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Abstract—We present a comprehensive study on discrete mor-
phological symmetries of dynamical systems, which are com-
monly observed in biological and artificial locomoting systems,
such as legged, swimming, and flying animals/robots/virtual char-
acters. These symmetries arise from the presence of one or more
planes/axis of symmetry in the system’s morphology, resulting in
harmonious duplication and distribution of body parts. Signif-
icantly, we characterize how morphological symmetries extend
to symmetries in the system’s dynamics, optimal control policies,
and in all proprioceptive and exteroceptive measurements related
to the system’s dynamics evolution. In the context of data-driven
methods, symmetry represents an inductive bias that justifies
the use of data augmentation or symmetric function approxi-
mators. To tackle this, we present a theoretical and practical
framework for identifying the system’s morphological symmetry
group G and characterizing the symmetries in proprioceptive
and exteroceptive data measurements. We then exploit these
symmetries using data augmentation and G-equivariant neural
networks. Our experiments on both synthetic and real-world
applications provide empirical evidence of the advantageous
outcomes resulting from the exploitation of these symmetries,
including improved sample efficiency, enhanced generalization,
and reduction of trainable parameters.

I. INTRODUCTION

Discrete Morphological Symmetries (DMSs) are ubiquitous
in both biological and robotic systems. The vast majority of
living and extinct animal species, including humans, exhibit
bilateral/sagittal reflection symmetry, where the right side of
the body is approximately a reflection of the left side (see
fig. 1-left). Similarly, a significant number of species exhibit
radial symmetry, characterized by two or more morphological
symmetry planes/axis (see fig. 1-center) [11]. These symme-
tries are a consequence of nature’s tendency to symmetric
body parts and harmonic duplication and distribution of limbs.
A pattern perfected and exploited in the design of robotic
systems.

To exploit morphological symmetries for control, learn-
ing, and computational design, it is necessary to establish
a rigorous definition of morphological symmetry within the
framework of dynamical systems theory. In section IV, we
define a DMS as an energy-preserving linear transformation
of the system state configuration, which allows the system to
imitate some reflection, rotation, or translation of space. For
instance, see how the bipedal robot Atlas and the quadruped
Solo in fig. 1 imitate the reflection of space (gs) with a discrete
change in their body and limbs pose (state configuration). The

existence of a DMS is subjected to constraints in the system’s
morphology, which manifest in identifiable symmetry con-
straints of the system’s generalized mass matrix (section III).

Symmetries of the state-space of a dynamical system trans-
late to symmetries of the system’s dynamics and control
[29]. Thus, DMSs imply the presence of symmetries in the
dynamics and control of body motions, resulting in sym-
metries in all proprioceptive and exteroceptive measurements
related to the evolution of the system’s dynamics (e.g., joint
position/velocity/torque, depth images, contact forces). This
property, in data-driven applications, opens the door for the use
of data augmentation to mitigate challenges of data collection
in the fields of robotics, computer graphics, and computational
biology. Similarly, the use of symmetry constraints in machine
learning algorithms is a known technique to enhance general-
ization and sample efficiency, while reducing the number of
trainable parameters [29, 6, 23].

Despite the potential benefits of exploiting symmetry and
the ubiquitous presence of morphological symmetries in
robotic/biological/virtual systems, this relevant inductive bias
is frequently left unexploited in data-driven applications in
robotics, computational biology, and computer graphics. We
attribute the scarce adoption of these techniques to a miss-
ing theoretical framework that consolidates the concept of
morphological symmetries, facilitating their study and iden-
tification. And, to a missing practical framework enabling the
efficient and convenient exploitation of symmetries in real-
world data-driven applications.

The identification of morphological symmetries and how
these extend to symmetries of proprioceptive and exteroceptive
data is currently a laborious and error-prone system-specific
process, due to the lack of a clear theoretical framework. As
a result, most recent works that exploit some morphological
symmetry (e.g., [27, 1, 28] in computer graphics and [23, 16,
9, 5] in robotics/dynamical systems) have only been applied
to simple systems and the simplest morphological symmetry:
reflection/sagittal symmetry (see fig. 1-left), with the exception
of Finzi et al. [5]. However, these works provide little guidance
on how to apply these techniques to other systems, particularly
those with more than a single morphological symmetry.

