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Abstract This paper describes two sequential methods for
recovering the camera pose together with the 3D shape of
highly deformable surfaces from a monocular video. The
non-rigid 3D shape is modeled as a linear combination of
mode shapes with time-varying weights that define the shape
at each frame and are estimated on-the-fly. The low-rank
constraint is combined with standard smoothness priors to
optimize the model parameters over a sliding window of
image frames. We propose to obtain a physics-based shape
basis using the initial frames on the video to code the time-
varying shape along the sequence, reducing the problem from
trilinear to bilinear. To this end, the 3D shape is discretized
by means of a soup of elastic triangular finite elements where
we apply a force balance equation. This equation is solved
using modal analysis via a simple eigenvalue problem to ob-
tain a shape basis that encodes the modes of deformation.
Even though this strategy can be applied in a wide variety
of scenarios, when the observations are denser, the solution
can become prohibitive in terms of computational load. We
avoid this limitation by proposing two efficient coarse-to-
fine approaches that allow us to easily deal with dense 3D
surfaces. This results in a scalable solution that estimates
a small number of parameters per frame and could poten-
tially run in real time. We show results on both synthetic
and real videos with ground truth 3D data, while robustly
dealing with artifacts such as noise and missing data.
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1 Introduction

The combined inference of 3D scene structure and camera
motion from monocular image sequences, or rigid Structure
Jrom Motion (SfM), is one of the most active areas of re-
search in computer vision. In the last decade, SfM methods
have made significant progress in simultaneously retrieving
camera motion and 3D shape in real-time for a sparse set of
salient points (Davison et al.[2007; Mouragnon et al.|2009
Klein and Murray||2007) and even per-pixel dense recon-
structions from video sequences acquired with a hand-held
camera (Newcome and Davison|2010;|Newcome et al.[2011)
or with a micro aerial vehicle (Wendel et al.[2012)). While
SfM is now considered to be a mature field, these methods
cannot be applied to structures undergoing non-rigid defor-
mations, where the problem remains a challenge. In these
cases, recovering the 3D structure of a deformable object
from a monocular image sequence is an ill-posed problem
since many different 3D shapes can have the same image
measurements, producing severe ambiguities.

Non-Rigid Structure from Motion (NRSfM) addresses this
limitation and methods from this field are now capable of es-
timating simultaneously accurate 3D reconstructions of non-
rigid objects and camera motion from monocular video. The
underlying principle behind most approaches is to model
deformations using a low-rank shape basis (Bartoli et al.
2008; Bregler et al.|2000; |Dai et al.[2014; Garg et al.|2013aj
Paladini et al.|[2010, 2009; Torresani et al.|[2008]) or a tra-
jectory basis (Akhter et al.| 2011} [Park et al.|2010). How-
ever, NRS/M methods remain behind their rigid counterparts
when it comes to real-time performance. The main reason
behind this is that they are typically limited to batch opera-
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Fig. 1 On-line camera motion and non-rigid 3D shape from monocular image sequence. Our approaches consist of two stages: initialization
and on-line estimation. Left: In stage one we use a few initial frames to estimate a shape at rest that we model by means of a soup of elastic
triangular finite elements and to estimate the stiffness and mass matrices. Finally, we compute a shape basis by solving a simple eigenvalue
problem using modal analysis. For dense cases, we present two strategies: a frequency-based and a coarse-to-fine approach. Right: In stage two,
we estimate camera motion and deformable 3D shape in a sequential manner over a sliding temporal window of frames. When a new frame f + 1
is available, the temporal window shifts —blue window— and the new frame is processed. For this stage, we propose two approaches: a BA-based

using temporal smoothness priors and an EM-based using spatial ones.

tions where all the frames in the sequence are processed at
once, after the whole acquisition, preventing them from on-
line and real-time performance applications. Only recently,
have NRSfM methods been extended to sequential process-
ing (Agudo et al.|2012b;|Paladini et al.[2010; Tao et al.|2013)
using a small set of salient points. However they remain
slow (Paladin1 et al.|2010; [Tao et al.2013)) or do not scale
to the use of a large number of points (Agudo et al.|[2012b;
Paladini et al.[2010; [Tao et al.|[2013)).

In this paper, we push monocular NRSfM forward to-
wards real-time operation by proposing two fast sequential
algorithms to simultaneously recover the non-rigid 3D shape
and camera pose of strongly deforming surfaces under real-
istic real-world assumptions. Our approaches can deal with
significant occlusions, they are suitable for modeling a wide
variety of deformations from inextensible to highly extensi-
ble without the need for a pre-trained model, and they can be
used to handle both sparse and dense data. To this end, we
employ a linear combination of mode shapes —computed us-
ing continuum mechanics from a 3D rest shape estimation—
to model the non-rigid 3D shape. Our on-line approaches
work in two stages (see Fig. [T). In stage one, we estimate
a shape at rest from the first few frames by means of a
rigid factorization, and then obtain a physics-based shape
basis by solving a simple eigenvalue problem. In stage two,
equipped with this low-rank shape constraint, the operation
in a sequential manner over a sliding temporal window of
frames is possible. To perform this stage, we propose two
algorithms. The first is based on Bundle Adjustment (BA)
with temporal smoothness priors, where the only parame-
ters to estimate per-frame are the camera pose and the ba-
sis coefficients. The second uses a probabilistic model of
the linear subspace with a Gaussian prior on each mode to
encode the non-rigid 3D shape, i.e., spatial smoothness pri-
ors are assumed. Since the basis weights in the subspace
are marginalized out, this method only optimizes per every
frame the camera pose and a measurement noise by using

Expectation Maximization (EM). In both cases, the number
of parameters to estimate per frame is small and our methods
are fast and may potentially run in real time at frame rate.
Although our shape basis is computed considering only the
rest shape, it has proven experimentally to be able to code
subsequent scene deformations without the need for 3D pre-
learned data. It is worth pointing out that this shape basis is
able to describe future deformations of the shape at rest (see
experimental section). So for the same rest shape, our shape
basis can code very different types of deformations.

Regarding the computation of mode shapes, while our
methods can be directly applied from sparse to dense re-
constructions, solving the stage one for dense cases could
become prohibitive (see Fig. [I) in terms of computational
load. To efficiently encode the deformations in these cases,
we also propose two methods: /) a frequency-based method
where the dense mode shapes are computed using an inter-
val of frequencies obtained in a low-resolution mesh, and
2) a coarse-to-fine approach where the dense shape at rest
is down-sampled to a sparse mesh where modal analysis is
applied at a low computational cost. These sparse 3D shapes
are grown back to dense by exploiting the shape functionﬂ
to encode the geometry into the finite elements.

This paper combines and extends two conference publi-
cations (Agudo et al.|2014alb). Here, we integrate these pre-
liminary publications into a comprehensive presentation of
our sequential approach to retrieve 3D non-rigid shapes to-
gether with camera motion from monocular video. We also
present a novel frequency-based algorithm to compute stretch-
ing modes at low computational cost. In addition, we con-
duct new experiments to measure our algorithm’s resilience
to corrupted observations such as noise and missing data,
and to compare the performance of its different variants. We
also show more extensive comparisons of our results with

! In this work, we denote shape functions as the approximation func-
tions that interpolate the solution using the discrete values obtained at
the mesh nodes.
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other methods reported in the literature. The paper is orga-
nized as follows. In section two we discuss related work and
describe the contributions of our work. Section three defines
our novel physics-based deformation model. In section four
we formulate the problem of on-line recovery of camera mo-
tion and time-varying shape from a monocular sequence.
This is followed in section five by a description of our se-
quential algorithms used to solve the previous problem us-
ing different priors. In section six we show our experimental
results and present a comparison with respect to state-of-the-
art techniques. Our conclusions are set out in section seven.
Finally, to keep the paper self-contained, we provide an ap-
pendix with mathematical details.

2 Related Work

NRSfM is an inherently ill-posed problem unless additional
a priori knowledge of the shape and camera motion is con-
sidered. A seminal work by [Bregler et al.| (2000) proposed
a low-rank shape constraint as an extension of the [Tomasi
and Kanade, (1992)) factorization algorithm to the non-rigid
case. Their key insight was to model time-varying shape as
a linear combination of an unknown shape basis under or-
thography. Although this prior has proved to be a powerful
constraint, it is insufficient to solve the inherent ambiguities
in NRSfM. It was shown in (Akhter et al.|2009) that the low-
rank shape prior in addition to orthonormality constraints
on camera motion are sufficient for noise-free observations.
Recently, Dai et al.|2014|imposed the low-rank shape con-
straint directly on the time-varying shape matrix via a trace
norm minimization approach.

Most approaches have required the use of additional pri-
ors using different optimization schemes to include tempo-
ral smoothness (Agudo et al.[2012b; Bartoli et al.[2008; |Del
Bue et al.|[2006} [Torresani et al.|2008}; [Vicente and Agapito
2012), smooth-time trajectories (Akhter et al.[2011;|Gotardo
and Martinez|2011), inextensibility constraints (Vicente and
Agapito||2012)), rigid priors (Agudo et al.|[2016) and spa-
tial smoothness (Garg et al.[|2013a; [Torresani et al.[[2008]).
BA has become a popular optimization tool for refining an
initial rigid solution (Tomasi and Kanade|[1992) optimizing
the pose, shape basis and coefficients while incorporating
both motion and deformation priors (Bartoli et al.|2008; |Del
Bue et al.|2006)). A solution in (Paladini et al.|[2009) recov-
ers motion matrices that lie on the correct motion manifold
where the metric constraints are exactly satisfied. More re-
cently, |Garg et al.||2013a combined a low-rank shape and
local smoothness priors within a variational approach to pro-
duce per-pixel dense vivid reconstructions. A dual formula-
tion using a trajectory basis was proposed in (Akhter et al.
2011}, where pre-defined discrete cosine trajectory bases are
used to express the trajectory of each 3D point, consider-
ing each point as an independent object. Smoothness for the

time-trajectory of each single point was assumed in (Go-
tardo and Martinez|[2011)).

Piecewise models have been proposed to encode more
accurately strong local deformations. Piecewise planar (Varol
et al.|2009), locally rigid (Taylor et al.[2010; |Chhatkuli et al.
2014) or quadratic (Fayad et al.[2010) approaches rely on
common features shared between patches to enforce global
consistency. [Russell et al.|2011| proposed a formulation to
automate the best division of the surface into local patches.
Later,/Agudo et al.[2012b|proposed a Finite Element Method
(FEM) formulation providing support for a piecewise ap-
proach where the local elements are stretchable triangles.
The FEM modeling assures deformable surface continuity
without additional constraints.

