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Unsupervised 3D Reconstruction and Grouping
of Rigid and Non-Rigid Categories

Antonio Agudo

Abstract—In this paper we present an approach to jointly recover camera pose, 3D shape, and object and deformation type grouping,
from incomplete 2D annotations in a multi-instance collection of RGB images. Our approach is able to handle indistinctly both rigid and
non-rigid categories. This advances existing work, which only addresses the problem for one single object or, they assume the groups
to be known a priori when multiple instances are handled. In order to address this broader version of the problem, we encode object
deformation by means of multiple unions of subspaces, that is able to span from small rigid motion to complex deformations. The model
parameters are learned via Augmented Lagrange Multipliers, in a completely unsupervised manner that does not require any training
data at all. Extensive experimental evaluation is provided in a wide variety of synthetic and real scenarios, including rigid and non-rigid
categories with small and large deformations. We obtain state-of-the-art solutions in terms of 3D reconstruction accuracy, while also
providing grouping results that allow splitting the input images into object instances and their associated type of deformation.

Index Terms—Category Reconstruction, Multiple Unions of Subspaces, Class Clustering, Augmented Lagrange Multipliers.
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1 INTRODUCTION

S Imultaneously recovering camera motion and 3D
object shape from a collection of RGB images either

acquired from different viewpoints or by a single mov-
ing camera is one of the most active research areas in
computer vision. Early works addressed this problem
under the assumption of a rigid structure [1], [41],
[46]. Later, many efforts were focused on the non-rigid
case, to retrieve dynamic 3D shape and camera motion
from only 2D measurements in a monocular video [5],
[33], [39], [52], [55], [58]. This problem is known to
be inherently ambiguous and demanded introducing
more sophisticated priors. Probably, the most standard
formulations include the use of different modalities of
low-rank subspaces to constrain the solution space [5],
[9], [12], [39], [50]. Moreover, these algorithms exploit
the fact that input images smoothly change viewpoints,
introducing temporal smoothness priors on both the
shape deformations and the camera poses in order to
produce more accurate solutions [3].

However, all these previous methods solve the prob-
lem for one single object instance. There exist works
addressing scenarios with multiple objects within a cat-
egory. For example, if the observed category is rigid
(e.g., buses or chairs) and all objects in it have the
same geometry, the problem can be addressed as a
rigid Structure from Motion (SfM) one [44], [54]. When
object instances within the same category have distinct
geometry, even if they are rigid (e.g., different model
buses), the global problem of recovering their shape can
be formulated in a non-rigid manner [28]. This can be
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extended to inherently non-rigid classes (e.g., faces or
animal skeletons), in which case, both inter- and intra-
object deformations shall be considered [2]. However, all
these works are only focused on the 3D reconstruction
problem, and assume the object grouping to be known
a priori.

In this work we move a step forward and tackle the
problem in which the object groups are not known a
priori. That is, given an input collection of RGB images
of a specific category, we aim at simultaneously grouping
them into different object instances and their type of
deformation or action, together with retrieving their 3D
shape regardless of whether the objects are rigid or non-
rigid. As shown in Fig. 1 the outcome of our approach is
an object grouping of each image, which is likely to cor-
respond to each of the instances (three object instances
are showed for the example in the figure), a deformation-
type clustering corresponding to pose primitives (again,
three deformation types or actions are displayed in the
previous figure), a 3D reconstruction of each individual
object and the corresponding camera motion. As we
have commented above, we formulate our approach
to handle both types of categories, i.e., rigid and non-
rigid ones. For example, as shown in Fig. 2-left, given a
number of images of chairs (five models seen from dif-
ferent viewpoints) our approach groups them into each
of the models and reconstructs their 3D shape. Note that
some observations of the chair instances are very similar
and difficult to distinguish from only 2D annotations.
Simultaneously reasoning about the dual grouping and
3D reconstruction helps improving both tasks. Regarding
non-rigid categories, as shown in Fig. 2-right, given a
collection of face images of five humans under different
viewpoints and facial expressions, our algorithm jointly
splits the images into each of the individuals and their
deformation types, together with their 3D shape.
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Fig. 1. Joint 3D reconstruction, camera motion, and dual object and deformation-type grouping from partial 2D annotations.
Top-left: In this part, we represent our input data. Example of real pictures from a dog collection, and some 2D partial annotations
in green circles are displayed. We assume these 2D annotations are provided, but the number of object instances and type of
deformations are unknown. Bottom-left: In this part, we show the output our algorithms can estimate: 3D shape reconstruction
together with the object and deformation grouping results. In this example, object segmentation is to split input data into dog
instances (three in our case), and deformation grouping to identify pose primitives which have a clear semantic meaning. To make
a fair understanding, we display three deformation primitives that we represent by means of action names: ‘jump’ (yellow), ‘stand’
(orange), and ‘walk’ (magenta). Camera motion is not represented in this figure, but it is also an outcome of our algorithm. Right:
Estimated object and deformation affinity matrices. Each entry in these matrices expresses the object/deformation pairwise affinity
between images within the collection. Groups are directly discovered by applying spectral clustering on these matrices.

In order to simultaneously tackle grouping and recon-
struction from a collection of unordered images, we pro-
pose a novel optimization framework that builds upon
recent Non-Rigid Structure from Motion approaches
(NRSfM) [6], [64]. More specifically, we model the 3D
shape by multiple unions of unknown subspaces, ac-
counting for rigid plus small and large non-rigid defor-
mations. These subspaces, in conjunction with additional
matrices encoding the affinities among the samples and
among their deformations, are retrieved from incomplete
2D annotations using an efficient Augmented Lagrange
Multiplier (ALM) scheme. A subsequent spectral clus-
tering on the affinity matrices yields the results of the
partition (an example is shown in Fig. 1). The whole al-
gorithm works in a fully unsupervised manner, without
requiring to know a priori the number of object groups
nor any other information about the type of deformation
(if any) undergone by the objects. We are not aware of
any other approach solving the four problems jointly
solely from partial 2D point annotations in an image
collection. We thoroughly evaluate our algorithm on
both synthetic and real images for rigid and non-rigid
categories, improving state-of-the-art NRSfM solutions
(which do not provide any kind of grouping as we do)
by a considerable margin.

An early version of this work was presented in [8],
in which we proposed our method to be suitable for
simultaneously estimating 3D shape, motion, and object

and deformation type grouping, all of them, directly
from incomplete 2D annotations in an image collection.
In this paper, we extend our contribution incorporating
more technical details of our approach and proposing a
new algorithm to estimate in the same loop all model
parameters we consider. Moreover, we also extend the
battery of results to emphasize the advantages of our
approach in comparison with state of the art, including
more evaluations on both synthetic and real data, and
showing the generality and accuracy of our approach
even without assuming any training data at all.

2 RELATED WORK

Inferring the 3D shape while retrieving camera location
from only 2D point tracks in a collection of RGB images,
is a mature problem when the observed object is rigid.
In this case, the rigidity constraint is enough to make
the problem well-posed, yielding impressively accurate
solutions [1], [41], [54]. In contrast, handling non-rigid
scenarios becomes an ill-posed problem that requires to
exploit the denominated art of priors to constrain the
solution space. The most standard prior used in NRSfM
consists in constraining the deforming shape to lie in a
low-rank subspace. In order to learn such a low-rank
model, early approaches rely on factorization [13], [31],
[48], [57], or optimization-based strategies [12], [39], [55],
[58]. More recently, the low-rank constraint has been
enforced by means of PCA-like formulations in which
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Fig. 2. 3D reconstruction and object grouping from incomplete 2D annotations of rigid and non-rigid categories. In both
cases, input data consists of a collection of RGB images with partial 2D semantic point annotations. The number of objects within
the category is unknown. Our goal is to simultaneously retrieve the 3D object reconstruction in every image, the camera pose, and
the instance group (a different color per each object instance is used). Left: A rigid chair category, in which each instance has a
single 3D configuration. Right: A non-rigid face category, where every instance may potentially have as many 3D configurations
as its number of images. This graph only shows instance grouping, but as we shall see in the results, our approach also permits
segmenting every non-rigid instance into several types of deformation (or expressions in the case of the faces).

the rank of the shape matrix is also optimized. These
type of methods either assume the data lies in a single
low dimensional shape space [22], [27], [29], or in a union
of temporal [64] or spatio-temporal subspaces [6], [38].
Low-rank models were also extended to the temporal
domain, by exploiting pre-defined trajectory basis [9],
[50], the combination of shape-trajectory vectors [32],
[33], and the force space that induces the deformations
of an object [5].