Contrary to previous works, this paper focuses on under-
standing and exploiting morphological symmetries in arbi-
trary dynamical systems, with any number of symmetries. To
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Fig. 1: Left: Symmetric configurations of the bipedal robot Atlas (3D animation) illustrating its morphological symmetry
described by the reflection group C2. The robot can imitate reflections gs (hint: note the non-reflected text on the chest). Middle:
Top-view of symmetric configurations of the quadruped robot Solo (3D animation) showcasing its morphological symmetries
described by the Klein four-group K4. The robot can imitate two perpendicular reflections (gs, gt) and a 180◦ rotation (gr) of
space (hint: observe the unreflected/unrotated robot’s heading direction and legs coloring). Symmetry transformations (arrows)
affect the robot’s configuration, as well as proprioceptive measurements (center of mass linear l and angular k momentum)
and exteroceptive measurements (terrain elevation, external force f1). Right: Diagram of a toy K4-equivariant neural network,
processing the symmetric states of robot Solo x and outputting the symmetric binary foot contact states y (see section V).

achieve this, we study morphological symmetries from the
lens of dynamical systems and of group theory (the field of
mathematics that studies symmetries, broadly used in machine
learning and physics) (sections II and III). In summary, our
work presents the following theoretical contributions:

h Identification of the set of DMSs of a dynamical system
as a symmetry group G, that is isomorphic to a group of
isometries of the Euclidean space (section IV).

h Characterization of DMSs as transformations to which the
system’s generalized mass matrix is equivariant. Enabling
algorithmic identification of G (section III).

h Characterization of how symmetries in proprioceptive and
exteroceptive measurements arise from DMSs.

Furthermore, our practical contributions (section V) are:
E An open-access repository1 with example dynamical sys-

tems with DMSs, and the tools to prototype large-scale
G-equivariant Neural Networks (NN) for arbitrary DMSs.

E Proof of an approximate 1/|G| reduction in the trainable
parameters of NN. Being |G| the number of DMSs.

E Derivation of an optimal initialization for the trainable
parameters of G-equivariant NN layers.

Lastly, we provide optional appendices where we extend our
theoretical derivations and provide tutorial-like examples.

II. BACKGROUND ON SYMMETRY GROUPS

Group theory is the default language for studying symmetry
transformations. Thus, we provide a shallow introduction to
the field2 and define the notation required for our develop-

1 github.com/Danfoa/RobotEquivariantNN
2Being this short section undoubtedly an unsatisfactory introduction to

group theory, we refer the uninitiated and interested reader to Carter [4] for
intuition and to Bronstein et al. [2] for a machine learning introduction.

ment. In a nutshell, a symmetry group in group theory is an
abstraction of the set of symmetries that different geometric
objects have. Understanding symmetry as a transformation that
conserves a relevant property of the object (e.g. energy).

For instance, in fig. 1-left the reflection group C2 describes
the symmetries that vectors, pseudo-vectors, rigid-bodies, and
the robot Atlas have to a reflection of space gs. Being the
symmetries, transformations that preserve vector magnitudes
and the robot’s energy. Similarly in fig. 1-center, the Klein
four-group K4 describes the symmetries that the quadruped
robot Solo has to 180◦ rotations (gr) and two perpendicular
reflections (gs, gt). While on fig. 1-right the same group
describes the symmetries of the input x and output y vector
spaces of a K4-equivariant NN.

This formalism enables us to study the set of DMSs of
a system and the set of symmetries of proprioceptive and
exteroceptive data measurements as different representations
of the same symmetry group. Formally, a symmetry group
is a set of invertible symmetry transformations (or actions)
G = {e, g1, g-1

1 , g2, . . . }, including the trivial action e, which
leaves objects unchanged. A group has an associative com-
position operator (·) : G × G → G mapping group actions
to other group actions. Since two different geometric objects
can share the same symmetry group, an action of the group
must act differently on the two objects. Here, is where group
representations allow us to use the familiar language of linear
algebra to characterize how an action g transforms a specific
geometric object, say x ∈ X ⊆ Rk. A representation
ρX : G → GL(k) is a mapping from group actions to the
set of invertible square matrices of k dimensions (the General
Linear group GL). Thus, a representation specifies how objects
x ∈ X are transformed by group actions: g · x .

= ρX (g)x.

https://bit.ly/3HTn7bM
https://bit.ly/3wSzjDd
https://mathworld.wolfram.com/IsomorphicGroups.html
https://bit.ly/44Dykqq


A fundamental concept for this work is the notion of
function G-equivariance and G-invariance. The function f :
Rn → Rm, is said to be G-equivariant or G-invariant if:

g · y = f(g · x) | ∀g ∈ G︸ ︷︷ ︸
Equivariance

or y = f(g · x) | ∀g ∈ G︸ ︷︷ ︸
Invariance

. (1)

Roughly speaking, an equivariant function maps symmetries
of the input to symmetries of the output, while an invariant
function maps symmetries of the input to an invariant output.