The alternative strand of methods known as template-
based (Moreno-Noguer and Porta|2011}; |Ostlund et al.|2012;
Salzmann and Fua|2009; |Salzmann et al.[2008)) rely on cor-
respondences between the 2D points in the current image
and a reference 3D shape which is assumed to be known
in advance. In (Moreno-Noguer and Porta |201 1} |Salzmann
et al.[2008)) the unknown shape was encoded as a linear com-
bination of deformation modes learnt in advance from a rel-
atively large set of training data. |Ostlund et al.[2012] intro-
duced the Laplacian formalism in computer vision to reg-
ularize 3D meshes without requiring any training data. To
avoid inherent ambiguities, additional shape constraints are
required such as inextensibility (Moreno-Noguer and Porta
2011; |Ostlund et al.[[2012). Recently, |Vicente and Agapito
2012/ showed the exclusive use of these constraints it is suf-
ficient to perform non-rigid reconstruction but only for iso-
metric deformations, limiting the applicability of method.

On the other hand, spatial smoothness can be coded by
means of probabilistic priors, although they have not been
extensively used to recover non-rigid structure and camera
motion. These priors allow the marginalization of hidden
data that does not have to be explicitly computed, simpli-
fying the optimization problem and avoiding over-fitting.
Probabilistic Bayesian priors have been used in NRSfM to
model deformation weights in a low dimensional subspace
based on Principal Component Analysis (PCA) (Torresani
et al|2004), the remaining model parameters being esti-
mated by EM. These priors have also been used in template-
based methods, where a Gaussian process latent variable
model was employed to learn a prior over the deformations
of local surface patches (Salzmann et al.[|[2008). More re-
cently, Lee et al.[2013|proposed a Procrustean normal distri-
bution to model shape deformation without additional con-
straints. The unknown shape is encoded as a linear combi-
nation of deformation modes learned on-the-fly for a rela-
tively small deformation (Torresani et al.|/[2004), or in ad-
vance from a relatively large set of training data (Salzmann
et al.|2008). However, the large deformations of real-world
shapes may need larger values of rank, and hence the recon-
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struction becomes under-constrained for methods that learn
deformation modes on the fly (Torresani et al.2004). This
ambiguity can be reduced using a pre-defined basis in terms
of shape or trajectory which acts as a representative basis
while reducing the number of parameters to be estimated.
A shape basis could be estimated with a learning step over
non-rigid 3D training data, but this information is not al-
ways available in advance in which case alternative meth-
ods to obtain a pre-defined basis are necessary. Probabilis-
tic priors have also been used to model nodal forces in a
physics-based deformation model combining an Extended
Kalman Filter (EKF) with the FEM to predict non-rigid dis-
placements (Agudo et al.[2012alb).

Mechanical priors have also been proposed to constrain
the deformations of non-rigid objects. Early approaches used
deformable superquadrics (Metaxas and Terzopoulos|1993)),
balloons (Cohen and Cohen||1993) or spring meshes (Kita
1996), although these approaches were only valid to code
relatively small deformations. The FEM was proposed to ac-
curately represent specific materials (Tsap et al.|2000; Young
and Axel||1993) with known material properties. To tackle
the high dimensionality of these physics-based models, a
low-rank representation was proposed by applying modal
analysis over a known structure discretized in 3D finite el-
ements (Nastar and Ayache||1993; [Pentland and Horowitz
1991). This method was then applied to image segmenta-
tion (Pentland and Sclaroff||1991)), medical imaging (Nastar
and Ayache||1993)) and deformable 2D motion tracking (Tao
and Huang| 1998 [Sclaroff and Pentland|1995). Pentland and
Horowitz|1991|integrated the incremental updates of the ba-
sis coefficients over time using an EKF. This resulted in in-
evitable drift that eventually destroyed the ability to accu-
rately reconstruct the non-rigid object. Recently, linear elas-
ticity models have been proposed in (Agudo et al.|2012b;
Malti et al.[2013) to code the extensible deformation of non-
rigid objects, factorizing out the material properties into a
normalized forces vector (Agudo et al.[2012b) or optimizing
a stretching energy with respect to these (Malti et al.[2013).

Despite these advances, previous approaches to NRSfM
typically remain batch and process all the frames in the se-
quence at once, after video capture. While sequential real-
time SfM (Klein and Murray|2007; Mouragnon et al.|[2009;
Newcome and Davison|2010) solutions exist for rigid scenes,
on-line estimation of non-rigid shape from a single cam-
era based only on the measurements up to that moment re-
mains a challenging problem. Sequential formulations have
emerged only recently (Agudo et al.[2012bj} |Paladini et al.
2010; [Tao et al[[2013). The first sequential NRSfM system
was proposed in (Paladini et al.|2010), based on BA over a
sliding window with an implicit low-rank shape model. In
(Tao et al|2013) an incremental principal component anal-
ysis was proposed to model the shape basis. However, these
approaches did not achieve real-time performance and were

only demonstrated for a small number of feature points and
small deformations. The first real-time on-line solution for
NRSfM including feature tracking and outliers detection in a
single process was proposed in (Agudo et al.[2012alb), com-
bining an EKF with FEM to estimate a small set of salient
points which belong to a deformable object.

In this work, we present two sequential approaches over
a sliding window to solve the NRSfM problem as the data
arrives. In both cases, we use a pre-defined physics-based
model to define a number of meaningful deformation mode
shapes to obtain a low-rank shape model. To compute this
shape basis, we only need an estimation of the shape at rest
from a few initial frames of the image sequence. We dis-
cretize the scene into elastic triangular finite elements to
code the behavior of the object with a thin-plate model and
unknown material properties (see Fig. [T). We then propose
two sequential algorithms to solve for the parameters of the
model. The first combines the low-rank shape model with
temporal smoothness priors and uses BA to estimate the pa-
rameters. The second combines the shape basis with proba-
bilistic priors and solves the latent variable problem by EM.
In both cases, the number of parameters to be estimated is
small, resulting in a system with low computational cost that
may potentially run in real-time. Similarly to (Agudo et al.
2012b), our methods also use FEM to encode the non-rigid
shape. However, while (Agudo et al.|2012b) had to compute
a stiffness matrix at every step, in contrast we here use FEM
to solve a single modal analysis problem which provides a
shape basis able to encode scene deformations. Our methods
are valid for large displacements caused by strong deforma-
tions and can cope with both isometric and elastic warps.
Note that most deformations in NRSfM, such as a smiling
face or a waving flag, are produced with respect to a mean
shape, and hence our method can model this type of defor-
mations without updating the shape basis per frame. Explor-
ing this way forward will be part of our future work.

3 Continuum Mechanics Deformation Model

A common way to model non-rigid 3D shapes in computer
vision is to represent the 3D shape as a linear combination of
shape basis (Bartoli et al.[2008; Bregler et al.[2000; Dati et al.
2014} Garg et al.[[2013a; [Paladini et al.[|[2010, 2009; [Salz-
mann et al.| 2008} [Torresani et al.[[2001)). The complexity of
the problem can be reduced using dimensionality reduction
techniques such as PCA (Blanz and Vetter||1999; Moreno-
Noguer and Portal2011) or modal analysis (Pentland and
Horowitz|1991} Sclaroff and Pentland|1995; Tao and Huang
1998). In this work, we only need an estimation of the shape
at rest (from rigid structure-from-motion) to apply modal
analysis and compute a shape basis, instead of using non-
rigid 3D training data. We propose a method to compute
the shape basis from a continuum mechanics physics-based
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model of the scene. Our approach is valid for both sparse
and dense data and for encoding both bending and stretch-
ing deformations. We first review some dynamics concepts
from continuum mechanics that will lead to our formulation
of the estimation of the deformable shape basis.

3.1 Dynamics Overview

The dynamic response of a non-rigid solid under external
actions has been widely studied in mechanical engineering
(Bathe|1982; Zienkiewicz and Taylor|1989). Numerical meth-
ods are mandatory to approximately solve the partial differ-
ential equations modeling this behavior, with FEM being the
most common approach.

A continuous object {2 can be discretized into a number
of finite elements (2. (Fig.[2). Each element is defined by the
3D location of its nodes, S; for a generic node j. Hence the
geometry of the undeformed solid is encoded as S € R3*P
where the matrix columns are the 3D coordinates defining
the location of the p discretization nodal points:

) X1 X5 ... X,
S=[s1...8...8]=|"1...Y, ... Y, |. (1)
Zy ... Zj ... 7,

Alternatively, for later computations, we also define the vec-
torized form of S as § € R?P*1,

The fundamental equations of discrete structural mechan-
ics are elaborate versions of Newtonian mechanics formu-
lated as force balance statements. The dynamic response of
the object {2 is governed by the laws of physics and can be
modeled using the general damped forced vibrations equa-
tion as:

Mi(t) + Cu(t) + Ku(t) =r, (2)

where M, C and K are the global mass, damping and stiff-
ness 3p X 3p matrices, respectively. u and r are the 3p x 1
3D nodal displacement and external forces vectors, respec-
tively. The motion at each node j is specified by means of
u; = (AX;, AY;, AZj)T. Derivatives with respect to ¢ are
denoted by u(t) = dl{’i(tt) and u(t) = di;gt). In the linear
case, both matrices K and M are independent of u and r
since they are evaluated at the non-deformed state u = 0.
However, the previous force balance can be replaced in
practice by an undamped free vibrations equation as:

Mii(t) + Ku(t) = 0. 3)

In this case, in the absence of external loads r = 0, the dis-
placement can be determined from the initial conditions, i.e.,
only knowing a shape at rest S. The internal elastic forces
Ku balance the negative of the inertial forces M1 which
can be interpreted as assigning a certain mass and a cer-
tain stiffness between nodal points. This undamped model

gives conservative answers and is easier to handle numeri-
cally. The equation is linear and homogeneous, and its so-
lution is a linear combination of exponentials modulated by
the mode shapes, i.e., of the form u = 1) sin (wt) with ¢ a
3p-dimensional vector and w a real scalar.

