #90.

7.2.3 Back sequence

The Back sequence consists of 150 frames showing the back
of a person deforming sideways and flexing. We use the
sparse point tracks of (Russell et al. 2011) and the first 20
frames to compute the initial model. For this experiment,
we also have the 3D ground truth obtained from stereo, and
which we use for comparison.

In this case, we compare against the following batch
methods: piecewise quadratic model (PQ) of Fayad et al.
(2010), the network of overlapping models using also quadratic
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Fig. 8 Tear sequence. Top: Frames #31, #52, #64, #82 and #123 with 2D tracking data and reprojected 3D shape represented by cyan circles
and red dots, respectively. Bottom: 3D views of the reconstructed shape using our approach and CSF2 (Gotardo and Martı́nez 2011b). Note that
the batch method CSF2 assumes the paper starts splitting before it actually happens.

models (NOM) (Russell et al. 2011), the Procustean nor-
mal distribution model (EM-PND) (Lee et al. 2013), and the
trajectory-shape-based methods CSF2 (Gotardo and Martı́nez
2011b) and KSTA (Gotardo and Martı́nez 2011a) which ob-
tained very good performance in the mocap experiments of
the previous section. A summary of the results is reported
in Table 6. For this real experiment, we obtain a mean re-
construction error ε3D[%] of 7.63, outperforming even batch
state-of-the-art methods. In addition, recall that our solution
is sequential, while all other approaches are batch. Figure 9
shows a few 3D reconstructed frames obtained with our ap-
proach and with CSF2 (Gotardo and Martı́nez 2011b). This
is one of the batch methods with better performance in the
mocap experiments of the previous section, specially un-
der significant changes of the camera rotation, like those
produced in this particular experiment. We observe, how-
ever, that this approach suffers from certain reconstruction
errors, especially in regions reconstructed as convex while
they should be concave (the natural shape of a back is domi-
nated by a global concave configuration). In Fig. 9 we high-
light in magenta these regions which do not seem very real-
istically plausible.

7.2.4 Paper bending sequence

We next present the results on a Paper Bending sequence
of 100 frames already used in (Bartoli et al. 2008). In this
experiment we show a qualitative evaluation under the pres-
ence of randomly distributed missing data, which our BA-
based approach can naturally handle. In particular, we add
a pattern of 20% of missing data in the measurement ma-
trix. In Fig. 10, we show our 3D reconstruction results with

and without missing observations, being in both cases very
similar and visually correct. For this experiment, we include
the reconstruction result obtained with KSTA, the batch ap-
proach proposed by Gotardo and Martı́nez (2011a), using a
basis of rank 2. Note however that the performance of this
algorithm drops significantly, even without the presence of
outliers. This is due, as pointed in (Garg et al. 2013), to the
fact that trajectory-based algorithms become unstable when
dealing with small camera rotations, as is the case of this ex-
periment. Similar results are obtained using CSF2 (Gotardo
and Martı́nez 2011b).

7.2.5 ASL sequences

In this subsection we test two sequences taken from the Amer-
ican Sign Language (ASL) dataset, which show a person
moving the head while talking and hand gesturing. We use
these sequences to provide a qualitative evaluation of our
approach under the presence of structured missing data, due
to self-occlusions produced by the interference of the hands
or lack of visibility of certain regions due to the motion of
the head. The ASL1 sequence consists of 115 frames and 77
feature points, with a 17.4% of missing data. The ASL2 se-
quence consists of 114 frames and also 77 feature points,
with a 11.5% of missing data. In both cases, we use the
sparse point tracks of (Gotardo and Martı́nez 2011a) and
the first 40 frames to compute the initial model. In Figs. 11
and 12, we show that our approach can handle this type of
structured occlusions. This is in contrast to other state-of-
the-art approaches, such as SPM (Dai et al. 2012), which
cannot handle these artifacts.
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Fig. 9 Back sequence. Top: Frames #30, #53, #82, #113, #137 and #148 with 2D tracking data and reprojected 3D shape with cyan circles
and red crosses, respectively. Bottom: 3D views of the reconstructed shape using our sequential method, CSF2 (Gotardo and Martı́nez 2011b),
that batch processes all frames simultaneously. In magenta we highlight small artifacts of the reconstruction. Best viewed in color.
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Fig. 10 Paper Bending sequence. Top: Input frames #20, #40, #60, #80 and #100. The 2D input tracks are displayed as cyan circles, and the
reprojected 3D points (after estimating the shape with our approach) are shown as red and blue dots. Blue dots correspond to missing data. Bottom:
The next three rows show the 3D view of the reconstructed shape obtained with our sequential GLSMM method without missing data, using the
KSTA (Gotardo and Martı́nez 2011a) algorithm that batch processes all frames simultaneously, and again using our approach but considering a
random pattern of 20% of missing measurements. Since this sequence only shows small changes in the rotation, KSTA (Gotardo and Martı́nez
2011a) becomes highly non-stable, even without the presence of missing data. Best viewed in color.
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Fig. 11 ASL1 sequence. Top: Frames #45, #67, #77, #92 and #115 with 2D tracking data and reprojected 3D shape represented as cyan
circles and red dots, respectively. Missing points are shown in blue. Bottom: Original viewpoint and side views of the 3D reconstruction obtained
with our approach.