III. LAGRANGIAN MECHANICS AND SYMMETRIES OF
DYNAMICAL SYSTEMS

Here we provide a group-theoretic perspective of symme-
tries in an arbitrary dynamical system. The definitions and
notations of this section are fundamental for understanding
the objective of this work, namely DMSs. To this end, let
us consider a dynamical system with generalized coordinates
q ∈ Q ⊆ Rn and velocities q̇ ∈ TqQ ⊆ Rn. Being Q
the constrained configuration space, and TqQ the space of
constrained generalized velocities (i.e., the configuration tan-
gent space at q). Additionally, consider a Lagrangian function
L : Q × TqQ → R = T (q, q̇) − U(q, q̇) specifying the
energy state of the system at any state. Where T (q, q̇), U(q, q̇)
describe the state kinetic and potential energies, respectively.

The symmetries of a dynamical system are defined as
transformations in the space of generalized coordinates that
keep the energy of the system invariant [18, 13]. In this
work, we focus on time-invariant linear transformations of
generalized coordinates ρQ(g) : Rn → Rn, which are the
representations of actions of a symmetry group: g · q .

=
ρQ(g)q | ∀ q ∈ Q, g ∈ G. Note that because of the linearity
of the transformation, the velocity and acceleration of the
transformed coordinates are given by g · q̇ .

= ρQ(g)q̇ and
g · q̈ .

= ρQ(g)q̈, respectively.
Formally, we say that a dynamical system has a symmetry

group G if its Lagrangian is G-invariant:

L (q, q̇) = L (g · q, g · q̇) | ∀g ∈ G, q ∈ Q, q̇ ∈ TqQ. (2)

Being g a feasible symmetry if the transformed state is a
feasible state, i.e. when g ·q ∈ Q and g · q̇ ∈ TqQ (assuming
both Q and TqQ are connected sets).

Since the Lagrangian structure differs between the original
(q, q̇) and transformed coordinates (g · q, g · q̇) | ∀ g ∈ G,
when we derive the Equations of Motion (EoM) of the
system in the set of transformed coordinates, we obtain
a set of EoMs describing the system dynamics in differ-
ent coordinate systems. Formally, if we derive the EoM
through the Euler-Lagrange equation of the second orderÄ
d
dt
∂L(q,q̇)
∂q̇ − ∂L(q,q̇)

∂q ≡M(q)q̈ − τ (q, q̇) = 0
ä

, the distinct
EoM are equivariant to each other [13], a property we will
refer to as dynamics G-equivariance:

g · [M(q)q̈︸ ︷︷ ︸
Inertial

−τ (q, q̇)︸ ︷︷ ︸
Moving

] = M(g · q)g · q̈︸ ︷︷ ︸
Inertial

−τ (g · q, g · q̇)︸ ︷︷ ︸
Moving

= 0

| ∀ g ∈ G, q ∈ Q, q̇ ∈ TqQ. (3)

Denoting M(q) : Q→ Rn×n as the generalized mass matrix
function and τ (q, q̇) : Q × TqQ → Rn as the generalized
moving forces at a given state (q, q̇). Note that, in eq. (3) the
original and transformed dynamics are related linearly by the
Jacobian of the coordinate transformation [25]. Which in this
case is ρQ(g) (reduced to g to preserve notation).

Note that to ensure dynamics G-equivariance (eq. (3)),
both the generalized inertial and moving forces need to be
independently equivariant, implying:

M(g · q) = gM(q)g-1 ∧ g · τ (q, q̇) = τ (g · q, g · q̇)

| ∀ g ∈ G, q ∈ Q, q̇ ∈ TqQ. (4)

The resultant G-equivariance of the generalized mass matrix
becomes an identifying property of symmetrical systems,
providing a pathway for the identification of action represen-
tations of the symmetry group ρQ(g) | g ∈ G (section IV-B).
While the equivariance of the generalized moving forces
(which in practice usually incorporates control, constraint,
and external forces) implies that dynamics G-equivariance
(eq. (3)) is upheld until a symmetry breaking force violates
the equivariance of τ .

To gain some intuition, consider as an example the bipedal
robot Atlas, with symmetry group G = C2 = {e, gs}. Accord-
ing to eq. (2) both robot states in fig. 1-left are symmetric
states (related by the action gs). Then, eq. (3) suggests that
any trajectory of motion, starting from the left robot state,
will be equivalent (up to transformation by gs) to a motion
trajectory starting from the right robot state, if and only if, the
moving forces driving both trajectories are equivalent (up to
transformation by gs). That is if the control and external forces
are C2-equivariant (eq. (4)). Note, we can perform a similar
analysis for each symmetric state and action of systems with
larger symmetry groups (e.g. Solo in fig. 1-center).