3.2 Proposed Model Matrices

This section is devoted to the computation of the matrices
K and M in Eq. (3). We discretize the surface of the ob-
served solid into m linear triangular elastic finite elements
with £ connectivity. We compute the stiffness matrix K by
means of a model for thin-plate elements. The deformation
is modeled as a combination of plane-stress and Kirchhoff’s
plate, using the free-boundary conditions matrix for linear
elastostatic objects with isotropic and homogeneous mate-
rial properties, as proposed by (Agudo et al.|2012b):

m

K:A1

7'B, DB.T d., )
2
where B, is the strain-displacement matrix defined in terms
of the approximation function derivatives, i.e., this matrix
relates the strain and displacement fields. D is the constitu-
tive matrix depending on the elastic properties of the mate-
rial: Young’s modulus E and Poisson’s ratio v (for more de-
tails, see [Bathe|[1982). We assume near incompressible ma-
terials ¥ ~ 0.5, valid for rubber, papers and human tissue
such as a face. 7 is the local-to-global displacement trans-
formation matrix. Finally, A represents the assembly oper-
ator, i.e., the global matrix is assembled from the piecewise
contributions.

To model the mass matrix M, we assume a lumped mass
at the nodes, leading to the mass matrix being computed as:
M- A P4

e=1 3

© diag([111111111]"), (5)

preserving the total element mass ), M;a = [, pdfl

where M, 2 1s the mass per component, and p is the mate-
rial density (mass-density). For simplicity, the surface thick-
ness h is the same for all elements. A, represents the ele-
ment area. While a lumped mass provides less rigidity to the
shape with respect to a distributed mass (the physical con-
figuration), in our domain this difference is negligible and
the accuracy of both models is roughly the same. Since a
lumped mass provides a more efficient model, we always
use this model.

3.3 Modal Analysis

According to structural engineering FEM analysis (Bathe
1982), the deformed object at a given sample time can be



A. Agudo et al.

approximated as a linear combination of some mode shapes
which can be computed by solving a generalized eigenvalue
problem from the undamped free vibration dynamics (see
Eq. (B). Modal analysis is standard in structural engineering
and has also been applied in computer vision to the spring

mesh model in medical imaging (Pentland and Sclaroff]1991)).

In (Nastar and Ayache|1993} [Pentland and Horowitz|[1991))
was used for motion analysis and to track and recover heart
motion, and in (Sclaroff and Pentland|1995} [Tao and Huang
1998) for non-rigid 2D tracking. Modal analysis was used to
decouple the equilibrium equations by obtaining a closed-
form solution of Eq. ().

In this work, we propose to apply modal analysis to a
soup of elastic triangles with unknown material properties
(E, p). Hence, the stiffness matrix K and mass matrix M
are computed per unit of F and p, respectively. This does
not limit the generality of our model. The only implication is
that the estimated displacement will be up to scale. Our algo-
rithm does not require boundary conditions, i.e., rigid points,
but we could exploit them if they were available by solving
a constrained eigenvalue problem with Dirichlet constraints
to fix the values of several points u; = 0. It is worth point-
ing that since our method employs a triangulated mesh of
2D finite elements, a subset of deformations like articulated
motion can not be modeled. To solve this, we would have to
incorporate another type of finite elements, such as springs
or beams. In a similar way, to model balloon-like objects 3D
finite elements are required. Exploring this way is part of our
future work. Finally, we directly use the mode basis without
using the decoupled system in Eq. (), avoiding having to
estimate the applied forces.

The undamped free vibration response of the 3D struc-
ture caused by a disturbance with respect to the shape at rest
-modeled by Eq. (3)- can be estimated by solving the gen-
eralized eigenvalue problem in w?:

Kb, = Mwiv, (6)

where {1, w2}, k € N,, are the mode shapes (eigen-

vectors) and frequencies (eigenvalues), respectively. N, :=

{1...3p} is the index set. Each eigenmode 1), is a 3p x 1

vector and its components are the displacements for all p

nodes in the discretization. The modes are normalized to sat-

isfy the orthonormality conditions @DEM’lK@b = wﬁlﬂglﬂ .
and 1/:kT1jzl = dy; where dy; is the Kronecker delta and [ €

N, such that |4, ]2 = 1.

3.4 Mode Shape Basis: Analysis and Selection

Modal analysis yields 3p orthonormal modes —provided K
and M are symmetric positive definite— (see some exam-
ples in Fig.[2(left)). To analyze the mode shapes or vibration
modes, we sort them according to the energy they need to

be excited, using a frequency spectrum from lower to higher
frequencies (see Fig. 2[right)). In the case where no bound-
ary conditions are imposed, we can approximately identify
three practical mode families, instead of the two proposed
in (Sclaroft and Pentland|[1995)), separating the intermediate
modes into bending and stretching ones as follows:

- Rigid motion modes (R): Theoretically the first 6 fre-
quencies should be zero, because they correspond to 6
degree of freedom rigid body motions. However, in prac-
tice the rank of stiffness matrix K is 4 instead of 6 due
to the thin-plate approximation (Agudo et al.|[2012b).
Hence, the first 4 frequencies are zero up to numeri-
cal error. This is consistent with our model having 4
rigid modes instead of the normal 6 in a full 3D FEM
model (Pentland and Horowitz|1991). These 4 rigid mo-
tion modes are excluded from the basis when coding
non-rigid deformations.

- Bending modes (B): Bending, out-of-plane deformations,
are mainly represented by the modes localized in the
interval [5,p + 4] (see Fig. [2). These modes can repre-
sent elastic bending deformations (with low stretching
in-plane). Moreover, selecting a few of the first bending
modes provides an accurate mode basis to model bend-
ing deformations.

- Stretching modes (S): Stretching deformations can be
modeled as a linear combination of the modes in the in-
terval [p + 5, 2p]. Similarly, selecting only the first stretch-
ing modes provides a basis to accurately represent the
stretching in-plane deformations.

The rest of the mode shapes [2p + 1, 3p] —the higher
frequencies— do not correspond to physical deformations but
to artifacts resulting from the discretization process. When
at least three non-collinear rigid points are considered, the
rigid motion of the modes does not appear in the frequency
spectrum. The first modes are similar to the linear, quadratic
and twist modes in (Fayad et al.|2010; Russell et al.|2011),
but our shape basis is more general including additional modes
such as high order modes, not available in the quadratic
model. The mode shapes capture decreasingly important de-
tails in the shape deformation, following a coarse to fine ap-
proach. Hence, the lower frequencies within each interval
model the global deformations and the higher frequencies
the local details.

To sum up, any non-rigid 3D displacement u, can be
modeled by a basis that contains only {k1,...,k.},r <<
3p mode shapes. For notational simplicity, it is assumed that
the r selected modes are renumbered k = 1,...,r, so any
displacement field vector can be approximated by a linear
combination of the mode shapes expressed as:

uw&y:[tpl...'{/)k...zpr}[’yl... , (D

where the transformation matrix S € R3”*" concatenates r
mode shapes, and -y is a weight vector to obtain a low-rank

T
Vo - e
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Fig. 2 Left: Representation of some non-rigid mode shapes of a plate surface discretized into triangular elements with #176 nodes. We show the
effect of adding the mode shape (colored mesh) to the shape at rest (black mesh) using an arbitrary weight. Note that the effect of subtracting can
be obtained using the opposite weight. First and second column: bending mode shapes. Third and fourth column: stretching mode shapes. Right:
Eigen-frequencies wy, for the previous black mesh in logarithmic scale. Rigid, Bending and Stretching mode shape intervals in green, blue and red

line, respectively. Best viewed in color.
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Fig. 3 Fitting real 3D models with the proposed mode shape basis as a function of the number of mode shapes. Left: We display a specific
shape for each dataset using different values of r = {10, 20, 40, 100}. Reconstructed 3D shape and the corresponding 3D ground truth are shown
with red dots and black circles, respectively. Right: Results for serviette and carton datasets, respectively.

representation. It is worth pointing that the mode shapes 1,
do not depend on the material properties (E, p). For the
same shape at rest, the normalized modes are the same irre-
spective of (E, p). Different (F, p) would produce the same
deformation but with a different amplitude, which can be
absorbed into the deformation weights .

3.5 Fitting Real Deformations

To empirically demonstrate the suitability of the mode shape
basis for coding real deformations, we propose to use our
basis to fit 3D deforming objects. To this end, we use two
datasets with 3D ground truth acquired from motion capture
systems. Particularly, we employ the serviette and carton
datasetﬂ that consist in 102 shapes with 63 nodal points;
and in 53 shapes with 81 nodal points, respectively. Fig-
ure [3] show the effect on 3D errors of varying the rank of
the subspace, observing a consistent reduction of the error
as more mode shapes r are considered (some examples are

2 We use the motion capture data from: http://cvlab.epfl.
ch/data/dsr. This data was acquired with a Vicon motion capture
system. It contains one sequence of a deforming piece of cloth (servi-
ette data) and one sequence of a deforming piece of cardboard (carton
data).

also shown in the figure). It is worth pointing that just a few
mode shapes reduce the error by half, observation that we
exploit in this paper by proposing a low-rank shape con-
straint. To make a fair comparison, we also consider two
configurations to train a PCA-based approach. The PCA-1
in which the PCA basis is trained with first 10 samples; and
the PCA-2 where all data is used to train. Note that our ap-
proach consistently outperforms PCA-1, without explicitly
using 3D deformable training data. Even though PCA-based
methods can become very accurate if appropriate learning
data is available (such as PCA-2), this method have used an
accurate deformation model learned from the ground truth
of the whole data, which may be difficult to obtain in real ap-
plications such as medical videos we process in experimen-
tal section. This limitation is outperformed by our method,
which in contrast just needs a rest shape estimation.

3.6 Computational Cost

In this section, we analyze the computational complexity of
obtaining mode shapes when solving the eigenvalue prob-
lem. To do this, we first compute MK to transform the
generalized eigenvalue problem into a standard one. In the
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Fig. 4 Left: Representation of some stretching mode shapes of a plate surface discretized into triangular elements with three meshes. First row:
5 x 10 mesh in dark cyan. Second row: 10 X 20 mesh in magenta. Third row: 15 x 30 in orange. The shape at rest is always displayed with a
black mesh. Right: Eigen-frequencies wy, for the previous black multiple meshes in logarithmic scale. We display the interval [wiow, Whigh] to
find stretching mode shapes in green, being similar for all meshes. Best viewed in color.

case of the lumped mass matrix —a diagonal matrix—in Eq. (3,

the inverse computation cost is negligible. The actual com-
putation and assembly of both K and M has a O (p) com-
plexity, that is only significant for dense maps, where the
process could easily be parallelized.