Fig. 12 ASL2 sequence. Top: Frames #41, #58, #70, #92 and #114 with 2D tracking data and reprojected 3D shape represented as cyan
circles and red dots, respectively. Missing points are shown in blue. Bottom: Original viewpoint and side views of the 3D reconstruction obtained
with our approach.

7.2.6 Beating heart sequence

Finally, we also show that our approach can be appropri-
ate to handle medical imaging, where sequential, real time
approaches are of paramount importance. For this purpose
we present the Beating Heart sequence, consisting of 79
frames, acquired during bypass surgery, and which was pro-
vided by Garg et al. (2013). We use a sparse version of 50
feature points to show the generality of our approach. In
Fig. 13, we represent the 3D reconstruction for this chal-
lenging sequence, which could be obtained at about 5 frames
per second. We also provide a qualitative comparison with
KSTA Gotardo and Martı́nez (2011a) using a basis of rank
6. Again, the small camera motion of this sequence seems
to significantly impact the performance of the approach.

8 Conclusion

In this paper we have exploited Newton’s second law of mo-
tion to model the non-rigid deformation of an object repre-
sented by a system of particles. We have introduced this sim-
ple physics-based dynamical model into a BA framework,
yielding an approach that allows to simultaneously and on-

the-fly recover camera motion and time-varying shape. We
have also used this approach to progressively learn a low-
rank global model of the whole shape, which is fed back
to the optimization framework in order to further constrain
the local dynamics of the particles. Our system can handle
different types of deformations, including articulated, non-
rigid, isometric and extensible cases. Additionally, we do
not require any training data and the overall solution is re-
markably fast. All our claims have been experimentally val-
idated in mocap and real sequences of a large variety of sce-
narios going from articulated human body, medical images
of a beating heart sequence, and even a piece of paper that
is split in two. In all cases we have shown similar perfor-
mance to computationally intensive batch approaches, and
being remarkably more accurate than other state-of-the-art
sequential approaches. Regarding real-time capability, our
approach ensures that the computational cost per frame is
bounded and does not grow with the number of frames. We
believe our method is a suitable groundwork for later ex-
ploitation in real-time applications. Our future work is ori-
ented to generalize our model to full perspective projection
cameras and incorporating feature tracking and outlier de-
tection into a single process.
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Fig. 13 Beating heart sequence. Top: Frames #34, #49, #55, #66 and #79 with 2D tracking data and reprojected 3D shape with cyan circles
and red dots, respectively. Middle: 3D reconstruction of the shape by using a wire model, and other views with the original texture. Bottom:
Same views using KSTA (Gotardo and Martı́nez 2011a). Again, the 3D reconstruction of this approach seems to be highly non-stable, because the
sequence is acquired with small camera rotation. Best viewed in color.

30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

Number of frame

R
an

k

40 60 80 100 120 140 160
0

1

2

3

4

5

6

7

8

9

10

Number of frame

R
an

k

20 40 60 80 100 120 140
0

1

2

3

4

5

6

7

Number of frame

R
an

k

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

Number of frame

R
an

k

40 50 60 70 80 90 100 110
0

1

2

3

4

5

6

7

8

Number of frame

R
an

k

40 50 60 70 80 90 100 110
0

1

2

3

4

5

6

7

8

9

Number of frame

R
an

k

Fig. 14 Learning an incremental low-rank shape model. We rep-
resent the rank global model for each frame of the sequences. Top:
Actress and Tear sequence. Middle: Back and Bending sequence. Bot-
tom: ASL1 and ASL2 sequence. It is worth point out that for the Tear
experiment, the value the of rank strongly increases when the paper is
split in two parts.
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