In addition to low-rank models, there exist also a series
of works that enforce other types of constraints. Maybe,
the most commonly used prior consists in imposing inex-
tensibility between every pair of neighboring points [20],
[49]. While these approaches can produce accurate solu-
tions, the inextensibility prior limits their applicability to
only isometric deformations. More general deformations
(e.g., articulated motion, discontinuous deformations or
elastic warps) can be retrieved through physics-based
models [3], [7]. As most of the previous approaches pro-
cess image sequences, additional temporal smoothness
priors on motion and shape deformation have allowed
to obtain more robust solutions for rigid [46] and non-
rigid scenarios [12], [29], [32], [40].

In any event, while achieving remarkable results, all
previous approaches aim at modeling one single ob-
ject in a category, typically observed from smoothly
changing viewpoints. This means they are not directly
applicable to a multi-object scenario we contemplate in
this paper. However, there have been some attempts
along this line. Recent solutions to reconstruct rigid
categories from single images [34], [35], resort to large
amounts of training data to constrain the solution space.
Our approach, instead, aims at learning the solution
space on the fly from a collection of images, without
requiring any training data at all. There exist very recent
works implementing this idea on rigid object categories,

either exploiting the concept of symmetry [28], or im-
posing a sparse shape-space model [37]. In [2], this
was extended to non-rigid categories through a dual
low-rank shape model which allowed handling small
deformations. Nevertheless, these works are still limited
by the fact that they assume the grouping of the image
collection into objects to be known a priori.

In parallel, some works have relied on neural net-
works to learn a category deformation model [17], [36],
[47] and infer the 3D reconstruction from 2D annotations.
In all cases, they propose to exploit several losses to solve
the problem in an unsupervised manner as we do in
this paper, but require a large amount of training data
to learn the deformation model and demand an specific
hardware to complete the training step. Unfortunately,
this cannot be assumed for generic scenarios, where
obtaining training data could be a hard task. In contrast,
our formulation can solve the problem in just few sec-
onds in a commodity computer, without requiring so-
phisticated hardware. Moreover, none of them simulta-
neously solve for reconstruction and object/deformation
grouping as we propose in this paper.

While both SfM and NRSfM approaches exploit fea-
ture point correspondences to collect a 2D measurement
matrix, in category reconstruction from an image collec-
tion this must be extended to semantic point correspon-
dences. Defining the same semantic points in all objects
of a category is a difficult task, being their exact position
very subjective in some cases. Some recent works [56],
[62], [63] to address this problem have been proposed,
which though, are beyond the scope of this paper.

We overcome most of the limitations of previous meth-
ods with an approach that simultaneously recovers cam-
era pose, 3D shape, object and deformation grouping,
and the incomplete 2D annotations, for both rigid and
non-rigid categories of object shapes. To this end, we
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`````````Method
Feature Automatic Occlusion Object / Type of Rigid/Non-Rigid

rank handing deformation grouping categories
[5], [12], [32], [33], [55] − X −/− −/−
[22], [29] X − −/− −/−
[27], [39], [40] X X −/− −/−
[64] X − −/X −/−
[2] − X −/− −/X
[28], [37] X X −/− X/−
Ours X X X/X X/X

TABLE 1
Qualitative comparison of our approach with other

competing methods to simultaneously solve reconstruction
and dual segmentation of object/deformation categories.

Our approach is the only one that jointly retrieves 3D
reconstruction of both rigid and non-rigid categories, recovers
camera pose, and estimates grouping per object instance and
type of deformation. Moreover, it can also handle incomplete
2D observations, and does not need to adjust the rank of the
basis, all of them, without assuming any training data at all.

Note also that [17], [36], [47], some deep-learning approaches,
can handle both rigid and non-rigid categories but require large

amounts of training data to learn the deformation model.
Additionally, these approaches do not estimate object and

deformation type grouping as we do.

encode object deformation by means of multiple unions
of subspaces, without assuming any prior knowledge
about the dimensionality of the subspaces nor which
data points belong to which subspace. As a result, we
obtain a unified and unsupervised framework which
does not need 3D training data. In table 1, we provide
a qualitative comparison of the main characteristics of-
fered by our approach and the most relevant competing
techniques. As it can be seen, we are not aware of
any other work to jointly offer all characteristics our
approach provides.

3 REVISITING STRUCTURE FROM MOTION

We next review the SfM formulation that will be later
used to describe our approach on rigid and non-rigid cat-
egory reconstruction and grouping. Let us consider a set
of P points detected on I images. Let xi

p = [xip, y
i
p, z

i
p]>

be the 3D coordinates of the p-th point in image i,
and wi

p = [uip, v
i
p]> its 2D position according to an

orthographic projection. We can jointly write the 3D-to-
2D mapping of all points as the following linear system:w1

1 . . . w1
P

...
. . .

...
wI

1 . . . wI
P


︸ ︷︷ ︸

W

=

R1

. . .
RI


︸ ︷︷ ︸

G

x1
1 . . . x1

P
...

. . .
...

xI
1 . . . xI

P


︸ ︷︷ ︸

X̂

+T,

(1)
where W is a 2I × P matrix with the 2D measurements
arranged in columns, G is a 2I × 3I block diagonal
matrix made of I truncated 2 × 3 camera rotations Ri,
X̂ is a 3I × P matrix with the 3D locations of the
points for all the collection, also arranged in columns,
and T is a 2I × P matrix that stacks P copies of the I
bi-dimensional translation vectors ti. The SfM problem
consists in recovering the 3D shape X̂, along with the

camera motion {Ri, ti} with i = {1, . . . , I}, from 2D
point detections W.

When a rigid object is observed, i.e., x1
p = x2

p =
. . . = xI

p, the shape matrix can be simplified. In this
case, the shape can be estimated by applying SVD-based
factorization strategies, and enforcing a 3-rank constraint
on W [44], [54] together with orthonormality constraints
on G. If, by contrast, the observed object was non-rigid,
the I locations of every point can be potentially different.
Then, shape and motion can be retrieved by enforcing
a 3K-rank decomposition over the measurement matrix
W [13], [57], where K represents the rank of a linear
subspace.

For later computations, we will also re-arrange the
elements of X̂ into a new 3P×I matrix X encoding the x,
y and z coordinates in different rows. Both matrices can
be related through a function q(·) such that X̂ = q(X) [6],
[22], [27], [29]. This new interpretation has the advantage
of allowing for a K-rank decomposition, rather than 3K,
avoiding the use of unnecessary degrees of freedom.

4 SHAPE AS MULTIPLE UNIONS OF SUB-
SPACES

This section describes the deformation model we pro-
pose to represent the 3D shape of an unknown num-
ber of objects belonging to a specific family and their
relation with the 2D measurements in a collection of
images. In the following we shall consider three types of
scenarios depending on the nature of the deformation:
rigid objects, and non-rigid ones with small and large
deformations, respectively.

4.1 Type 1: Rigid Objects

Let us consider a collection of I images of a number of
rigid objects that belong to the same category (e.g., bus in
Fig. 3-left). Each object is characterized by P semantic 3D
points, which, for the moment, we will assume to be all
visible in all images. The number of objects and images
per object is not known a priori. Our goal is, given the
2D annotations, to reconstruct the 3D position of the P
points in all images, and identify and group the images
belonging to the same object. When only considering one
single object instance, the problem becomes a standard
rigid SfM [44], [54] (see the images #1 and #2 in Fig. 3-
left), which we will not tackle in this paper. When more
than one type of object is considered, we can consider
their P semantic points to be related by a geometric
transformation that includes both a rigid and a non-rigid
deformation. Reconstructing the P points can then be ad-
dressed in a NRSfM context, although without enforcing
temporal consistency between consecutive images.