The second step is the computation of the mode shapes
as eigenvectors. For computational efficiency, we propose
to use orthogonal iteration with Rayleigh-Ritz acceleration
(Demmel|1997;|Golub and Van Loan|1996)). This returns the
eigenvectors (mode shapes), sequentially in ascending fre-
quency order, hence the complexity scales with the number
of computed modes. If the » mode shapes to be included
in the basis correspond only to low frequencies (bending
modes), the computation is efficient with a complexity scal-
ing with 447 even for dense meshes. However, if both bend-
ing and stretching modes have to be computed, the complex-
ity scales with 4 + r + p, which may become prohibitive
in both computation time and memory requirements, espe-
cially for dense meshes.

3.7 Computation of Mode Shapes for Dense Meshes

The mode shapes have been classified into two families:
bending and stretching modes. The first family of modes
is affordable to compute even in the dense case by solving
Eqg. (6), but it can only encode out-of-plane bending defor-
mations. In contrast, for scenes with stretching in-plane de-
formations, a few stretching modes have to be included to
have a representative basis. Unfortunately, computing these
dense modes may become prohibitive in terms of compu-
tational and memory requirements. To solve this limitation,
in this work we propose two algorithms to compute mode
shape at a lower cost. The first computes the eigenvalue
problem in a sparse mesh to obtain the frequencies of vibra-
tion and then computes the stretching modes applying the
frequency-based mode shapes method to the dense mesh.
The second approach computes the eigenvalue problem in

a sparse mesh and, exploiting the approximation functions
within finite elements, computes modes in the dense mesh
applying a robust coarse to fine approach. This enables dense
problems to be easily solved and drastically reduces the com-
putational and memory requirements to compute all frequen-
cies in the spectrum.

3.7.1 Frequency-based Dense Mode Shape Estimation

In this section, we present our frequency-based method to
compute dense stretching mode shapes. Our approach be-
gins by solving the eigenvalue problem in Eq. (6) for a sparse
mesh of ¢ points where ¢ << p, allowing us to easily ob-
tain all the frequencies in the spectrum. As we can locate
the stretching modes in the ordered frequency spectrum (see
section [3.4), we can obtain a finite interval of frequencies
for these modes situated between wjq,, and wp;qn. Next, we
can formulate the problem to estimate mode shapes over the
dense mesh of p points as:

argwmin ||(M_1K — w,%I) 'l/)k||2
k
subject t0 wiopw < Wi < Whigh (8)

where ), are the mode shapes with frequencies between
Wiow and wpign. Although this approach is valid for both
bending and stretching modes, our aim is to obtain the stretch-
ing modes while avoiding having to compute the bending
modes. Figure [] displays the frequency spectrum for three
meshes and some stretching modes applying this approach
over the dark cyan sparse mesh. It can be seen that the fre-
quency wj,, remains unchanged for all meshes. We can ob-
tain this frequency over a sparse mesh, and then solve Eq. (8)
over a dense mesh by linear least-squares. The computed
mode shapes using this method are not an approximation
and they can code both low and high frequencies.

While this approach offers new theoretical insights, it
is very sensitive to changes in the rest shape. Due to this
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(a) (b)

sparse mesh. Please zoom into the electronic images for a detailed view.

sensitive, this approach is particularly relevant for regular
meshes (such as the used in registration) where the sub-
sampling process is trivial. For instance, it could easily be
employed in template-based methods (Moreno-Noguer and|
[Portal2011}, [Salzmann and Fual 2009}, [Salzmann et al.[2008))
using multiple regular meshes and a template where the 3D
shape is accurately known.

3.7.2 Coarse to Fine Mode Shape Estimation

In this section we propose our second efficient approach
to compute dense mode shapes. We exploit the approxima-
tion functions used to define the displacement field within
a finite element (Bathe|[1982). Therefore, as in the previ-
ous method, we solve the eigenvalue problem for ¢ << p
scene points obtaining S* € R39*" basis shapes and then
compute S € R3P*7 for p points using the approximation
functions. First, we subsample the scene points to convert
the p-dimensional map —dense mesh— (see Fig. Ekb)) into a
g-dimensional map —sparse mesh— (see Fig. [B[c-d)). Each
point in the dense mesh must then be matched with an ele-
ment of the sparse mesh (see Fig. [fe)). The ¢-dimensional
map has to ensure a sparse mesh where every p point can be
matched. To find an element in the sparse mesh A (§8,8,8,)
with nodal labels {a,b,c} per point §;, we suggest an ac-
tive search by computing several cross products over a 2-
dimensional space:

2 e _—
_— —_— 1 if(ss Sj X SrSr41) €L
Z X (5-8) x §78:41) = = ———
- 0 if(S:5; X5-8r41) ¢
T+1€mod(3)
. 3 if S; € AN (505152) (9)
T <2 if 85 ¢ A(s08182)

where the labels {a, b, ¢} = {0, 1,2} are renumbered and y,
represents a step function with ¢ = [0, c0). §; is inside the
triangle element A (5,S;S.) when all the cross products are
non-negative, three in our case. Note that this 2-dimensional
space is a dimensional reduction of the shape at rest, and
hence it can be obtained either by projecting the shape at rest

(0
Fig. 5 Coarse to fine approach to modal analysis. (a): Reference image plane to compute optical flow. (b): Dense 2D tracking of p points. (c):
Subsample of dense shape into ¢ points (green points). (d): Delaunay triangulation for sparse mesh. (e): Active search to match every point in the

(d) (e)

e

Fig. 6 Left: A dense shape of p nodes (red points) is reduced to ¢
nodes (green points) to solve the eigenvalue problem. In this case, the
2D space can be obtained by projecting the 3D shape at rest estimation.
Right: Active search to match the p points with triangular elements of
the sparse mesh. Please zoom into the electronic images for a detailed
view.

onto the image plane or by using the reference image plane
(see Fig. Bfa) and Fig. [6). When the active search is com-
pleted, we need to compute its natural coordinates (&;,7;)
within the element A (S,8;S..). First, we transform from the
global system to a £ local one A (S£5£s%) defined on the
plane of each triangle element and then obtain the natural
coordinates as:
-1

€] - [s£ o 1;H se-st]. ao
where 15 is a vector of ones and & indicates the Kronecker
product. The 3D displacement can be obtained using the
linear approximation functions 0'(&;,m;) = [N} Ni Ni|
within the element. The 3D displacement for
every mode shape can be computed as:
Sj= Mg m) ek (s s s ()
where S, Sy and S are 3 x r displacement vectors for
the mode shapes basis corresponding to the triangle ele-
ment {a, b, c} to which §; belongs. Finally, S; is placed in
rows 35 — 2 through 35 in S. Note that for coding non-rigid
shapes, the high frequency details are included in the shape
at rest with dense mesh, while these have been lost in the
shape basis for the approximation of this method. However,
our approximation is accurate even using a sparse mesh with
a 10% of points in the dense mesh, as we show in the exper-
imental section.
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Regarding complexity, we drastically reduce the com-
putational cost of computing dense mode shapes by using
this approach. To compute and assemble both FEM matri-
ces, the complexity is reduced from O (p) to O (¢), with ¢
being the number of points in the sparse mesh, represent-
ing under 10% of the points in the dense mesh. This allows
us to easily compute the full frequency spectrum —including
stretching shapes with high frequencies—, solving a simple
eigenvalue problem of low dimension. It is worth to point
that for the frequency-based algorithm, the complexity to
solve the eigenvalue problem over a sparse mesh is similar,
but later it is necessary to compute a few mode shapes over
the dense mesh and the performance is reduced.

4 Problem Formulation

Let us consider a 3D structure Sy of p points on an image
frame f. The orthographic projection W ; is expressed as:

| UfL e Uy Ufp |

Wf Vf1 «.. Uf5 ... Ufp anSf+Tf+Nf’ (12)
where TT is the 2 x 3 orthographic camera matrix, and Qy is
the 3 x 3 rotation matrix. Next, Ry = TTQ are the first two
rows of a full rotation matrix (i.e., R fR}— = I,). Due to the
orthographic projection, the depth coordinate of the transla-
tion vector cannot be resolved. Considering this ambiguity,
we model 2D translations t; defined as Ty = 1; ® ty
with 1, a vector of ones and t; = R¢d ¢ where d is a 3D-
translation vector. Finally, N s is a 2 x p zero-mean Gaussian
noise process matrix for modeling the noise in image tracks.
The noise vector for a generic point j is ny; ~ A (0; o2I)
with variance of the measurements o in each dimension.

Alternatively, the orthographic projection wy into vec-
tors can be expressed as:

T _
Wy = [Ufl ()31 < Ugp Ufp} = Gfo—‘rtf—i-nf, (13)

where Gy = I, ® Ry with I, a p X p identity matrix, and t s
and ny are the vectorized form of Ty and Ny, respectively.

Our problem is to simultaneously estimate camera mo-
tion (Rys,ty) and the non-rigid 3D shape Sy as the data
arrives, in every frame f from uncalibrated 2D point cor-
respondences in a monocular video W ;. Note that our mea-
surements can have occlusions and lost tracks, and the mea-
surement matrix W ¢ is not full. For these cases, only a set }V
of visible points p is observed, but always all p scene points
have to be reconstructed.

4.1 Proposed Linear Subspace Deformation Model

We propose to model the non-rigid shape at each instant as
a linear combination of a mean shape and r deformation

mode shapes from modal analysis. Hence the estimation of
the 3D structure at each frame f comes down to estimat-
ing the corresponding weight vector 7. It is also useful in
our formulation to represent S using a permutation operator
R(S) that rearranges the entries of S into a 3r X p matrix
such that the j-th column of R(S) contains all the displace-
ment AX,.;, AY,;, AZ,; coordinates of the point j for all r
modes. Considering Eq. (7)), the 3D displacement field into
matrices can be rewritten as U = (I3 @ v ") R(S) where I3
is a 3 x 3 identity matrix. The deformed structure at frame
f can be written as:

Sf=S+U;=S+ (Isov;)R(S). (14)

Assuming noise-free observations, we can rewrite the or-
thographic projection Eq. (12)) as:

Wi =Ry (S+ (Is®@7;) R(S)) + Ty (15)

In section [5.1 we propose an on-line BA-based algorithm to
solve this non-linear problem as the data arrives.