Floating-base dynamical systems: All robotic, biological,
and virtual systems that move in a Euclidean space of d di-
mensions, can be modeled as floating-base dynamical systems.
Hence, without loss in generality, we assume the system’s
configuration space can be decoupled into Q

.
= Ed × QJ ,

being Ed the space of all possible base configurations (all
rotations/reflections and translations), and QJ the joint-space
(or internal configuration space). Resulting in the decoupling
q =

î
XB

q̂

ó
∈ Ed
∈ QJ

. Where XB is a homogenous matrix
describing the base position and orientation in d dimensions
3 , and q̂ ⊆ RnJ represents the internal Degrees of Freedom
(DoF) configuration. This separation of the configuration space
becomes useful to study the effect of a symmetry transforma-
tion, since, we decouple the effect of the symmetry actions
g · q = ρQ(g) q =

[
ρEd (g) 0

0 ρQJ (g)

]î
XB

q̂

ó ∣∣ ∀ g ∈ G. With
ρEd(g) ∈ Ed and ρQJ

(g) ∈ RnJ×nJ being representations of
how action g transforms the base and joint-space configuration.

Symmetries due to Euclidean isometries: floating-base sys-
tems are known for having symmetries to (some) translations,

3We use the homogeneous matrix representation of XB instead of a
vector-quaternion representation, with some abuse of notation.



rotations, and reflections of space (i.e. Euclidean isometries).
Giving origin to the conservation of linear/angular momentum,
in conservative systems[15]. We can understand these as:

Definition 1 (Symmetry due to Euclidean isometries). A
floating-base system with generalized coordinates q ∈ Q

.
=

Ed × QJ , is said to be symmetric w.r.t a set of Euclidean
isometries g ∈ G ⊆ Ed (involving a true rotation, reflection or
translation in space), if eq. (2) holds for G.

Because rotations, reflections, and translations of space
preserve the mass and inertia of bodies, as well as dis-
tances between them, these symmetries leave both the joint-
space configuration and the generalized mass matrix invariant:
ρQJ

(g) = InJ and M(g · q) = M(q) | ∀ g ∈ G ⊆ Ed.

IV. DISCRETE MORPHOLOGICAL SYMMETRIES (DMSS)

A dynamical system is said to possess a DMS if it can
imitate the effects of a rotation, reflection, or translation in
space through a feasible discrete change in its configuration.
To gain some intuition, before introducing a formal definition,
we can analyze the simplest and most common DMS.

Reflection DMS: Although most floating-base dynamical
systems are symmetric with respect to reflections of space
(definition 1), these symmetries are infeasible due to the
impossibility to execute reflections in the real-world [21].
However, systems with sagittal symmetry (e.g., Atlas in fig. 1-
left, or humans) can imitate the effect of a reflection with a
feasible discrete change in their configuration, by rotating their
body and modifying their limbs’ pose. These systems share the
same symmetry group, the reflection group G ≡ C2.

Multiple DMSs: This property can be extended to the case
of a floating-base system having multiple DMSs, allowing it to
imitate multiple distinct Euclidean isometries. Most frequently
systems can imitate a set of rotations and reflections, making
G a Cyclic Ck or Dihedral D2k group. See examples for C3 in
fig. 6, and for D4 ≡ K4 in fig. 1-center.

We can formalize this property with as:

Definition 2 (Discrete morphological symmetry). A floating-
base dynamical system with generalized coordinates q ∈ Q

.
=

Ed × QJ , is said to have a DMS if, for a given Euclidean
isometry g ∈ Ed, there exists a feasible action g ∈ G with a
non-trivial representation in joint-space (ρQJ

(g) 6= InJ ), such
that both g and g are equivalent symmetries of the system:

L (q, q̇) = L (g · q, g · q̇) = L (g · q, g · q̇)

| g ∈ G, g ∈ Ed, ∀ g · q, q ∈ Q, g · q̇, q̇ ∈ TqQ. (5)

The set of DMSs of the system forms its symmetry group
G. Because each DMS is related with a system’s symmetry
g due to a Euclidean isometry (definition 1), the group G
is isomorphic to a subset of the Euclidean isometries of the
system.