Assuming a single low-rank constraint could be suffi-
cient to span the solution space of the 3D shape in this
case, as was shown in [28]. However, this formulation
is very sensitive to the chosen rank of the subspace,
and its optimal value may be very difficult to discover
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Im. #1 Im. #2 Im. #3 Im. #4 Im. #5

Rigid Objects 

R1, t1 R2, t2, X2 R3, t3, X3 R4, t4, X4 R5, t5, X5

Im. #1 Im. #2 Im. #3 Im. #4 Im. #5

Non-Rigid Objects: Linear Deformations 

R1, t1, Y1 R2, t2, Y2 R3, t3, X3, Y3 R4, t4, Y4 R5, t5, X5, Y5

Non-Rigid Objects: Non-Linear Deformations 

Im. #1 Im. #2 Im. #3 Im. #4 Im. #5

R1, t1, Z1 R2, t2, Z2 R3, t3, X3, Z3 R4, t4, X4, Z4 R5, t5, Z5

Fig. 3. Rigid and non-rigid transformations to model 3D shape deformations of rigid and non-rigid categories from a RGB
image collection. Our deformation model can code several types of transformations. In all cases, between every pair of images,
we define a 6 d.o.f. rigid motion, consisting of a rotation matrix Ri and a translation vector ti. Left: The geometric relation between
pairs of objects in a rigid category (e.g., bus) can be defined in the context of a NRSfM problem using a global deformation Xi.
For this particular case, whether the objects within the same category are the same (see for instance images #1 and #2), the
problem can be addressed in the context of rigid SFM. Middle: In some categories (e.g., face), everyone of the objects deforms
by themselves. In this case, besides the global deformation between objects, we define a linear deformation Yi to encode the
non-rigid motion that each object may undergo. Right: Other categories (e.g., dog) follow more complex patterns. In this case we
consider a non-linear deformation Zi. Our deformation model jointly considers all types of deformations and automatically learns
the contribution of each term to describe the geometry of the objects in a specific category. Images in this figure are taken from the
PASCAL VOC [26], MUCT [45], and TigDog [24] datasets, respectively.

when the number of objects is unknown. Additionally,
the maximum rank, and hence the expressiveness of the
subspace, is limited by construction by the number of
semantic points P , which in most of our scenarios is
rather small. To overcome these difficulties, we introduce
a formulation that models deformation using a union of
subspaces, allowing to automatically represent a wide
range of deformations, from simple low-rank solution
spaces to highly expressive ones. We mathematically
write this model as:

X = XQ + E1 , (2)

where Q is a I × I affinity matrix which should have
higher entries for pairs of images of the same object, and
E1 is a 3P × I residual noise matrix to avoid the trivial
solution Q = II . In essence, by doing this, we bring the
standard scenario of the rigid SfM problem to the non-
rigid domain, with the additional outcome of grouping
the input images into different objects, with no a priori
knowledge about the dimensionality of the subspaces
nor which data points belong to which subspace. As we
shall see later, once the affinity matrix Q is recovered,
spectral clustering [18] can be applied on it to discover
and match the different objects within the collection.

It is worth noting that the matrix X should ideally
have a rank equal to the number of objects in the image
collection (i.e., X is low-rank) as long as that number is
greater than the number of semantic points. This analysis
can be also done with the matrix X̂, becoming the rank
in this case 3 times the number of objects. In any case,
as we assume in our problem that the number of objects
is unknown, i.e., the rank value is not provided a priori,
we will enforce this constraint by directly minimizing
the rank of X.

4.2 Type 2: Non-Rigid Objects with Small Deforma-
tions

We next consider the case in which the objects, besides
a rigid motion, also undergo small deformations or a

partial deformation of some of their points. Figure 3-
middle shows an example of such situation for faces,
where most of the deformation is concentrated around
the mouth and eye areas. Existing solutions address
this case by enforcing a single low-rank subspace [12],
[22], [23], [48], when only considering one object, or
through a dual low-rank shape representation [2] when
multiple objects appear in the set of images. Most these
approaches, however, still require accurately adjusting a
priori the dimensionality of the subspace.

In order to account for such small and sparse defor-
mations we will introduce a matrix Y ∈ R3P×I in our
model. In contrast to the aforementioned approaches, no
low-rank constraint will be enforced, but only a sparsity
constraint that allows the deformation of just a few
points.

4.3 Type 3: Non-Rigid Objects with Large Deforma-
tions
We finally consider the case in which the images corre-
spond to a number of non-rigid objects of a given cat-
egory, that can potentially undergo large deformations.
The articulated motion of humans or animals (see Fig. 3-
right) are examples of this scenario. In addition to the
unknown number of objects in the category, we also
assume the number of actions or poses not to be known.

In order to model this situation, we require a model
with large expressibility. This is achieved by introducing
into the model a matrix Z ∈ R3P×I which is enforced to
be formed by another union of subspaces:

Z = ZQH + E2 , (3)

where H is again a I × I affinity matrix, and E2 is
a residual noise one. Note that in this case we are
considering the total affinity to be defined by the product
QH, that is, we consider affinities between type of
deformations. Like mentioned before for the matrix Q,
applying spectral clustering on the affinity QH will yield
groups of objects with similar deformation (e.g., animal
#1 or #2 standing, animal #1 or #2 sitting). Again, as the
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number of deformation groups is not known, we enforce
the low-rank constraint by minimizing the rank of Z.

5 3D SHAPE, MOTION AND GROUPING PER
OBJECT AND DEFORMATION TYPE

Our goal is to jointly recover 3D shape, camera motion,
and object and deformation type from partial 2D an-
notations. In this section we formulate this problem by
integrating the three deformation types discussed above
(and hence, we will use the name of Multiple Unions
of Subspaces –MUS– to denote our approach) into the
3D-to-2D projection model defined in Eq. (1), along
with the orthogonality constraints. We then describe two
optimization schemes we propose to solve it.

5.1 Problem Formulation

Let W̄ be a possibly incomplete matrix of 2D annotations
(recall that I is the number of images of an object class
and P the number of points defining the class), and O
the corresponding I × P observation matrix with {1, 0}
entries indicating whether a specific point in an image is
observed or not. Given W̄ and O, we aim at recovering:
1) the 3D locations of all points in all images, encoded
by the shape matrices X, Y and Z defined in Section 4;
2) the object specific Q and deformation specific QH
affinity matrices which we shall use later for grouping;
3) the camera pose parameters (G,T) in all images; and
4) the complete 2D detections matrix W. We denote
all these unknown parameters, plus the corresponding
noise matrices by Ψ ≡ {W,G,T,Q,H,X,Y,Z,E1,E2}.

In order to tackle this problem we propose optimizing
a cost function that enforces the correct reprojection of
the estimated 3D shape onto the image and incorporates
the shape constraints we mentioned when describing the
model in Section 4. In particular, the matrices X and
Z are enforced to lie in low-rank subspaces. Since rank
minimization is a non-convex NP-hard problem [51], the
nuclear norm is used as a convex relaxation [16], [19].
Sparsity on the component Y is encouraged through l1-
norm minimization. Additionally, we consider the mixed
l2,1-norm over the matrices of residual noise E1 and E2,
as this type of norm favors structured sparsity. Note
that structured noise patterns may occur on the shape
matrices X and Z when specific data points are missing
or corrupted by noise. Taking all this into consideration
we formulate the optimization problem as follows:

arg min
Ψ

‖ (O⊗ 12)�
(
W − W̄

)
‖2F + β‖W‖∗ + φ‖Q‖∗

+ γ(‖X‖∗ + ‖Y‖1 + ‖Z‖∗) + φ‖H‖∗
+ λ(‖E1‖2,1 + ‖E2‖2,1) (4)

subject to W = G q(X + Y + Z) + T
GG> = I2I
X = XQ + E1

Z = ZQH + E2

where ⊗ and � represent the Kronecker and Hadamard
products, respectively. 1 is a vector of ones, and I the
identity matrix. ‖·‖F indicates the Frobenius norm, ‖·‖∗
denotes the nuclear norm, and ‖ · ‖1, and ‖ · ‖2,1 are the
l1-norm and l2,1-norm, respectively. Finally, {β, φ, γ, λ}
represent the set of penalty weights. As it can be seen,
the projection system in Eq. (1) is coded by the first
constraint in our full energy in Eq. (4). In order to obtain
symmetric affinity matrices, we could impose directly
the constraint Q = Q> in our optimization. However,
this results in increasing the computational complexity
of our algorithm and, in practice, the performance is
not better than applying a post-symmetrization of Q.
Therefore, and following other approaches in the lit-
erature [61], we will not enforce this constraint in the
optimization.

As it can be seen in Eq. (4), we do not include in our
formulation temporal smoothness priors neither in the
shape deformation nor in the affinities [4]. While this
type of priors could provide more accurate solutions for
some collections, in general terms, we cannot assume
these priors for an arbitrary image collection, where the
order of the images within the collection is normally
random. As we learn the deformation model directly
from data, without assuming any training data, it is
worth noting that once learned, we could apply it in
order to infer unseen instances in the same category, by
enforcing the multiple unions of subspaces we recover.