4.2 Proposed Probabilistic Modal Analysis Model

We also propose to replace the linear subspace model de-
scribed above with a probabilistic model using a Gaussian
prior on each shape in the subspace, inspired by probabilis-
tic PCA (Roweis|| 1998} Tipping and Bishop|1999; [Torresani
et al|[2004). The weight coefficients ~ g are modeled with a
Gaussian prior distribution with zero-mean as:

vy~ N(0:L). (16)

These deformation weights « ; become latent variables that
can be marginalized out and are never explicitly computed.
Employing this Gaussian prior over 7y ;, the weights for each
shape are similar to each other, the non-rigid shape distribu-
tion being sy ~ N (é; SS T), producing smooth deforma-
tions with respect to shape at rest. The r principal axes are
modeled using an orthogonal fixed basis S. In this case, the
non-rigid structure at frame f, considering Eq. (7) can be
written as:

s;p=8+uy=8+8v, =89, a17)
where S = [§ &S] is the concatenation matrix of the shape at

£
rest together with the mode shapes, and 7, = [1 'yH

By assuming Gaussian noise over the shape and the ob-
servations, considering Eq. (T3] the distribution to be esti-
mated over the projected points w is also Gaussian:

wi~ N (Gss+1t;GrSSTG +0°T) . (18)

This is equivalent to solving the NRSfM problem. In sec-
tion[5.2] we propose an on-line EM-based algorithm to solve
the maximum likelihood estimation as the data arrives in this
latent variable problem.
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5 Sequential NRSfM

Our aim is to sequentially estimate camera motion and time-
varying 3D shape from 2D point tracks. This section is de-
voted to describing the details of our sequential approaches
to NRSfM. Note that we just need to tune the number of mode
shapes r in the subspace. While most state-of-the-art tech-
niques are very sensitive to the choice of the specific rank,
our methods do not require fine tuning (see experimental
section [6)). Obtaining a sequential system in real time could
easily be fixed in terms of computational cost.

5.1 On-line BA Algorithm

We use a sliding temporal window approach as proposed
in (Paladini et al.|[2010) to perform BA (Triggs et al.|2000)
on the last VV frames. As the deformation modes S are com-
puted in a previous step following the modal analysis de-
scribed in Section[3] and only an estimate of the shape at rest
S is required, the trilinear sequential NRSfM problem is re-
duced to the estimation of per-frame camera motion (R;, t;)
and deformation weights ,, i.e., a bilinear problem. This
involves the estimation of a very small number of parame-
ters r to encode the shape at each frame, which leads to a
low computational cost system. The model parameters are
estimated on the fly by minimizing the image re-projection
error of all the observed points p over all frames in the cur-
rent temporal window W by means of the following cost
function A (R, t;,7;):

/ /
argmin Ay 37 T -l 4 de S it~ b3
Ritiyi  —fpow42 i=f—W+2
f
+ Z Z [Wio—Ri (Sp + (Is @7, ) R(S,))—Till 5
i=f—W+1 o€V

f
+ A D IRi(a) —Rici(qi-n)|3 (19)
i=f-W+2

where || - ||z is the Frobenius norm. The rotation matri-
ces R;(q;) are parameterized using quaternions to guaran-
tee orthonormality R, R, = I,. We add temporal smooth-
ness priors to penalize strong variations in the deformation
weights =y,, translations t; and camera matrices R;(q;). The
positive regularization weights ., A; and A\, govern the rel-
ative importance of the regularization terms, and they are de-
termined empirically. These coefficients are fixed in all the
experiments we describe in the experimental section. This
problem can be solved using a sparse Levenberg-Marquardt
non-linear minimization algorithm.

To initialize the parameters for a new incoming frame,
we consider the smoothness priors for both camera motion
and non-rigid deformation, penalizing far solutions from the

previous frame. The mode shape weights ~, are initialized
assuming rigid motion v; = ~,_; and the camera pose is
initialized as R; = R;_; and t; = t;_1.

5.2 On-line EM Algorithm

We propose an on-line version of the EM algorithm —similar
to EM for factor analysis (Ghahramani and Hinton||1996)-
over a sliding window on the last W frames, similar to the
algorithm described above. In this case, we denote the set of
model parameters to be estimated by @5 = {Ry,ts, 0%},
the hidden data by ~; and the complete data as {wy,~}.
Given the observable data wy_yy 1.y over the sliding tem-
poral window of frames with indexes s_yy41.r, we estimate
the model parameters over all the frames in the current win-
dow denoted as W. For dealing with missing data, we con-
sider all the observed points ¢ € V over all the frames in the
current window. Note that for full measurements, the num-
ber of visible points p is equal to p. The joint probability
of w over a sliding window, assuming that the samples are
independent and identically distributed, may be computed
considering the Gaussian distribution per frame, Eq. (I8},
as:

f
P(Wyp |Gy by 0?) = [ p(wiolGitio?).  (20)
i=f—W+1

The EM algorithm estimates iteratively until convergence
the likelihood, alternating between two steps: the E-step and
M-step. In the E-step, the expectation of the data likelihood
with respect to the latent variable distribution is computed.
For this, we compute the posterior distribution over latent
variables p (7,3, [Wyi,, O44,) % P (W[ Vyi O0i)) P (1941604
given the measurements and the current parameter model on
the sliding window as:

f
P(mplwyi 645) ~ ] N(Hi;&),
i=f—W+1

where K, = ﬁl (Wz — Glg — Ez) and 21 = Ir — ﬁZGZS,
with 8; = STG] (021, + G S(G:S)T) ™" that is effi-
ciently computed using the Woodbury matrix identity (Wood-
bury|1950). Note that for the missing data case, G; =1, ®
R; with I, being a p-order identity matrix. S, § and w; are
only evaluated for visible points.

In the M-step, the expected value of the log-likelihood
function is optimized by replacing the latent variables by
their expected values to update the model parameters. We
update motion variables maximizing the likelihood with re-
spect to parameters © holding hidden distribution fixed, or
equivalently minimizing its expected negative log-likelihood
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function Ver B(@Zt-_l) lor—

rithm is strictly monotonous:

ot—17 0, because the loga-

f
B(©;) =argmin E |[— Z Zlogp(wig\@i) =
= i=f—W+1 g€V
1 f
: = T2
Eggtmig 202 Z Z E [”WiQ_Gi (S0 + SQ’Yi)_tiHZ}

i=f—W+1 peV
+ oWlog (20?), (21)

where E[-] represents the expectation operator.

Note that using the Gaussian prior, we do not need to add
additional temporal smoothness priors to penalize strong vari-
ations, avoiding tuning regularization weights (Garg et al.
2013a; [Paladini et al.|2010; Russell et al.|[2011). This func-
tion can not be optimized in closed-form to compute a global
optimum, and partial M -steps are necessary. The model pa-
rameters are individually updated in closed-form, except for
camera rotation (see Appendix for update rules).

In order to initialize the model parameters for a new in-
coming frame, the camera pose is initialized as R; = R;_
and t; = t;_1, while the latent variables are initialized as-
suming a rigid motion as E [v;] = E [v;_4].

5.3 Missing Data on BA-FEM and EM-FEM Algorithms

Unlike other methods (Akhter et al.|2011; Bregler et al.[2000j
Dai et al.|2014)) our formulations can cope with incomplete
image tracks resulting from occlusions or tracking outliers,
always reconstructing all the scene points. Both algorithms
have the capability of dealing with missing data since the
cost function is only evaluated on the set of visible points V.
After that, we exploit our global model to estimate the 2D
location W t; of the missing data entries in the observation
matrix:

Wy =Ry (S; + (I @77 ) R(S))) + ty. (22)

5.4 Shape at Rest Estimation

Our sequential approaches assume that the shape at rest can
be estimated similarly to batch (Fayad et al.[2010; Russell
et al.[2011) and sequential (Agudo et al.[201 1; |Paladini et al.
2010) approaches, using a rigid factorization algorithm (Mart
ques and Costeira|2008)) on a few initial frames. To this end,
we consider that the observed sequence contains some nr
initial frames where the object is mostly rigid and does not
deform substantially. Our method does not require the sur-
faces to be planar or developable, and modal analysis can
be applied on general non-planar rest shapes. Note that us-
ing rigid SfM to initialize is standard practice in the NRSfM

community and, moreover, initialization is one of the chal-
lenges in sequential methods, including the rigid case (Klein
and Murray|[2007).

The rest shape is a tuple (P, £) where P = (n1,...,n,)
is a finite set of p nodes and £ = (ey,...,e,,) is a finite
set of m triangular elements —over ¢ points for dense cases—
obtained by means of a Delaunay triangulation (Bathe|1982)
on the image plane or on the reference image for dense cases
(Garg et al.|2013alb). For simplicity, we have used the De-
launay triangulation, although we could take advantage of
having an estimation of the 3D shape at rest and easily use
alternative connectivity algorithms.

5.5 On-line Complexities

In this section, we show both the complexity of the mem-
ory and the computational complexity of our sequential ap-
proaches. Our NRSfM methods ensure that the computation
time per image is bounded and does not grow with the num-
ber of frames, as occurs with batch approaches (Fayad et al.
2010; |Garg et al.[2013a}; [Paladini et al.|2009; Taylor et al.
2010). We show how our methods could potentially achieve
real-time performance at frame rate and, more importantly,
how both methods process the video sequence as the data
arrives, frame by frame.

First, we analyze the memory complexity. Our on-line
algorithms store only the latest WV frames with complex-
ity O (W), unlike batch algorithms where all the frames are
stored with complexity O (f). This is an important feature
for real applications where the computational resources are
often much lower than in a desktop setting (Wendel et al.
2012). Next, we analyze the computational complexity for
the BA-FEM and EM-FEM algorithms.

5.5.1 BA-FEM Algorithm

An efficient BA implementation consists of three principal
parts: the computation of the residuals and sparse Jacobians
used for the Levenberg-Marquardt algorithm with O (pWr),
building the linear system with O (szrz) and, finally, solv-
ing the linear system with O (W3 7“3). Since in our domain
the number of frames on the sliding window WV is relatively
small, and the number of modes r is significantly smaller
than the number of points in the structure shape p, the cu-
bic term of solving the linear system is negligible. Thus, the
complexity of sequential-mode BA over a sliding window
is dominated by building the linear system and computing
residuals and Jacobians, dominated by O (szrz).