Hence, after identifying a potential Euclidean isometry to
imitate g ∈ Ed, we can determine the DMS representation,

considering that in any system state:

L
(î ρEd (g)XB

q̂

ó
,
[
ρEd (g)ẊB

˙̂q

])
= L

(î ρEd (g)XB

ρQJ
(g) q̂

ó
,
[
ρEd (g)ẊB

ρQJ
(g) ˙̂q

])
∣∣∣∣ |ρEd(g)| = ±1, |ρEd(g)| = 1

ρEd(g)X = ρEd(g)XρEd(g)
-1 (6)

Where the existence of the DMSs is subjected to the system’s
generalized mass matrix being G-equivariant (eq. (4)), and to
the transformation ρEd(g) (defined through group conjugation)
being proper/feasible. In practice, these restrictions represent
a pathway for the identification of G for any floating-base
system (section IV-C).

A. Data augmentation in systems with DMS

Recall from section III that due to the linearity, the action
representation ρQ(g) acts on elements of configuration space
Q, configuration tangent space TqQ and any higher order
tangent spaces, including the spaces of generalized acceler-
ations and forces g · τ = ρQ(g)τ (eq. (3)). Since for floating-
base systems Q

.
= Ed × QJ , this property translates to the

action representations on Ed and QJ . This effectively implies
that ρEd(g) can be used to augment any point, vector, and
orientation in Ed and in Ed higher order tangent spaces
(e.g. locations of tactile sensing, linear & angular veloci-
ties/accelerations, depth maps, external forces, terrain height-
maps). Likewise the representation ρQJ

(g) can be used to
augment members of QJ and its higher order tangent spaces
(e.g. joints positions/velocities/accelerations/torques).

In practice, this means that any proprioceptive and extero-
ceptive measurements relevant to the evolution of the system’s
dynamics can be augmented solely with combinations of
ρEd(g), ρEd(g) and ρQJ

(g). Since these measurements consist
of elements in QJ , Ed, and their higher order tangent spaces
(see examples in sections C-C1 and C-D1). Furthermore, for
any data point, there exist |G| symmetric data points (being
|G| the order of the symmetry group). Therefore, for a system
with a symmetry group of order, say, |G| = 4 (as in fig. 1-
center), we can obtain an additional 3 minutes of recordings
for every minute of recorded data simply by considering the
symmetric states of the data.

To exploit the symmetries in the measurements, we first
need to identify the joint-space representations ρQJ

(g), which
requires additional assumptions about the system’s dynamics.
In this work, we focus on the case of rigid-body dynamics,
although a similar analysis can be extended to other types of
systems, such as soft robots.

B. DMS in the case of rigid-body dynamics

Consider dynamical systems composed of nB intercon-
nected rigid bodies evolving in Ed. This is the usual scenario
in robotics, computer graphics, and computational biology.

The kinetic energy for these systems is determined by
T (q, q̇) = 1

2

∑nB
k mkṙ

2
k + wᵀ

kIkwk = 1
2
q̇ᵀM(q)q̇. Being

mk, Ik, ṙk and wk the mass, inertia, linear velocity, and
angular velocity of body k. Considering that the energy-
preservation property of symmetries (eq. (2)) is dependent



solely on the G-equivariance of M(q) (eq. (4)), we can assert
the existence of DMSs by analyzing M(q). The generalized
mass matrix is given by M(q) =

∑nB
k JTk(q)ᵀmkJTk(q) +

JRk(q)ᵀIkJRk(q), being JTk(q) : Q → Rd×n and JRk(q) :
Q → Rd×n the position and orientation Jacobians, used to
map generalized velocities to the linear (ṙk = JTk(q)q̇) and
angular (wk = JRk(q)q̇) velocities of the body k [26].

These Jacobians are functions of the kinematic parameters
of the system4. While the mass and inertia of all bodies are
the system’s dynamic parameters. A DMS implies symmetries
over both kinematic and dynamic parameters.

Symmetries of kinematic parameters (Kinematic Tree): The
symmetry in kinematic parameters can be thought of as a
kinematic tree symmetry. I.e., the DMS g must transform the
system state in a way that produces a kinematic tree indis-
tinguishable from the one obtained by applying the Euclidean
isometry g . Ignoring the dynamic parameters makes it easier
to see this.