In this paper, we propose two algorithms to minimize
the cost function in Eq. (4). First, we present a 3-step
factorization approach in which: 1) complete missing en-
tries W; 2) estimate camera pose parameters {G,T}, and
3) recover the 3D object reconstruction q(X+Y+Z), and
perform grouping per object Q and type of deformation
QH. This algorithm is denoted as MUS, and will be
described in section 5.2. Our second algorithm solves
the problem jointly estimating the model parameters in
the same loop, instead of fixing the camera parameters
in an early step. This algorithm is denoted as MUS2, and
it will be described in section 5.3.

5.2 MUS: A 3-Step Factorization Strategy
We next present the three main steps of the MUS algo-
rithm.

5.2.1 Recovering 2D Missing Annotations
To complete the unobserved 2D annotations of W̄ (zeros
in the observation matrix O), we independently optimize
W in the first two terms of Eq. (4) while enforcing this
matrix to be low rank. As shown in [6], [11], [14], this
optimization can be done by means of bilinear factor-
ization, defining W = UV>. We write the equivalent
problem as:

arg min
W,U,V

‖ (O⊗ 12)�
(
W − W̄

)
‖2F +

β

2

(
‖U‖2F + ‖V‖2F

)
(5)

subject to W = UV>
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This can be efficiently solved via ALM. To improve
convergence, the missing entries of W̄ are initialized
in every image as the mean value of the observed data
points.

5.2.2 Retrieving Camera Motion

Once the missing observations are estimated, the camera
translation ti and rotation Ri in every image can be
inferred from the rest of model parameters. For this
purpose, we first estimate the translations in T as ti =
1
P

∑P
p=1 wi

p. The rotations matrices in G can then be
jointly estimated by solving the following non-convex
problem:

arg min
G

1

2
‖W −T−GX̂‖2F (6)

subject to GG> = I2I

where the constraint enforces the camera rotation ma-
trices to be orthonormal. This optimization is solved by
factorization, using different values of rank and stopping
automatically when there is no additional improvement
in the average camera orthonormality.

5.2.3 Simultaneous 3D Reconstruction and Grouping

We finally formulate the problem of simultaneously
retrieving 3D shape in all images as well as the type of
object and deformation grouping. Assuming the matrices
W, G and T to be known, the optimization problem that
needs to be solved becomes:

arg min
Ψ

′
γ(‖X‖∗+‖Y‖1+‖Z‖∗) +‖Q‖∗ +‖H‖∗

+λ(‖E1‖2,1+‖E2‖2,1) (7)

subject to W = G (A + B + C) + T
X = XQ + E1

Z = ZF + E2

q(X) = A
q(Y) = B
q(Z) = C
F = QH

where Ψ
′
≡ {Q,H,F,X,A,Y,B,Z,C,E1,E2}. Note

that compared to the original Eq. (4) we have included
three additional constraints, namely q(X) = A, q(Y) =
B and q(Z) = C, where q(·) simply rearranges the ele-
ments of a matrix as discussed in Section 3. Furthermore,
to reduce the computational burden, we have included
the constraint F = QH. Without loss of generality we
have also reduced the number of weight parameters
originally appearing in Eq. (4), by setting φ = 1 and
re-scaling the rest. In order to solve Eq. (7), we again
resort to the ALM framework, and writing the equivalent
Lagrangian function as:

arg min
ΨMUS

{CostMUS} (8)

where:

CostMUS =γ(‖X‖∗+‖Y‖1+‖Z‖∗)+‖J‖∗+‖K‖∗
+λ(‖E1‖2,1+‖E2‖2,1)

+〈L1,P−G(A + B + C)−T〉+〈L4, q(X)−A〉
+〈L2,X−XQ−E1〉+〈L3,Z−ZF−E2〉
+〈L5, q(Y)−B〉+〈L6, q(Z)−C〉
+〈L7,F−QH〉+〈L8,Q−J〉+〈L9,H−K〉

+
α

2
(‖P−G(A + B + C)−T‖2F +‖q(X)−A‖2F )

+
α

2
(‖X−XQ−E1‖2F +‖Z−ZF−E2‖2F )

+
α

2
(‖q(Y)−B‖2F +‖q(Z)−C‖2F +‖F−QH‖2F )

+
α

2
(‖Q−J‖2F +‖H−K‖2F ) (9)

with ΨMUS ≡ {J,Q,K,H,F,X,A,Y,B,Z,C,E1,E2}.
For later computations, we also include the supporting
matrices Q ≡ J and H ≡ K. The Lagrange multi-
pliers are defined as: L1 ∈ R2I×P , {L2,L3} ∈ R3P×I ,
{L4,L5,L6} ∈ R3I×P , and {L7,L8,L9} ∈ RI×I ; and
α > 0 is a penalty coefficient to improve convergence.

The previous optimization problem can be efficiently
tackled by means of partial subproblems independently
resolved in closed form. The outline of the algorithm
is shown in Algorithm 1. The closed-form solutions for
computing Q, H, F, A, B and C are obtained solving
the derivatives of Eq. (8) with respect to Q, H, F, A, B
and C, respectively, and equating to zero. For J, K, X
and Z matrices, it is required to solve a singular-value-
thresholding minimization problem [15]. The optimiza-
tion of Y can be done in closed form by the element-
wise shrinkage operator [42]. Finally, to optimize the
noise terms E1 and E2, we apply the Lemma 4.1 in [59].
It is worth noting that after updating, the Lagrange
multipliers are also modified.

5.3 MUS2: Joint 3D Shape, Motion and Grouping in
the Same Loop

We now describe MUS2, which in contrast to MUS,
iteratively updates camera-motion parameters in one
single iterative loop. To this end, we have to solve the
following problem:

arg min
ΨMUS2

{CostMUS2} (10)

where:

CostMUS2 = CostMUS+‖GG> − I2I‖2F ,

and ΨMUS2 = ΨMUS∪{G}. The previous cost function of
MUS2 is a generalization of that for MUS in Eq. (8), with
additional update rules for camera motion. That is, the
full energy function in Eq. (4) is minimized in a unified
fashion. To perform initialization on this new version,
we propose to solve Eqs. (5)-(6).
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In order to solve for camera rotation, we re-write our
problem as:

arg min
Mi∈SO(3)

I∑
i=1

P∑
p=1

‖wi
p−MMi(ai

p + bi
p + cip)− tip‖2F , (11)

where Mi ∈ SO(3) is a 3× 3 full camera rotation matrix,

with Ri =MMi and M =

[
1 0 0
0 1 0

]
. For simplicity, in

this section we will use xi
p to denote xi

p = ai
p + bi

p + cip,
where ai

p, bi
p and cip represent the p-th point onto the

i-th image in A, B and C shape matrices, respectively.
As every Mi is subject to an orthogonality constraint

(recall that every rotation matrix lies in a smooth mani-
fold based on the orthogonal group SO(3)), obtaining a
closed-form solution is not possible. To solve this, we
present a Riemannian-Newton algorithm [25], [53] to
enforce every rotation matrix to be a Stiefel matrix. Let
∆Mi ∈ TM(SO(3)) be the tangent of Mi, that it can be
expressed as ∆Mi = Mi [δ]×, with [δ]× being a skew-
symmetric matrix. As Mi lies in SO(3), a geodesic at Mi

in the tangent direction can be coded by means of the
Rodrigues’ formula as:

Mi
(
δ̂, ω

)
= Mi

(
I3 +

[
δ̂
]
×

sin(ω) +
[
δ̂
]2
×

(1− cos(ω))

)
,

where [δ]× ∈ so(3) is the Lie algebra of the SO(3) group,

and [δ]× = ω
[
δ̂
]
×

. Thanks to the previous definition, we

can compute both gradient ∇f(·) and Hessian Hessf(·)
expressions (for ω = 0) in Eq. (11) and in a tangent
direction ∆Mi as:

∇f(∆Mi) =
(
Ri

P∑
p=1

((xi
p)(xi

p)>)−
P∑

p=1

((wi
p − tip)(xi

p)>)
)

∆>Ri ,

Hessf(∆Mi ,∆Mi) =(
Ri

P∑
p=1

((xi
p)(xi

p)>)−
P∑

p=1

((wi
p − tip)(xi

p)>)
)

∆>MiMi∆>Ri

+ ∆Ri

P∑
p=1

((xi
p)(xi

p)>)∆>Ri ,

where ∆Ri = M∆Mi represents the first two rows of
a full tangent vector ∆Mi . With these ingredients, we
can now propose a Riemannian-Newton algorithm for
updating the camera rotation. The outline of our MUS2
algorithm is displayed in Alg. 2.