5.5.2 EM-FEM Algorithm

The complexity of sequential-mode EM over the sliding win-
dow is dominated by the E-step, and can be approximated
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Fig. 7 Synthetic sequences. Comparing results of our BA-FEM and

EM-FEM algorithms with respect to EM-LDS (Torresani et al.|2008),

PTA (Akhter et al.|2011), MP (Paladini et al.[2009) and SBA (Paladini et al.|[2010) for frame #200. Reconstructed 3D shape and the 3D ground
truth are shown with red dots and black circles, respectively. Top: Results for Syn. 1 sequence. Bottom: Results for Syn. 2 sequence.

on the order of O (thrz) as a function of the number of
iterations ¢ per frame until convergence to the desired pre-
cision. The likelihood function is increased at each iteration
until convergence, i.e., B (@f“) — B(6}) < ¢, where the
superscript ¢ represents the EM iteration. In practice, only a
few iterations are necessary to achieve convergence. More-
over, in our on-line EM-FEM algorithm, we use a temporal
smoothness by means of the sliding window that is initial-
ized as the last frame, but we do not implicitly use regular-
izations within the sliding window as in our BA-FEM al-
gorithm, reducing the complexity order from W2 to W. The
total complexity becomes O (prQ) considering W to be neg-
ligible, 5 in our experiments. Furthermore, this complexity
over r can be reduced when sparsity is exploited. Our slid-
ing window approach may potentially achieve real-time per-
formance since it could easily be parallelized for the i.i.d.
assumption.

6 Experimental Results

In this section, we show the experimental results for both
synthetic and real sequences, providing comparisons with
respect to state-of-the-art methods. We present results from
sparse to dense shapes, for isometric and elastic deforma-
tions, and finally we show our performance against corrupted
observations, such as noise or missing data. In all the ex-
lzf_ ”S@*SiGT”}'
f i=1

(R
where S, is the 3D reconstruction and S$7' is the ground

truth. Before computing this 3D error, the 3D reconstruction
is aligned with the corresponding ground truth using Pro-
crustes analysis over all the frames.

periments we report the error esp

6.1 Synthetic Data

In this section, we compare our sequential methods BA-
FEM and EM-FEM to state-of-the-art techniques, for both

sparse and dense observations. In addition, we also analyze
the two proposed strategies to compute stretching modes. In
all cases, the synthetic deformation is observed by an ortho-
graphic camera.

6.1.1 Elastic Sequences

Firstly, we propose two synthetic sequences of a deforming
elastic plate with irregular (Syn. 1) and regular (Syn. 2) dis-
cretization, respectively. In both cases, we have considered a
non-linear hyperelastic Yeoh material (Yeoh![1993) to model
large deformations, but just consider a different discretiza-
tion. The Yeoh model for incompressible materials is a func-
tion only of the first strain invariant /7, and its deformation
energy is defined as: W = Cyo(I; — 3) + Coo(I; — 3)% +
C30(I1 — 3)3, where the parameters {C1g, Cag, C30} define
the material properties. Particularly, we set C;g = 10MPa,
Cy = —0.01MPa and C'5y = 10MPa for these experiments.
We refer the reader to previous paper for further details.
Both sequences were generated using Abaqus for which the
material properties, boundary conditions and nodal forces
are required a priori to compute the deformation. In con-
trast, our methods based on linear elasticity do not require
any prior knowledge to constrain the deformation.

We use our BA-FEM and EM-FEM algorithms for this
test, and present a comparison against state-of-the-art NRSfM
methods, both batch and sequential algorithms. For batch
methods, we consider: EM-LDS (Torresani et al.[2008), MP
(Paladini et al.|2009), PTA (Akhter et al.|2011), KSTA (Go-
tardo and Martinez | 2011])), the block matrix approach SPM
(Dazi et al.|[2014) and EM-PND (Lee et al.[|[2013). We also
compare with the sequential BA based on implicit models
SBA (Paladini et al.|2010). The parameters of these methods
were set in accordance with their original papers. Table [I]
summarizes the comparison of the results for each method,
while the 3D reconstruction of a typical frame for some
methods are displayed in Fig.[7} Figure[§]displays the effect
on 3D errors of varying the rank of the subspace, showing
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Batch Methods Sequential Methods
Data Met. EM-LDS PTA MP KSTA | SPM | EM-PND SBA BA-FEM | EM-FEM
Syn. 1 11.12(2) | 9.25(2) | 12.42(2) | 5.56(2) - - 14.03(16) | 3.89(10) 3.98(10)
Syn. 2 10.92(2) | 11.81(5) | 18.84(2) - - 7.60 20.90(8) 3.04(10) 3.01(10)

Table 1 Quantitative comparison for synthetic sequences. We show e3p[%)] for EM-LDS (Torresani et al.|2008), PTA (Akhter et al.[2011),
MP (Paladini et al.[2009), KSTA (Gotardo and Martinez|2011)), SPM (Dazi et al. 2014), EM-PND (Lee et al.|2013) and SBA (Paladini et al.[2010);
and for our methods BA-FEM and EM-FEM. For state-of-the-art methods, we have selected the rank of the subspace in the basis (in brackets) that
gave the lowest e3p error. For our methods, we provide results with 10 mode shapes. When an algorithm does not converge, its result is denoted

as “—”

== BA-FEM
~— EM-FEM

—— BA-FEM
~8— EM-FEM

3D Error [%]
3D Error [%]

T 2 3 4 5 6 7 8 9 10 T 2 4 s 6 7 8 9 10
Mode Shape r Mode Shape r

Fig. 8 Mean normalized error e3p with varying number of mode
shapes for synthetic sequences. Left: Results for Syn. 1 sequence.
Right: Results for Syn. 2 sequence.

the consistent reduction of the error as more modes r are
considered. We do not address the selection of  in this pa-
per, since our results suggest that the proposed methods are
not extremely sensitive to this choice.

We also evaluate the sensibility of including non-rigid
motion in the initial frames that affects to the initialization,
and hence to the shape basis computation. To this end, we
quantify this non-rigid motion by the metric || U on,—rigidl| 7
where U,,,,,—rigiq represents the non-rigid 3D displacement
of the shape in these frames. Even though in both experi-
ments the deformation is not produced concerning a mean
shape, causing rest shapes more inaccurate, our methods
produce accurate results and even outperform the rest of
techniques evaluated. Figure [0] shows this effect on 3D er-
rors varying the level of deformation in the initial frames.
We can conclude that our methods outperform the state-of-
the-art methods in terms of accuracy, with the additional ad-
vantage of being sequential, allowing us process frames in
an on-line fashion. In addition, we achieve with an unopti-
mized Matlab code a frame rate of about 3 fps when dealing
with a model of 81 points using 10 modes, and hence these
results could still be significantly speeded up. We consider
our method may potentially achieve real-time performance
at frame rate with an efficient implementation.

Parameter selection. The contribution of each smoothness
term in the cost function of Eq. can be controlled by
means of the weights A, = 0.15, \; = 0.03 and \; =
0.03. We have tuned these parameters on these sequences,
and used the same values for the rest of experiments. Yet,
these parameters do not need to be carefully tuned. For in-
stance, we test the 3D reconstruction error over the two elas-
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Fig. 9 Mean normalized error esp with varying level of deforma-
tion in initial frames for synthetic sequences. Left: Results for Syn. 1
sequence. Right: Results for Syn. 2 sequence.

tic sequences after changing these weights by a +/x 10 their
original value. We obtain an error of 3.90(10)—4.01(10) for
Syn.1 and 3.06(10)-3.17(10) for Syn.2. Observe that the re-
construction results barely change.

6.1.2 Dense Face Sequences

We now present results applying boundary conditions, i.e.,
rigid points, to show how our model can easily incorporate
these constraints if they are available. We use only these
priors to obtain the shape basis, managing both kinds of
points —rigid and non-rigid points— in a single framework,
unlike (Del Bue et al.|2006; Malti et al.[2013)) where both
kinds of points are independently considered. Note that these
constraints do not fix the absolute location of these points in
the space, but produce sensitive changes in the mode shape
basis. We only use these priors in these sequences to show
the qualities of our shape basis estimation.

We use both 3 and 4 synthetic dense face sequences with
p = 28,887 points as proposed in (Garg et al.|[2013a) that
we denominate Dense Face 1 and Dense Face 2, respec-
tively. Both sequences are challenging owing to the density
of the data and the strong deformations that combine bend-
ing and stretching, and they are similar with the exception
of the camera motion. Thanks to the ability of our method
to handle boundary point priors, we can compute just the
first » = 4 modes that combine both stretching and bending
deformations, and experimentally show that they are suffi-
cient to encode the face deformations. In this case, bound-
ary conditions correspond to face points that have a null
displacement with respect to the shape at rest. They are se-
lected by means of a connectivity analysis. We show the er-
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Batch Methods Sequential Methods
Data Met. PTA MP KSTA | SPM | EM-PND | VNR SBA BA-FEM | EM-FEM
Dense Face 1 || 4.50(4) | 5.13(6) | - - - 2.6009) || 435(4) | 4.654) | 4.53(4)
Dense Face 2 || 6.61(4) | 5.81(6) - - - 2.8109) || 7.034) | 4.92(4) 4.86(4)

Table 2 Quantitative comparison for dense face sequences. We show e3p[%] for batch methods PTA dAkhter et al 201 ll), MP (jPaladini et a1.|

2009), KSTA (Gotardo and Martinez[2011), SPM (Dai et al.|2014), EM-PND (Lee et al]2013) and VNR (Garg et al|2013a); for the sequential
method SBA (Paladini et al.2010), and for our sequential methods BA-FEM and EM-FEM. In all cases we have selected the number of shapes in

the basis (in brackets) that gave the lowest e3p error. When an algorithm does not handle this experiment, its result is denoted as “—".

5569
9555

Fig. 10 Dense Face 1 sequence. Reconstruction of the dense face for
selected frames: #30, #40, #79 and #95. Top: Ground truth 3D
shapes. Bottom: Our dense 3D reconstruction.

ror egp and a quantitative comparison with respect to batch
and sequential state-of-the-art methods in Table 2] applying
our algorithms. It is worth pointing out that we are not able
to provide results for KSTA (Gotardo and Martinez|[2011]),
SPM and EM-PND (Lee et al|[2013), as
they could not handle the large dimensionality of the prob-
lem. Our sequential approaches outperform in average the
batch PTA (Akhter et al.J2011)) and MP (Paladini et al.[2009)
approaches; and the sequential approach SBA
2010), but they provide an error higher than that of the vari-
ational batch method VNR (Garg et al][2013a), where all
frames need to be available in advance. We show our 3D re-
construction for few frames in Fig. [T0] using the BA-FEM
algorithm.