Consider that applying the Euclidean isometry g conserves
kinetic energy as velocity vectors are only rotated or reflected.
Hence, for g to imitate the effect of g , the velocity of the
kth body after applying g must be equal to the velocity of
the ith body after applying g. In other words, g · ṙk = g ·
ṙi

.
= JTi(g · q)g · q̇ and g · wk = g · w i

.
= JRi(g · q)g ·

q̇ | ∀ {(k, i)|k, i ∈ [nB ]}. This results in the following position
Jacobian constraints:

JTi(g · q)g = g · JTk(q) | ∀q ∈ Q, {(k, i)|k, i ∈ [nB ]}
JTi(ρQ(g)q)ρQ(g) = ρEd(g) · JTk(q). (7)

Analog constraints apply to the rotational Jacobian.
Equation 7 specifies the kinematic parameter constraints

required for g to be a DMS, ensuring the g-equivariance of
M(q). Note that If k 6= i, the representation ρQJ

(g) entails
a permutation of the i and k joint-space configurations. For
example, gs swaps the left and right leg configurations of Atlas
and Solo in Figure 1.

Symmetries of dynamic parameters (Mass & Inertia): In
addition to the kinematic tree symmetry of eq. (7), the mass,
CoM, and inertia of the bodies i and k must be equivalent for
g to preserve kinetic energy. To understand this morphological
constraint, consider how, in eq. (6), the base body configura-
tion XB ∈ SEd is transformed by the DMS ρEd(g) ∈ SEd,
and by the Euclidean isometry ρEd(g) ∈ Ed. For both base
configurations to have the same dynamics, their CoM must
coincide, and crucially, the reflected Inertia matrices IB need
to be identical. This constraint is satisfied if the reflected In-
ertia is invariant to the transformation XB = XBρEd(g)

-1. In
practice, this invariance implies a symmetric mass distribution
of the rigid body (see geometric proof in section A-B).

Let’s consider the robot Solo in fig. 1-center as an ex-
ample. It can imitate two reflections of space (gt, gs) and
a 180◦ rotation gr. The existence of the robot’s DMSs can
be attributed to two factors. First, the base body of Solo

4The Denavit–Hartenberg parameters are a common convention of kine-
matic parameters adopted in robotics and computer graphics.

Fig. 2: Left: Solo sagittal (blue) and transversal (red) symme-
try planes of the base body. Right: Solo’s kinematic tree, and
permutation symmetries of the legs/tree-branches.

possesses two symmetry planes (fig. 2), leading to symmetric
mass distributions and the invariance of the body’s reflected
inertia under the transformationXBρEd(g)

-1 | g ∈ K4. Second,
the modularity of the kinematic tree. This arises from all four
legs (tree branches) being structurally identical, resulting in
the tree branches having equivalent inertial and kinematic
parameters (see fig. 2). Consequently, we can define each
ρQJ

(g) as a permutation of the leg configurations. For instance,
for gs, the configurations of the left and right legs are inter-
changed, while for gt the front and back legs’ configuration
is interchanged. It is important to note that this interchange
of leg configurations would violate eq. (2) if the legs were
not composed of identical/reflected rigid bodies (i.e, having
different mass distributions) and would violate eq. (3) if
the dynamics and constraints of the leg joints differed (e.g.,
different position/velocity/torque limits).

C. Identification of DMS group G in rigid-body dynamics

The identification of the DMS group G in a floating-base
dynamical system composed of rigid bodies can be achieved
through the following four steps (see tutorial examples in
fig. 6):

1) Identify all the unique bodies in the kinematic tree,
including the base of the system, ensuring there are no
duplicated or reflected versions of the same body.

2) Determine the set of Euclidean isometries g ∈ Ed for
which the inertia of each unique body remains invariant.
These candidate Euclidean isometries represent potential
DMSs for the system.

3) Identify any modularity in the kinematic tree, such
as sets of duplicated or reflected symmetric kinematic
subchains.

4) Utilize eq. (7) to assess the feasibility and existence
of ρQJ

(g) ∈ G, progressing from the base to the end-
effectors.

While the presented analysis may seem extensive for simple
systems and DMS groups, these abstractions open avenues
for studying more complex systems and symmetry groups,
enabling computational design of symmetric robotic systems,
as well as algorithmic identification of DMSs and data aug-
mentation.



V. G-EQUIVARIANT FUNCTION APPROXIMATORS

After identifying the DMS group G of our system (sec-
tion IV-C) and understanding how these symmetries mani-
fest in proprioceptive and exteroceptive measurements (sec-
tion IV-A), we can now exploit these symmetries in our data.
Consider the symmetric input X and output Y vector spaces,
of any G-equivariant/invariant (eq. (1)) function f : X → Y ,
that we desire to approximate with a model f̂ . We assume that
X and Y are symmetric spaces as they are composed of (po-
tentially several) proprioceptive/exteroceptive measurements.
For instance, both spaces could contain measurements of the
system state, terrain elevation, external forces, depth images,
contact states, etc. See section VI for examples.