5.4 Object and Deformation Grouping
Once the similarity matrices Q and F are recovered from
an image collection, we apply a post-symmetrization
step, using (|Q| + |Q>|) and (|F| + |F>|) as the affinity
matrices, respectively. After that, we run the spectral
clustering algorithm proposed in [18] to find subspace
segmentation. Figure 1 shows an instance of two ma-
trices that we obtain, where each entry (a, b) indicates
the degree of affinity between the a-th and b-th image

Input : Incomplete 2D annotations W̄, observation
matrix O, and penalty weights γ and λ

Output: Full observations W, 3D reconstruction
{A + B + C}, camera pose {G,T}, and
object Q and deformation F grouping

/* Complete Missing Entries, Eq. (5) */

/* Estimate Camera Pose {G,T}, Eq. (6) */

/* 3D Shape {A + B + C} and grouping
{Q,F}, Eq. (7), by solving the ALM
problem in Eq. (8) */

1 while not converged do
/* Update Model Parameters */

2 J = min 1
α
‖J‖∗ + 1

2
‖J− (Q + L8

α
)‖2F

3 D = X>(X−E1 + L2
α

)+FH>+J+ L7
α
H>− L8

α

4 vec(Q) =
(
II ⊗ (X>X + II)+HH> ⊗ II

)−1vec(D)
5 Q = mat(vec(Q))
6 K = min 1

α
‖J‖∗ + 1

2
‖J− (H + L9

α
)‖2F

7 H = (Q>Q+II)
−1
(
Q>F+K+(Q>L7−L9

α
)
)

8 F = (Z>Z+II)
−1
(
Z>(Z−E2)+QH+ Z>L3−L7

α

)
9 X = min γ

α
‖X‖∗ + 1

2
‖X−

(
(E1 − L2

α
)(II −Q)> +

q−1(A− L4
α

)
)(

(II −Q)(II −Q)> + II
)−1‖2F

10 A = N−1
(
G>(W+ L1

α
−G(B + C))+ L4

α
+q(X)

)
11 Y = min γ

α
‖Y‖1 + 1

2
‖Y − q−1(B− L5

α
)‖2F

12 B = N−1
(
G>(W+ L1

α
−G(A + C))+ L5

α
+q(Y)

)
13 Z = min γ

α
‖Z‖∗ + 1

2
‖Z−

(
(E2 − L3

α
)(II − F)> +

q−1(C− L6
α

)
)(

(II − F)(II − F)> + II
)−1‖2F

14 C = N−1
(
G>(W+ L1

α
−G(B + A))+ L6

α
+q(Z)

)
15 E1 = min λ

α
‖E1‖2,1 + 1

2
‖E1 − (X−XQ + L2

α
)‖2F

16 E2 = min λ
α
‖E2‖2,1 + 1

2
‖E2 − (Z− ZF + L3

α
)‖2F

/* Update Lagrange Multipliers */
17 L1 = L1 + α(W −G(A + B + C)−T)
18 L2 = L2 + α(X−XQ−E1)
19 L3 = L3 + α(Z− ZF−E2)
20 L4 = L4 + α(q(X)−A)
21 L5 = L5 + α(q(Y)−B)
22 L6 = L6 + α(q(Z)−C)
23 L7 = L7 + α(F−QH)
24 L8 = L8 + α(Q− J)
25 L9 = L9 + α(H−K)

/* Update Penalty Weights */
26 α = min(ηα, 1012)

/* Check Convergence */
27 ‖W −G(A + B + C)−T‖∞ < ε
28 ‖X−XQ−E1‖∞ < ε
29 ‖Z− ZF−E2‖∞ < ε
30 ‖q(X)−A‖∞ < ε
31 ‖q(Y)−B‖∞ < ε
32 ‖q(Z)−C‖∞ < ε
33 ‖F−QH‖∞ < ε
34 ‖Q− J‖∞ < ε
35 ‖H−K‖∞ < ε
36 end

37 Not.: N = G>G+I3I , η = 1.1, α = 10−2 and ε = 10−7.
Matrices Lc, c = {1, . . . , 9}, are initially set to zero.

Algorithm 1: MUS algorithm for optimizing
Eq. (4). vec(·) and mat(·) are vectorization and
matrization operators, respectively.

object for Q, or between the a-th and b-th deformation
type for F. To improve qualitative evaluation, we also
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input : Incomplete 2D annotations W̄, observation
matrix O, and penalty weights γ and λ

output: Full observations W, 3D reconstruction
{A + B + C}, camera pose {G,T}, and object
Q and deformation F grouping

/* Initialization: Eqs. (5)-(6) */

/* ALM Optimization of Eq. (10) */
1 while not converged do

/* Update Rules in Alg. 1 */

2 if ‖W −G(A + B + C)−T‖∞ < ε2 then
3 for i=1,. . . ,I do

/* Optimal Updating Vector */
4 aE = Mi [ae]× 1 ≤ a ≤ 3
5 ag = ∇f(aE)
6 aaP = Hessf(aE, aE)
7 δ = −P−1(aaP)g(ag)
8 ∆Mi = Mi [δ]×

/* Update the Rotation Matrix */

9 Mi = Mi exp

(
ω
[
δ̂
]
×

)
10 end
11 G = blkdiag(R1(M1), . . . ,RI(MI))
12 else G ≡ G
13 end
14 Not.: aE represents an orthonormal basis of the

tangent space on SO(3), with ae a standard basis in
R3. The parameter ω =

√
1
2

tr
(
∆>

Mi∆Mi

)
, and

ε2 = 25 · 10−2.
Algorithm 2: MUS2 algorithm for optimizing
Eq. (4). blkdiag(·) and tr(·) denote a block matrix
operator and the trace of a matrix, respectively.

include a grouping bar for every affinity matrix we rep-
resent, where every color represents a group discovered
after applying spectral clustering. The granularity of the
grouping can be controlled through a threshold on the
eigenvalues internally computed by [18].

5.5 Complexity Analysis

One of the main virtues of the formulation we propose is
that it has a small computational load. The most compu-
tationally demanding part of the Algs. 1-2 corresponds
to the steps 10, 12 and 14 in Alg. 1, which requires
computing an inverse matrix of size 3I × 3I . However,
as the matrix to be inverted is the same in the three
cases, the computational burden can be reduced. Also,
we must consider in this analysis the step 4, which
requires to solve a very sparse linear system of order
I2. It is worth noting that even if our algorithm needs
to compute several SVD operations (see steps 2, 6, 9, 11
and 13), their complexities become negligible compared
to the previous inverse computation. On balance, our
problem can be sorted out in a polynomial time with a
computational complexity of at most of O(I3) [30]. On
average, the median computation time in rigid-category
experiments with image collections between 105 − 150
images was of 7.6 − 12.0 seconds, respectively, on a

commodity laptop with an Intel Core i7 processor at
2.4GHz. In order to handle larger datasets, we could
use the results in [60] or extend our formulation to be
employed in a sequential manner, being this a part of
our future work.

6 EXPERIMENTAL EVALUATION

We now present our experimental results for different
types of scenarios, including synthetic and real image
collections of rigid and non-rigid categories. We provide
quantitative and qualitative evaluation and compare our
approach against state-of-the-art solutions on several
synthetic datasets with 3D ground truth. For quantitative
evaluation, we provide a normalized mean 3D recon-
struction error eX used before in [9], [22], [32].

To evaluate the object grouping accuracy, we apply
spectral clustering [18] over the estimated matrices as it
was said in section 5.4, and retrieve the I−dimensional
vector G, where each entry is an integer representing
the group index. The grouping accuracy is defined as
aG = 1− 1

I

∑I
i=1 I(Gi 6= GGT

i ), where I(v) is the indicator
function, i.e., I(v) = 1 if v is true, and 0 otherwise, and
GGT
i is the ground truth group index of the i-th image.

6.1 Synthetic Images
We first evaluate our approach on synthetic collections
of images of rigid object categories, where the 3D ground
truth is obtained from the CAD models of the PASCAL
VOC dataset [26]. We choose the categories which are
defined by at least eight points, indicating by (I/P) the
number of images and semantic points, respectively.
Particularly, we consider the following image collections:
Aeroplane (105/16), Bicycle (150/11), Bus (150/8), Car
(150/14), Chair (150/10), Diningtable(150/8), Motorbike
(150/10), and Sofa (135/12). Based on this, we evaluate
our approach on those categories which contain between
seven and ten objects each (see Table 2).