6.1.3 Efficient Dense Mode Shape Computation

Finally, we propose a synthetic sequence of 109 frames where
we simulate an elastic ribbon deformation of p = 275 points
with a non-linear Yeoh hyperelastic material (Yeoh[1993). A
dense shape basis is computed applying both the frequency-
based and the coarse to fine approaches. In both cases, we
use a low-dimensional mesh of ¢ = 78 points and then ob-
tain a mesh of p = 275 points. In order to estimate the non-
rigid shape for this challenging 43% stretching deformation,
we use our EM-FEM algorithm —similar results are obtained

by BA-FEM- and achieve the following performance esp:
(i) for the frequency based method, we obtain 3.15% for
5 modes, 1.08% for 20 modes, and 0.86% for 40 modes;
(ii) for the coarse to fine approach, we obtain 3.11%, 1.57%
and 0.84% for 5, 20 and 40 stretching modes, respectively.
Figure [TT] shows our 3D reconstructions with = 40 for a
few selected frames including where the stretching is max-
imum, as well as a qualitative comparison with respect to
ground truth. We conclude both methods provide similar 3D
reconstructions, but note that the frequency-based method is
more sensitive —due to the rigid factorization— and slightly
more expensive. For this reason, we propose always to use
the coarse to fine approach.

6.2 Motion Capture Data

In this section, we quantitatively evaluate our approaches
using several existing datasets of motion capture (MoCap)
to present an analysis of scalability with respect to sequen-
tial state-of-the-art NRSfM. We consider our approaches BA-
FEM and EM-FEM, and the sequential method SBA
dini et al2010). Moreover, the performance of our methods
is also analyzed when adding noise. We report results when
zero-mean Gaussian noise with standard deviation 0 = 155+
is added to every point in the mesh following
2009), where ¢ is the noise percentage and  is the maximum
distance of an image point to the centroid of all the points.
For each method we use exactly the same W, to compute
the shape at rest, i.e., the same initialization. Finally, we also
report a comparison w.r.t. batch baselines.

6.2.1 Facial MoCap Sequence

First, we use 316 frames from the facial MoCap sequence
(Torresani et al.2008)) with ground truth, where a subject is
talking and moving his head while wearing 40 markers. With
this sequence, we show the performance of our mesh-based
approach using a reduced set of points. We show quantitative
results for this sequence in Table [3] and qualitative results
for both BA-FEM and EM-FEM in Fig.[I2] We can achieve
similar accuracy at a lower computational cost with respect
to SBA (Paladini et al.|2010). However, when the measure-
ments are noisy, the performance of SBA is worse since the
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Fig. 11 Stretching ribbon sequence. 3D reconstruction of the 275 point ribbon at frames #20, #60 and maximum deformation at #109.
Shape at rest is displayed behind with a black mesh. Top: Ground truth deformation with a magenta mesh. Middle: 3D reconstruction using the
frequency-based method. Bottom: 3D reconstruction using the coarse to fine approach. In both cases, the sparse mesh is shown in thick lines. Best

viewed in color.

BA-FEM(55)

EM-FEM(55)

Fig. 12 Facial MoCap sequence. Original viewpoint and side views for selected frames #71, #188, #252 and #288 with ground truth (black mesh)
and 3D reconstruction (red mesh) using r=55. Top: BA-FEM algorithm. Bottom: EM-FEM algorithm. Best viewed in color.

shape basis is estimated on-the-fly while our algorithms pro-
vide a similar solution with respect to the noise-free case.
It is worth noting that with the same basis, our EM-FEM
algorithm is faster and more accurate compared to the BA-
FEM algorithm, since this deformation is well modeled by
Gaussian priors. However, our methods obtain less perfor-
mance than batch methods in terms of error e3p[%)]. Their
results are 2.74(5), 2.69(3), 2.12(4), 1.82(7) and 1.40 for the
methods MP (Paladini et al.2009)), PTA (Akhter et al.|[2011)),
KSTA (Gotardo and Martinez2011)), SPM
and EM-PND respectively. This is due to

the low resolution of the object, which is insufficient to es-
tablish the FEM constraints. Despite this, our methods can
obtain a competitive solution for this sequence w.r.t. batch
ones, without requiring all frames to be available in advance.

6.2.2 Flag MoCap Sequence

We now evaluate our approaches using a challenging dense
sequence with p = 9,622, corresponding
to a fabric waving in the wind. To validate the scalability
of our method, we also propose a p = 594 sparse sequence
version of the dense flag sequence, a result of the subsam-
ple process used to apply the coarse to fine approach (see
Fig.[6). We have included a few initial frames corresponding
to the camera observing the rigid shape. As the deformation
contains little stretching, the first bending mode shapes can
accurately encode the deforming scene.

We show quantitative 3D reconstructions for both sparse
and dense flag sequences in Table[3|and qualitative results in
Fig.[T3] Both the BA-FEM and EM-FEM algorithms consis-

tently outperform the SBA (Paladini et al2010) method in
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Face Sparse Flag Dense Flag
Met. Data 40 points 594 points 9,622 points
€ esp | %) inlop (sec) || € esp %) inlop (sec) || € esp| %) inlop (sec)
CtF | CF
SBA 0 [ 2.90(48*)T [ 0.15/1.007 0 | 7.10(114*) 0.58/82.32 0 | 13.48(114%) - 25.67/895 -
1 | 6.38(114%) | 0.15/16.98 1 | 7.48(360%) 0.58/870 1 - - - -
BA-FEM 0 3.43(15) 0.29/0.38 0 3.72(10) 19.50/1.96 0 3.50(10) 3.67(10) 300/75 44.62/73
0 3.92(55) 0.29/1.28 0 3.49(40) 19.50/24.83 || O 3.29(25) 3.96(25) 300/186 44.62/182
1 3.84(15) 0.29/0.42 1 3.73(10) 19.50/1.97 1 3.50(10) 3.68(10) 300/72 44.62/77
1 4.30(55) 0.29/1.52 1 3.56(40) 19.50/25.39 || 1 3.25(25) 3.96(25) | 300/187 | 44.62/188
EM-FEM 0 3.36(15) 0.29/0.10 0 3.28(10) 19.50/1.53 0 2.94(10) 3.41(10) 300/75 44.62/62
0 3.05(55) 0.29/0.19 0 2.81(40) 19.50/2.28 0 2.50(25) 3.08(25) 300/69 44.62/68
1 3.39(15) 0.29/0.10 1 3.32(10) 19.50/1.53 1 2.96(10) 3.51(10) 300/75 44.62/62
1 3.49(55) 0.29/0.20 1 2.92(40) 19.50/2.30 1 2.52(25) 3.30(25) 300/70 44.62/69

Table 3 Quantitative comparison for MoCap sequences using sequential methods. We show error ez [%)] for SBA (Paladini et al.|2010),
and for both BA-FEM and EM-FEM methods. In all cases, we show in brackets the number of shapes in the basis. We show computation time
for initialization ¢n and optimization process per frame op. We also show the results for the noise-free case € = 0 and for the noise case € = 1.
Finally, we show the results applying our Coarse to Fine approach (CtF) for dense cases. {: value reproduced from (Paladini et al.|2010). *: SBA
reports the rank r, we detail 37 in brackets because it is equivalent to the number of weights in both BA-FEM and EM-FEM algorithms. In all

cases, YW = 5.

terms of accuracy and efficiency from sparse to dense case
and when applying noise. Although SBA (Paladini et al.
2010) estimates the mode shapes on-the-fly —with shorter
initialization computation time only for shape at rest— it is
not able to overcome the mode shapes for this sequence.
Note that the three methods use exactly the same initial-
ization, although both BA-FEM and EM-FEM exploit the
shape at rest to compute a mode shape basis. Our sequen-
tial methods are also more accurate than the batch methods
MP (Paladini et al. [2009), PTA (Akhter et al. 2011), EM-
PND (Lee et al. |2013| and KSTA (Gotardo and Martinez
2011) which for the sparse case obtain an error e3p[%)] of
16.02(2), 14.11(2), 8.65(2) and 8.61, respectively. Regard-
ing the dense case, we obtain an error e3p[%] of 21.94(2),
14.83(2) and 9.64(4) for the methods MP (Paladini et al.
2009), PTA (Akhter et al.|2011) and KSTA (Gotardo and
Martinez| 2011)), respectively. SPM (Dai et al.|[2014) and
EM-PND (Lee et al.|[2013) did not manage to process this
sequence due to their non-scalable nature.

In both cases, the error e3p when applying EM-FEM
is smaller than that of the BA-FEM algorithm. For this se-
quence, the Gaussian prior is more accurate and produces
better solutions. Note that the initialization computation time
for the sparse case is the same using both approaches since
we do not use the coarse to fine approach. When we apply
this algorithm for the dense case, the increase in the compu-
tation time is negligible —0.03 sec— compared to the sparse
case, and it is dominated by the rigid factorization step with
25.67sec, similar to SBA (Paladini et al.|2010). However, the
computation basis for the dense case without applying the
coarse to fine approach is more expensive. It is worth noting
that the reconstructions applying the coarse to fine approx-
imation are less accurate than the standard method without

significantly degrading the estimation, and the shape basis
computation is much more efficient. For the sequential es-
timation, we obtain more efficient results using EM-FEM,
with a better scalability in the number of modes. Concern-
ing the sensitive when the rank is selected, we also observe
a stability in our estimates with respect to this parameter,
by obtaining more accurate solutions but at higher compu-
tational cost. Our conclusions can be extended to the noise
case, showing the robustness of our methods.

We can conclude that our methods outperform the se-
quential state-of-the-art methods in terms of accuracy and
efficiency. Although our method is implemented in unopti-
mized Matlab code without parallelization over a commod-
ity computer Intel core 17 @2.67 GHz, the results show a low
computational cost per frame and the results can still be sig-
nificantly speeded up.

6.3 Real Images

In this section we evaluate our methods qualitatively us-
ing several existing datasets. We show the scalability of our
methods for sparse to dense sequences of real images. More-
over, we show the robustness of our methods in the cases of
structured and random missing data.