To enhance the generalization and sample efficiency of
our approximation, we can enforce the G-equivariant/invariant
constraints of the original function on our model f̂ . In this sec-
tion, we outline the process of incorporating these constraints
when f̂ is a neural network parameterized by φ. By imposing
symmetry constraints, we can reduce the number of trainable
parameters in the architecture. Our approach builds upon the
theory and implementation of Finzi et al. [6]’s framework
for G-equivariant NNs. Our main motivation is to overcome
the limitations that hinder the construction of large-scale G-
equivariant NNs, which are commonly encountered in real-life
applications (see details in Section B).

Consider c to be composed of multiple perceptrons (or
convolutional) layers of the form ly := σ(lW lx + lb),
where lx ∈ Rn, ly ∈ Rm are the lth layer input-output.
lW ∈ Rm×n and lb are the layer’s linear map and bias; and
σ : R→ R is a strictly monotonic nonlinearity [20]. With this
parametrization, the equivariance constraints of eq. (1) can be
reduced to constraints on the linear mapW (dropping the layer
index l for notation clarity):5

ρout(g)W = Wρin(g) ⇐⇒ (ρW(g)− I)w = 0

| ∀ g ∈ G. (8)

The right-side of eq. (8) is a reformulation of the linear map
equivariance constraints (left-side) as a standard set of linear
equations. Denoting w = vec(W) ∈ Rmn as a vectorized
version of W and ρW(g) = ρout(g) ⊗ ρin(g-1)

ᵀ ∈ Rmn×mn
as the action representation acting on the parameter space of
the linear map (⊗ stands for the Kronecker product). Here,
we consider the group acting on W a semi-direct product6

of the input and output groups (refer to Finzi et al. [6] for
details). Since the constraint imposed by each g is linear in
W, we can stack them into a single large system of linear
equations Cw = 0. The nullspace of this system of equations
B ∈ Rmn×r describes the r basis vectors spawning the entire
space of equivariant linear maps. Allowing to parameterize all

5A similar analysis can be made for the bias vector b.
6 Since with DMSs the input and output symmetry groups are isomorphic,

using a direct product in eq. (8) implies an over-constraining of the linear map.
Resulting in an excessive reduction in the number of trainable parameters.

G-equivariant W as:

w =
∑r
kckB:,k ⇐⇒ W =

∑r
kck unvec(B:,k)

.
=
∑r
kckB:,:,k.

(9)

Where the basis coefficients c ∈ Rr represent the free vari-
ables of the system of equations and the trainable parameters
of the equivariant layer (see fig. 1 right).

A. Dealing with memory complexity of equivariant layers:

An equivariant layer needs to store the matrices ρW(g) ∈
Rmn×mn and B ∈ Rmn×r, in addition to the typical memory
complexity of a perceptron or convolutional layer. These
matrices’ memory complexity quickly becomes intractable for
moderate input-output dimensions (see section C). Fortunately,
the symmetry groups of DMSs (finite groups) have sparse
action matrix representations, resulting in both of the afore-
mentioned matrices being highly sparse. We extend the API
from Finzi et al. [6] to handle sparse matrix representations,
limiting the additional memory footprint to a minimum.

B. Dealing with the computational complexity of determining
the equivariant basis B

Computing B amounts to finding the nullspace of a large
linear system of equations. Finzi et al. [6] proposes a Krylov
gradient-based method able to handle both finite and Lie
groups’ arbitrary representations. While Van der Pol et al. [23]
approximates B through SVD of a matrix W̄ ∈ Rz×mn (z ≥
mn). Both approaches run in polynomial time O(r2(mn)2)
and approximate the space rank r numerically. These ap-
proaches become intractable for large vector spaces.

To handle the computational cost we exploit the fact that
for DMSs all ρQJ

and ρYl (representations of the output space
of internal layers of the NN), can be expressed as permutation
representations. Reducing the computation of the nullspace B
to a search of the permutations (or orbits) of each dimension
of w. A problem that can be solved in linear time.

For permutation representations, the constraints imposed by
each ρW(g) on w can be interpreted as parameter sharing con-
straints. Becoming every unique orbit of the dimensions of the
linear map G·wk = {g ·wk : ∀ g ∈ G} = {wk,−wi, . . . , wj},
a vector of the null-space of C (i.e., Bi). Each unique orbit
describes the sharing scheme of a free variable of the system
of equations, that is, the sharing of the trainable parameter
ci over multiple positions in W (see the parameter orbits of
length 4 in fig. 1-right, for K4). The orbits of all w ∈ w are
trivially computed with [w, ρW(g1)w, . . . , ρW(g|G|)w], while
the unique r orbits can be identified in O(mn) time. Our
proposed solution can be thought of as a linear-time version
of Ravanbakhsh et al. [20].