We compare the 3D reconstruction error of our ap-
proaches, denoted as MUS and MUS2, with two SfM
baselines: TK [54] and MC [44]; as well as with
nine NRSfM solutions: the shape-trajectory methods
CSF [32] and KSTA [33]; the block matrix approach
BMM [22], the probabilistic-normal-distribution method
EM-PND [39], the temporal union of subspaces TUS [64],
the grouping-based NRSfM of GBNR [27], the consensus
NRSfM of CNR [40], and the deep-learning approaches
DNRSM [36] and C3DPO [47]. We also include the
baseline LRR [43] to obtain the object grouping from 2D
annotations. The parameters of these methods were set
in accordance to their original papers. We manually set
the rank of the subspace for the methods CSF [32] and
KSTA [33]; and did a fine hyperparameter search for [36]
and [47], using the values that gave the best results. As
the source code for TUS [64] is not publicly available, we
used our own implementation. In this particular case, we
also used our annotation completion and camera motion
estimation, as the method did not address any strategy
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`````````Data
Algorithm TK [54] MC [44] CSF [32] KSTA [33] BMM [22] EM-PND [39] TUS [64] GBNR [27] CNR [40] DNRSM [36] C3DPO [47] LRR [43] MUS Ours (MUS2)

Metric: eX eX eX eX eX eX eX eX eX eX eX aG eX aG eX aG

Noise-free Annotations
Aeroplane 0.679 0.584 0.363 0.145 0.843 0.578 0.294 – 0.263 0.551 0.725 0.39(7) 0.261 0.95(7) 0.253 0.97(7)
Bicycle 0.309 0.440 0.424 0.442 0.308 0.763 0.182 0.221 – 1.187 1.220 0.39(10) 0.178 0.95(10) 0.143 0.96(10)
Bus 0.202 0.238 0.217 0.214 0.300 1.048 0.129 0.214 – 0.263 0.941 0.44(10) 0.113 0.75(10) 0.107 0.82(10)
Car 0.239 0.256 0.195 0.159 0.266 0.496 0.084 0.217 0.099 0.364 0.415 0.36(10) 0.078 0.87(10) 0.069 0.91(10)
Chair 0.356 0.447 0.398 0.399 0.357 0.687 0.211 – – 0.501 0.535 0.39(10) 0.210 0.87(10) 0.184 0.89(10)
Diningtable 0.386 0.512 0.406 0.372 0.422 0.670 0.265 0.351 – – 0.481 0.41(10) 0.264 0.86(10) 0.246 0.91(10)
Motorbike 0.339 0.346 0.278 0.270 0.336 0.740 0.228 0.268 – 0.448 0.507 0.41(10) 0.222 0.91(10) 0.202 0.93(10)
Sofa 0.381 0.390 0.409 0.298 0.279 0.692 0.179 0.264 0.214 0.281 0.366 0.44(9) 0.167 0.85(9) 0.141 0.89(9)
Average error: 0.361 0.402 0.336 0.287 0.388 0.709 0.196 0.256∗ 0.192∗ 0.513∗ 0.649 0.40 0.186 0.88 0.168 0.91
Relative error: 2.15 2.39 2.00 1.71 2.31 4.22 1.17 1.52∗ 1.14∗ 3.05∗ 3.86 – 1.11 – 1.00 –

Noisy Annotations
Aeroplane 0.677 0.583 0.233 0.183 0.566 0.760 0.297 – 0.294 0.566 1.305 0.41(7) 0.271 0.87(7) 0.265 0.89(7)
Bicycle 0.308 0.442 0.455 0.457 0.307 0.808 0.195 0.231 – 1.252 1.212 0.38(10) 0.188 0.93(10) 0.156 0.94(10)
Bus 0.204 0.241 0.227 0.218 0.255 1.197 0.139 0.223 – 0.275 0.519 0.44(10) 0.122 0.80(10) 0.117 0.83(10)
Car 0.241 0.259 0.169 0.164 0.161 0.624 0.100 0.222 0.122 0.366 0.362 0.36(10) 0.093 0.92(10) 0.086 0.93(10)
Chair 0.358 0.447 0.398 0.396 0.258 0.818 0.221 – – 0.502 0.597 0.41(10) 0.220 0.91(10) 0.192 0.91(10)
Diningtable 0.392 0.522 0.414 0.383 0.358 0.807 0.268 0.370 – 0.401 0.476 0.38(10) 0.267 0.89(10) 0.241 0.92(10)
Motorbike 0.342 0.348 0.295 0.290 0.299 0.748 0.237 0.277 – 0.492 0.508 0.41(10) 0.233 0.89(10) 0.215 0.93(10)
Sofa 0.384 0.392 0.303 0.294 0.240 0.726 0.188 0.271 0.228 0.285 0.311 0.42(9) 0.174 0.91(9) 0.150 0.92(9)
Average error: 0.363 0.404 0.312 0.298 0.305 0.811 0.206 0.266∗ 0.215∗ 0.517 0.661 0.40 0.196 0.89 0.177 0.91
Relative error: 2.16 2.40 1.85 1.78 1.82 4.82 1.22 1.58∗ 1.28∗ 3.08 3.93 – 1.16 – 1.05 –

TABLE 2
Evaluation on synthetic collections for several rigid object categories under noise-free and noisy

annotations. The table reports the 3D reconstruction error eX for the following SfM baselines: TK [54] and MC [44];
and the NRSfM baselines: CSF [32], KSTA [33], SPM [22], EM-PND [39], TUS [64], GBNR [27], CNR [40],

DNRSM [36] and C3DPO [47]; and our MUS and MUS2 algorithms. In all cases, we consider full 2D annotations. The
symbol “−” indicates the algorithm did not manage to process the sequence, and ∗, that the summary is obtained

considering only the successful cases. Relative error is always computed with respect to MUS2 reconstruction with
clean annotations, on average, the most accurate solution. In addition, for LRR [43] and our approaches we also