6.3.1 Actress Sequence

First, we use the sequence and tracks provided by (Bartoli
et al.|[2008) to report qualitative results for the actress se-
quence, which consists of 102 frames where an actress is
talking and moving her head. We use a rigid model for the
first 30 frames to compute the shape at rest for both ap-
proaches, similarly to (Paladini et al.|2010). In Fig. [E], we
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Fig. 13 Flag MoCap sequence. 3D Reconstruction for a few frames with red dots. We display a few examples in Tableusing the EM-FEM
algorithm. We also show the corresponding 3D reconstruction error esp[%]. First row: Selected frames #10, #20, #32 and #45. Second row:
Sparse 594 points flag. Ground truth is overlaid with a black mesh and black circles. Third row: Dense 9,622 points flag using the Coarse to Fine
approach (CtF). Fourth row: Dense 9,622 points flag without CtF. Please zoom in to the electronic images for a detailed view.

show our estimated 3D reconstruction applying both BA-
FEM and EM-FEM algorithms with = 10 stretching mode
shapes. Our results are comparatively similar to those re-
ported by (Paladini et al.|[2010). Moreover, we provide re-
sults in the case of corrupted observations. The missing data
was generated by randomly deleting entries in the 2D input
tracks. We report comparatively similar results to those of
the full data case applying 40% of missing data for both the
BA-FEM and EM-FEM algorithms, showing their robust-
ness to artifacts. We show the 40% missing data mask in

Fig. [T5{left).
6.3.2 Paper Bending Sequence

In this case, we use the first 100 frames of a paper bend-
ing sequence proposed in (Bartoli et al.|2008)) to provide a
qualitative evaluation of our methods with respect to a struc-
tured missing data pattern. We use the sparse tracking of
828 points obtained by dense tracking data reported in (Garg

et al.[2013b). We process the sequence using 7= 10 bending
mode shapes and 5 frames to compute the shape at rest. Be-
tween frames #48 and #76, a 22% band of missing data
is introduced simulating strong self-occlusion. Our perfor-
mance is close to the full data case for both BA-FEM and
EM-FEM, and our 3D reconstruction does not degrade sig-
nificantly. We show both 3D reconstructions with missing
data for this sequence in Fig. the 22% structured miss-
ing data mask in Fig. [T5(right).

6.3.3 Niko’s Sequence

We now evaluate our approach using dense 28,332 tracks
provided by (Garg et al.[2013b) to show a qualitative evalu-
ation for the face sequence compared to (Garg et al.[2013a)),
where Niko is performing natural expressions and moving
his head. Since we obtain similar results with both algo-
rithms, in Fig. E]we show a few frames with our 3D recon-
struction using our EM-FEM algorithm with » = 30 stretch-
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Fig. 14 Actress sequence. Selected frames #31, #48, #84 and #102. First row: Image frame sequence with 3D reprojected mesh. Second
and third rows: Original viewpoint and side views of the 3D reconstruction in the cases of full data and 40% missing data, respectively, using
the BA-FEM algorithm. Fourth and fifth row: The same views applying the EM-FEM algorithm in the cases of full data and 40% missing data,

respectively. Visible points are displayed in red dots, and occluded points in blue circles.

ing mode shapes. We compute mode shapes with ¢ = 1,442
points and applying a coarse to fine approach to p = 28,332
points (see Fig. [3).

6.3.4 Heart Sequence

Finally, we process a challenging Heart sequence of a beat-
ing heart captured during bypass surgeryﬂ This shows the
generality of our approach to retrieve the 3D reconstruc-
tion of extensible objects. In this case, we track 3,024 points
computed by (Garg et al.[|[2013b)) without any sub-sampling
technique. Figureﬁ;gl shows some images and our 3D recon-
struction using our BA-FEM algorithm with r = 30 stretch-
ing mode shapes (similar results are provided by EM-FEM).
Since 3D ground truth is not available for this experiment,

we provide a qualitative comparison with respect to KSTA (Go-

tardo and Martinez||2011) using a rank in the basis of 5,
which obtained one of better performance in quantitative
experiments of the previous subsection. Even though this
method is known to be very accurate, the estimated 3D shapes

3 Video available from: |http://hamlyn.doc.ic.ac.uk/
vision.

Fig. 15 Missing data pattern. Patterns used in the actress and paper
bending sequences, respectively. Each row is a non-rigid frame and
each column is a point track. Points in black and in white are marked
as visible and occluded, respectively. Left: 40% random missing data.
Right: 22% structured missing data.

do not seem very realistically plausible being almost planar
for some frames.

7 Conclusion

We have proposed two sequential algorithms to estimate cam-
era motion and non-rigid 3D shape from monocular sequences
in close to real-time operation. Our systems work with sig-
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Fig. 16 Paper Bending Sequence. We show the 3D reconstruction of a deformed scene for a few selected frames: #25, #50, #60, #75 and
#100. Up to 22% structured occlusion is introduced (blue points) to show the robustness with respect to self-occlusion. Top: Frames with 2D
tracks. Middle: General view using BA-FEM. Bottom: General view using EM-FEM.
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Fig. 17 Niko’s sequence: dense 3D point cloud estimation. Top: Selected frames #17, #43, #55, #75, #100 and #121 with 3D reprojected
mesh. We display the mesh we use to obtain the mode shape basis. Middle: Textured original viewpoint. Bottom: Textured general view.



Modal Space: A Physics-Based Model for Sequential Estimation of Time-Varying Shape from Monocular Video 21

Fig. 18 Heart sequence. 3D reconstruction of a beating heart during bypass surgery. Top: Selected frames #9, #24, #32, #58 and #74
with 3D reprojected mesh. Middle: Textured general view subtracting the rigid motion for our BA-FEM method. Bottom: Same views using

KSTA (Gotardo and Martinez|2011).

nificant missing data, with both elastic or isometric defor-
mations and, crucially, without a training step. Our methods
can be used to model either sparse or dense data and are
robust to noisy measurements. We use a thin-plate model
with unknown material properties to code the behavior of
a non-rigid 3D object by applying a force balance equa-
tion. This equation is directly solved by FEM modal analysis
for sparse meshes, and we also propose two efficient meth-
ods to solve the equation for dense meshes. The resulting
physics-based shape basis is combined with temporal and
spatial smoothness constraints without using restrictive ad-
ditional distance constraints such as inextensibility, allowing
us to model elastic deformations. Both approaches provide a
competitive solution in terms of accuracy versus per-frame
computation time. Our claims have been experimentally val-
idated for both synthetic and real sequences showing a per-
formance better than or comparable to state-of-the-art meth-
ods, with the additional advantage that our methods are se-
quential, accurate and scalable.

Our future work is to pursue the goal of merging feature
tracking and outliers detection to provide a unified frame-
work. Additionally, we plan to apply our methods to the
problem of 3D reconstruction from endoscopic videos, where
accurate FEM biomechanical models for internal organ tis-
sues are available. We expect that our method will be able
to exploit the rich priors available and provide new avenues
of research for the challenging use of NRSfM in minimally
invasive surgery.
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A Rotation Update on the Stiefel Manifold

The camera rotation Q! is subject to orthonormality constraints, and
a closed-form update is not possible. The rotation matrix lies exactly
on a smooth manifold based on the orthogonal group SO(3), where
it is possible to generalize a Riemannian-Newton algorithm
et al.JT998} [Shaji and Chandran[2008)). We define the problem as that of
minimizing the function B (Q?), where Q! is constrained to the set of
matrices such that Q? T Q! =L, i.e., a Stiefel matrix. In this work, we
use the Riemannian manifold optimization to update the rotation ma-
trices. First, we rewrite the expected negative log-likelihood function
Eq. dropping the dependence on o2 and B (Q!) can be expressed
as:

f
arg min 2 Z E [||Wig - ange:/i - tz”a‘] (23)
Qi€S0B) j—f _W+1eev
where Q¢ € SO(3) and its tangent Ag: € Tgi(SO(3)) can be
expressed as Ag: = Qf (9],
matrix. On SO(3), the geodesic at Q! in the tangent direction can be
expressed by means of the Rodrigues’ rotation formula:

with [0], being the skew-symmetric

Q'*1(3,a) =Qf (Is + [3] y sin(a) + [3]1 (1- cos(a)))
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Algorithm 1: Minimizing B (Q!) Eq.

Input: Rotation matrix Q¢

Output: Optimal updated rotation matrix Q§+1

Li=f-W+1

2: while Q! < Q? do
3: I Compute Optimal Updating Vector AQ:
4 E, =Qllep], 1<b,ec<3

5: gy = dB(Eb)

6: Hy.= HessB(Ep,E.)
7.

8

9

(Eq. 23))
(Eq. (28))

§=-H"lg
Aq: = Qi 9],
II. Update the Rotation Matrix QE'H

10: Q' = Qlexp (a [3] ) (Eq. @)
X
11: with o = %tr (A&AQ5>
12: i—1+1
13: end while
24)

where [§] € s0(3) is the Lie algebra of SO(3) the group and [4],, =
«@ [8] . This explicit formula for geodesics is necessary for comput-
ing the gradient dB(Aq:) and the Hessian Hess B(Aq:, Ag:) of
the cost function Eq. @I) along the geodesics on the manifold. Given

the previous definition, we can obtain both the gradient and Hessian in
a tangent direction Age as:

1840 = 1B(QL@)
do a=0
th( ¢i5§) Z((ww t:) s TST) AT,
eEV eEV
(25)
d* B(Q}(a))

Hess B(Aq:, Aqr) =

2
dov a=0

RIS (5,687 -

o€V eEM
+Ar Y (806:8] ) AR 6)
€V
where A Rt = ITAQ: are the first two rows of a full tangent vec-

E[7.7] ] The
Hessian can be obtained by polarizing Hess B(AQ/L, , AQ‘;) (Ma et al.
1999; [Shaji and Chandran|2008). Assuming that the Hessian is non-
degenerate, we compute the optimal updating vector for a generalized
Newton method as Ag: = —Hess ~1@G, where G is the gradient on
the manifold. To compute the Hessian, we use an orthonormal basis
E,;, of the tangent space on SO(3). For simplicity, we can choose the
standard basis e; for R3. The Hessian matrix H and gradient vector g
can be obtained as:

gy = dB(Eyp), 27
H,. = Hess B(E, E.). (28)
Finally, the optimal updating vector can be computed as AQ; =
—Hess™'G = Q! [8],, and to move it in the tangent direction along

the geodesic on SO(3). The outline of the algorithm is shown in Al-
gorithm[T]

tor. The expectations are f1; = EHZ] and q}'@ =

> (wio—t)al8)) | AbQiA,

Next, the noise variance and the translation vector can be updated
in an on-line manner as:

1 4 B 3
o? = —2(Wip — ;)| GiSoit;
2,QW fz;/wrl QZE; ( ¢ e
+ uwig ~Tl?+u (87 GT GS.8,) ), 29)
6 = - Z (wzg - Riggﬁi) ‘ (30)
QEV
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