show the grouping accuracies aG, and the number of object groups in parentheses.

`````````Data
Algorithm TK [54] MC [44] CSF [32] KSTA [33] BMM [22] EM-PND [39] TUS [64] GBNR [27] CNR [40] DNRSM [36] C3DPO [47] LRR [43] MUS Ours (MUS2)

Metric: eX eX eX eX eX eX eX eX eX eX eX aG eX aG eX aG

Face (σnoise = 0) 0.055 0.056 0.037 0.033 0.032 0.068 0.031 0.041 0.054 0.023 0.037 0.38(3) 0.023 0.65(3) 0.022 0.65(3)
Face (σnoise 6= 0) 0.056 0.057 0.044 0.040 0.035 0.076 0.050 0.048 0.059 0.081 0.056 0.35(3) 0.034 0.63(3) 0.034 0.63(3)

TABLE 3
Evaluation on a non-rigid face synthetic collection under noise-free and noisy annotations. The table reports

the 3D reconstruction error eX for the following SfM baselines: TK [54] and MC [44]; and the NRSfM baselines:
CSF [32], KSTA [33], SPM [22], EM-PND [39], TUS [64], GBNR [27], CNR [40], DNRSM [36] and C3DPO [47]; and

our MUS and MUS2 algorithms. In all cases, we consider full 2D annotations. Again, for our approaches and
LRR [43], we also report the grouping accuracies aG, and the number of object groups we estimate in parentheses.

to solve these problems. We would like to recall that our
approach does not need manually tuning any subspace
rank parameter, neither assigning which images belong
to which object class. For all experiments, we set the
coefficients in Eq. (4) to λ = 0.03 and γ = 10.

Table 2 summarizes the reconstruction errors for all
methods and the object grouping accuracy of ours and
LRR [43], considering both noise-free and noisy anno-
tations. For the noisy case, we corrupt 2D detections
with a zero mean Gaussian perturbation with standard
deviation σnoise = 0.01 maxi,j,k {|dijk|}, where dijk rep-
resents the maximum distance of an image point to the
centroid of all the points. Note that our approaches MUS
and MUS2 consistently outperform the rest of compet-
ing techniques in terms of 3D reconstruction accuracy
for both cases, reducing, for instance, the 3D error of
other methods by large margins between the 14% and
422% for the noise-free case, or from 22% to 482% for
noisy annotations. Focusing on our two algorithms, we
observe that MUS2 produces more accurate solutions
than MUS in both noise-free and noisy annotations. Note
also that GBNR [27], CNR [40] and DNRSM [36] do
not provide solutions for all collections, as the number
of points is not sufficient for their formulation or no
convergence is achieved. As it can be seen, deep-learning

approaches do not provide the best solutions on this
dataset, since requiring large amounts of training data,
i.e., images, to learn the deformation model. In addition,
our approach also estimates the object grouping, as
seen in the right-most column for both algorithms MUS
and MUS2, resulting in very accurate segmentations
compared to the LRR [43] solution. As it can be seen,
our algorithms provide accurate segmentations even for
noisy annotations, outperforming the results with clean
data provided by LRR [43]. Figure 4 shows a few sample
images for the Bicycle and Chair categories, and the 3D
reconstructions we obtain by using our approaches.

We now evaluate our approaches on a synthetic col-
lection of images of non-rigid Faces with 3D ground
truth. This collection is provided by [10], and consists
of 300 images and 63 2D feature annotations. As the
deformation in this dataset is relatively small, in general
terms, all methods provide accurate 3D reconstructions.
In any case, our approaches provide again the most accu-
rate solutions. Regarding object segmentation, in spite of
using the faces of three different subjects, the shape con-
figuration of every sub-collection is quite similar (note
that it could be the same subject performing different
expressions) and computing the class affinities only from
2D semantic points is a complex problem. Fortunately,
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Fig. 4. Bicycle and Chair collections. The same information is shown for the two experiments. Top: Images
{#2,#31,#53,#70,#83,#148} and {#21,#37,#49,#63,#93,#139} for the bicycle and chair collections, respectively. The
semantic 2D point measurements fed to our model are represented by green circles. Bottom: Color-coded dots correspond to our
3D estimation (MUS and MUS2 solutions are displayed in two views, respectively) where every color represents a different object,
and empty circles represent the 3D ground truth. To improve visualization, some links are also drawn.

our approach is the only that jointly provides both class
and deformation grouping, obtaining a segmentation ac-
curacy of aG = 0.65(3) for both algorithms. A summary
of these results are reported in Table 3.

Finally, we show some failure cases of our algorithms,
that are common to the rest of the literature. To this end,
we use the Bottle (150/8) image collection of the PASCAL
VOC dataset [26]. It is worth pointing out that our
approaches only use 2D semantic points from an image
collection. Considering that, for some revolution objects,
if the distribution of the annotations is symmetric some
rotations can become ambiguous (at least, that degree
of freedom in the revolution axis), producing poor 3D
reconstructions. Unfortunately, symmetric annotations
are normally employed in these cases to maximize the
volume of the object to be recovered. An example of this
scenario is displayed in Fig. 5. Despite producing more
accurate solutions than state-of-the-art approaches in
terms of 3D reconstruction with eX = 0.51, the solution is
bad due to the motion ambiguities, that, though, it could
be solved by re-annotating the dataset and enforcing
non-symmetric semantic points.
Ablation study. Each component is crucial for the proper
performance of the full model, especially for non-rigid

Fig. 5. Bottle collection: a failure case. Top: Images
{#5,#28,#71,#86} for the bottle collection together with the
semantic 2D point annotations in green circles. Bottom: Color-
coded dots correspond to our 3D estimation where every color
represents a different object, and empty circles represent the 3D
ground truth. As it can be seen, our algorithm fails in this case
due to the motion ambiguities.

categories where all components {X,Y,Z} are consid-
ered (see section 4). However, for rigid categories not
all components are strictly needed, and, as expected,
the contribution of both Y and Z is reduced (ideally,
both matrices should be null in this case). As we assume
no prior information about the data to be processed, in
real scenarios our full model is automatically adapted
even for rigid categories, providing on average better
solutions. The results for all collections with ground
truth we consider in the paper are reported in table 4.
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Fig. 6. MUCT collection. Top: Images #3, #26, #32, #46, #65 and #70 of the dataset. Input 2D detections and reprojected 3D
shape are shown as green circles and red squares, respectively. Bottom: Camera viewpoint and side views of the estimated 3D
shape. The colored dots indicate the object group index estimated by our approach MUS, i.e., a different person in the manifold of
faces. Best viewed in color.

Fig. 7. ASL collection. Top: Images #29, #47, #100, #142 and #228 of the dataset. Input 2D detections and reprojected 3D
shape are shown as green circles and red crosses, respectively. Blue crosses correspond to reconstructed (hallucinated) missing
points. Bottom: Camera viewpoint and side views of the 3D reconstruction estimated by our algorithm MUS, where colored dots
(red and green) indicate every human in the collection. The colored lines indicate a specific deformation group that was recovered.
These estimated groups have a clear physical meaning and correspond to open/close mouth (shown in orange/magenta for the
woman, and red/dark green for the man). 3D reconstructed missing points are represented by blue crosses. Best viewed in color.

`````````Data
Combination

X X+Y X+ Z Full

Strategy: MUS MUS2 MUS MUS2 MUS MUS2 MUS MUS2
Aeroplane (σnoise = 0) 0.259 0.249 0.260 0.260 0.260 0.253 0.261 0.253
Aeroplane (σnoise 6= 0) 0.268 0.255 0.269 0.268 0.269 0.257 0.271 0.265
Bicycle (σnoise = 0) 0.179 0.149 0.179 0.143 0.179 0.145 0.178 0.143
Bicycle (σnoise 6= 0) 0.188 0.164 0.188 0.157 0.187 0.157 0.188 0.156
Bus (σnoise = 0) 0.114 0.108 0.113 0.106 0.113 0.106 0.113 0.107
Bus (σnoise 6= 0) 0.124 0.115 0.122 0.116 0.122 0.116 0.122 0.117
Car (σnoise = 0) 0.077 0.066 0.078 0.068 0.078 0.068 0.078 0.069
Car (σnoise 6= 0) 0.093 0.084 0.093 0.086 0.094 0.085 0.093 0.086
Chair (σnoise = 0) 0.211 0.186 0.211 0.187 0.210 0.185 0.210 0.184
Chair (σnoise 6= 0) 0.220 0.193 0.220 0.200 0.221 0.198 0.220 0.192
Diningtable (σnoise = 0) 0.264 0.249 0.264 0.247 0.264 0.249 0.264 0.246
Diningtable (σnoise 6= 0) 0.268 0.252 0.267 0.250 0.267 0.252 0.267 0.241
Motorbike (σnoise = 0) 0.224 0.200 0.223 0.201 0.223 0.200 0.222 0.202
Motorbike (σnoise 6= 0) 0.234 0.215 0.234 0.215 0.234 0.215 0.233 0.215
Sofa (σnoise = 0) 0.168 0.142 0.167 0.140 0.167 0.140 0.167 0.141
Sofa (σnoise 6= 0) 0.176 0.151 0.174 0.150 0.174 0.150 0.174 0.150
Face (σnoise = 0) 0.028 0.026 0.024 0.023 0.024 0.024 0.023 0.022
Face (σnoise 6= 0) 0.047 0.047 0.035 0.035 0.035 0.035 0.034 0.034

TABLE 4
Ablation study. The table reports the 3D reconstruction

error eX as a function of the effect of different
components in the algorithms MUS and MUS2. Both

noise-free σnoise = 0 and noisy σnoise 6= 0 observations
are considered, as well as rigid and non-rigid categories.

6.2 Real Images
We next provide results on several real image collections
either deforming linearly (faces) or highly non-linearly
(animal motion). Since no ground truth is available for
these datasets we only show qualitative evaluation.

The MUCT collection [45] is made of 72 images of faces
of seven people, both men and women, of different ages
and races, and under varying poses and expressions. The

2D annotations are obtained by using an off-the-shelf
2D active appearance model [21]. This model consists
of 68 2D points, which are all visible in all frames.
The results we provide in this dataset are shown in
Fig. 6. Despite no quantitative estimates are available,
the 3D reconstruction we obtain seems very realistic.
We can, however, manually annotate the results of the
object segmentation. Even though the 2D shapes are
very similar (recall that object segmentation is computed
based just on the 2D location of points) we obtain a
segmentation accuracy aG = 0.68(7) for both algorithms.

In order to validate our approach against missing an-
notations, we process the ASL collection [33], consisting
of 229 images of a man and a woman. The number of
2D feature points is 77, but some of them are not visible
due to structured occlusions (by the hands or face self-
rotation). In total, 14.43% of the points are missing. The
3D reconstruction results are shown in Fig. 7. Note that
the inferred shapes seem to be very accurate, even when
hallucinating the occluded points. In this case, the object
segmentation is computed with no error, i.e., aG = 1.0(2).
For this experiment, we also display the grouping in
terms of type of deformation (colored lines in the 3D
reconstruction of Fig. 7). These groups seem to have
a clear physical meaning indicating face deformations
with closed or open mouth.

We finally evaluate our approaches on two challenging
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Fig. 8. Dog and tiger collections. The same information is shown for the two experiments. Top: Images #4, #14, #15, #24, #25
and #35 of the dog dataset, and #6, #9, #13, #18, #23 and #31 of the tiger one. Input 2D detections and reprojected 3D shape
are shown as green circles and red crosses, respectively. Bottom: 3D reconstruction from a couple of novel point of views, where
colored dots indicate the object group index estimated by our approach. In both cases, missing points are shown as blue crosses.

collections of animal images [24] composed each one of
them of 19 semantic points, which were partially and
manually annotated, i.e., not all points were visible or
annotated in all images. In the first collection, we use 52
Dog images where 33 instances appear, and the 11.34%
of the 2D input points are missing. In second one, we
use 32 Tiger images where 4 instances appear1, being the
25.00% of the 2D semantic points annotated as missing.
The 3D reconstruction and grouping results are shown in
Fig. 8 for dogs and tigers, using our algorithms MUS and
MUS2, respectively. In both cases, we can observe as the
3D skeletons we obtain seem physically very plausible,
even for the points that are not observed in the picture.
Regarding grouping, despite being a hard task even for
a human being, our method can obtain a realistic esti-
mation, obtaining aG = 0.69(26)/0.68(4) for dog/tiger
collections, respectively, and for both algorithms.

7 CONCLUSION

In this paper we have extended both SfM and NRSfM
to a new scenario in which we can estimate 3D shape
of either rigid or non-rigid categories from collections
of RGB images. Considering only incomplete 2D point
annotations per image, we present an approach that
besides reconstructing 3D shape, it also recovers camera
pose per image, as well as splits the collection of images
into different objects and deformation primitives. For
this purpose, we have introduced two algorithms that
model object shape using multiple unions of subspaces,
being able to render from rigid motion to highly non-
rigid deformations. The model parameters are learned
via an ALM scheme in a completely unsupervised and

1. Note that defining the exact number of tiger instances only from
images is a complex task. As the dataset did not include ground truth
in the number of instances, in this paper it was manually estimated
and hence it is fully subjective.

unified manner. We have experimentally evaluated our
method on synthetic and real collections of images, of
both rigid and non-rigid categories, outperforming state-
of-the-art solutions in terms of 3D reconstruction and
grouping by large margins. An interesting avenue for
future research is to extend our formulation for sequen-
tial processing, allowing us the use of bigger datasets.
Acknowledgment: This work has been partially sup-
ported by the CSIC project R3OBJ 201850I099, the Span-
ish Ministry of Science and Innovation under project
HuMoUR TIN2017-90086-R as well as the Salvador de
Madariaga grant PRX19/00626.
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based low-rank trajectory completion and 3D reconstruction. In
NIPS, 2014.

[28] Y. Gao and A. L. Yuille. Symmetric non-rigid structure from
motion for category-specific object structure estimation. In ECCV,
2016.

[29] R. Garg, A. Roussos, and L. Agapito. Dense variational recon-
struction of non-rigid surfaces from monocular video. In CVPR,
2013.

[30] G. H. Golub and C. F. Van Loan. Matrix computations. Johns
Hopkins Univ Pr, 1996.

[31] V. Golyanik and D. Stricker. Dense batch non-rigid structure from
motion in a second. In WACV, 2017.

[32] P. F. U. Gotardo and A. M. Martinez. Computing smooth time-
trajectories for camera and deformable shape in structure from
motion with occlusion. TPAMI, 33(10):2051–2065, 2011.

[33] P. F. U. Gotardo and A. M. Martinez. Kernel non-rigid structure
from motion. In ICCV, 2011.

[34] A. Kanazawa, S. Tulsiani, A. A. Efros, and J. Malik. Learning
category-specific mesh reconstruction from image collections. In
ECCV, 2018.

[35] A. Kar, S. Tulsiani, L. Carreira, and J. Malik. Category-specific
object reconstruction from a single image. In CVPR, 2015.

[36] C. Kong and S. Lucey. Deep non-rigid structure from motion. In
ICCV, 2019.

[37] C. Kong, R. Zhu, H. Kiani, and S. Lucey. Structure from category:
A generic and prior-less approach. In 3DV, 2016.

[38] S. Kumar, Y. Dai, and H. Li. Spatio-temporal union of subspaces
for multi-body non-rigid structure-from-motion. PR, 77(11):428–
443, 2017.

[39] M. Lee, J. Cho, C. H. Choi, and S. Oh. Procrustean normal
distribution for non-rigid structure from motion. In CVPR, 2013.

[40] M. Lee, J. Cho, and S. Oh. Consensus of non-rigid reconstructions.
In CVPR, 2016.

[41] J. Lim, J. M. Frahm, and M. Pollefeys. Online environment
mapping. In CVPR, 2011.

[42] Z. Lin, M. Chen, L. Wu, and Y. Ma. The augmented lagrange mul-
tiplier method for exact recovery of corrupted low-rank matrices.
UIUC Technical Report UILU-ENG-09-2215, 2009.

[43] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma. Robust recov-
ery of subspace structures by low-rank representation. TPAMI,
35(1):171–184, 2013.

[44] M. Marques and J. Costeira. Optimal shape from estimation with
missing and degenerate data. In WMVC, 2008.

[45] S. Milborrow, J. Morkel, and F. Nicolls. The MUCT Landmarked
Face Database. Pattern Recognition Association of South Africa, 2010.

[46] R. Newcome and A. J. Davison. Live dense reconstruction with
a single moving camera. In CVPR, 2010.

[47] D. Novotny, N. Ravi, B. Graham, N. Neverova, and A. Vedaldi.
C3DPO: Canonical 3D pose networks for non-rigid structure from
motion. In ICCV, 2019.

[48] M. Paladini, A. Del Bue, M. Stosic, M. Dodig, J. Xavier, and
L. Agapito. Factorization for non-rigid and articulated structure
using metric projections. In CVPR, 2009.

[49] S. Parashar, D. Pizarro, and A. Bartoli. Isometric non-rigid shape-
from-motion with riemannian geometry solved in linear time.
TPAMI, 40(10):2442–2454, 2018.

[50] H. S. Park, T. Shiratori, I. Matthews, and Y. Sheikh. 3D recon-
struction of a moving point from a series of 2D projections. In
ECCV, 2010.

[51] B. Recht, M. Fazel, and P. A Parrilo. Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimiza-
tion. SIAM review, 52(3):471–501, 2010.

[52] C. Russell, R. Yu, and L. Agapito. Video pop-up: Monocular 3D
reconstruction of dynamic scenes. In ECCV, 2014.

[53] A. Shaji and S. Chandran. Riemannian manifold optimisation for
non-rigid structure from motion. In CVPRW, 2008.

[54] C. Tomasi and T. Kanade. Shape and motion from image streams
under orthography: A factorization approach. IJCV, 9(2):137–154,
1992.

[55] L. Torresani, A. Hertzmann, and C. Bregler. Nonrigid structure-
from-motion: estimating shape and motion with hierarchical pri-
ors. TPAMI, 30(5):878–892, 2008.

[56] Q. Wang, X. Zhou, and K. Daniilidis. Multi-image semantic
matching by mining consistent features. In CVPR, 2018.

[57] J. Xiao, J. Chai, and T. Kanade. A closed-form solution to non-
rigid shape and motion. IJCV, 67(2):233–246, 2006.

[58] X. Xu and E. Dunn. Discrete Laplace operator estimation for
dynamic 3D reconstruction. In ICCV, 2019.

[59] J. Yang, W. Yin, Y. Zhang, and Y. Wang. A fast algorithm for edge-
preserving variational multichannel image restoration. SIAM JIS,
2(2):569–592, 2009.

[60] Q. Yao, J. T. Kwok, T. Wang, and T.Y. Liu. Large-scale low-rank
matrix learning with nonconvex regularizers. TPAMI, 41(11):2628–
2643, 2019.

[61] R. Zass and A. Shashua. Doubly stochastic normalization for
spectral clustering. In NIPS, 2006.

[62] Z. Zhang and W. S. Lee. Deep graphical feature learning for the
feature matching problem. In ICCV, 2019.

[63] X. Zhou, M. Zhu, and K. Daniilidis. Multi-image matching via
fast alternating minimization. In ICCV, 2015.

[64] Y. Zhu, D. Huang, F. De La Torre, and S. Lucey. Complex non-
rigid motion 3D reconstruction by union of subspaces. In CVPR,
2014.

Antonio Agudo received the M.Sc. degree in
industrial engineering and electronics in 2010,
M.Sc. degree in computer science in 2011, and
the Ph.D. degree in computer vision and robotics
in 2015, from University of Zaragoza. He was a
visiting student with the vision group of Queen
Mary University of London in 2013 and with the
vision and imaging science group of University
College London in 2014. He was also a visiting
fellow at Harvard University in 2015, and at
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