C. Optimal parameter initialization for equivariant layers

Proper initialization of the equivariant layer’s trainable pa-
rameters cl (eq. (9)) is required to avoid activations/gradients
from vanishing or exploding [12]. Following the same deriva-
tion of the Kaiming initialization [10] (see section B-B), we
can conclude that the parameters should be initially sampled



Fig. 3: CoM-estimation results comparing MLP, MLP-aug, and EMLP models. Left and Middle: Test set sample efficiency
of model variants with different capacities (number of neurons hc in hidden layers) for robot Solo and Atlas. Right: Sample
efficiency for robot Solo with models having hc = 512, when exploiting G = K4 (sagittal and traversal symmetries) and
G = C2 = e, gs ⊂ K4 (only sagittal symmetry). The plots depict the average and standard deviation across 10 seeds.

from a distribution with Var(cl) = m/λBγσ, to ensure con-
stant variance of activations throughout the network layers
(see fig. 7). Where λB =

∑m
i

∑n
j

∑r
k B2

i:j:k and γσ is a
nonlinearity dependant scalar (e.g., γReLu = 1/2, γSeLu = 1
following Klambauer et al. [12]). This initialization depends
only on B. Thus, is applicable for any symmetry group.

D. Reduction of trainable parameters in equivariant layers:

Determining analytically the number of trainable parameters
(i.e. the rank r) of an G-equivariant layer is, in general, an un-
resolved problem. However, for DMS groups and permutation
representations, it becomes trivial to show that the number of
trainable parameters of a G-equivariant layer can range from
|w|/|G| ≤ r ≤ |w|, depending on the number of dimensions of
the input-output spaces left invariant by the symmetry actions
(see details in section B-A). In practice, this implies that for a
G-equivariant layer without any input-output fixed points (e.g.,
all intermediate layers of a G-equivariant NN), the number of
trainable parameters is reduced by 1/|G| being |G| the group
order. Therefore a G-equivariant architecture with G = C2 (or
G = K4) will have approximately 1/2 (or 1/4) of the trainable
parameters of an unconstrained NN of the same architectural
size (this applies to NN processing data from robot Atlas and
Solo fig. 1). The reduction of parameters is caused by the
parameter sharing constraints (eq. (9)) and is visually depicted
in fig. 1-right.

VI. EXPERIMENTS

We demonstrate the effectiveness of DMSs for data augmen-
tation and training equivariant functions through two super-
vised learning experiments: a regression task using synthetic
data and a classification task using real-world data. These
experiments showcase the impact of exploiting DMSs on
sample efficiency and generalization capacity. While we keep
the presentation concise, all the technical aspects are detailed
in section C and the code repository 1.

A. CoM momentum estimation (Regression)

In this experiment, we train a NN to approximate a robot’s
center-of-mass momentum given the joint-space position and
velocities: h = AG(q̂) ˙̂q, where h = [lᵀ kᵀ]ᵀ are the
linear l and angular k momentum components and AG is
the Centroidal Momentum Matrix (CMM) of Orin et al. [17].
This analytical function is highly non-linear and G-equivariant
w.r.t the robot’s symmetry group G (eqs. (18) and (20)).

We test two robots: Atlas, a 32-DoF humanoid robot with
G = C2 sagittal reflection symmetry (fig. 1-left), and Solo,
a 12-DoF quadruped robot with G = K4 (fig. 1-center).
We compare tree function approximation variants: a standard
Multi-Layer Perceptron (MLP), an augmented MLP s(MLP-
aug), and a hard-equivariant MLP (E-MLP).

In fig. 3-left-&-middle, we compare the model variants.
Across both robots and all model capacities, E-MLP and MLP-
Aug outperform MLP in terms of sample efficiency (better
generalization with fewer data) and robustness to overfitting
when training data is limited. Among the E-MLP and MLP-
Aug variants, lower capacity versions exhibit similar behav-
ior, but as capacity increases, E-MLP demonstrates superior
sample efficiency and generalization. In addition, fig. 3-right
shows a comparison for the Solo robot, evaluating the perfor-
mance of the model variants when exploiting either the entire
symmetry group (K4) or a subgroup of the true symmetry
group (C2 ⊂ K4). The results indicate that sample efficiency
and generalization capacity increase with the number of true
symmetries of the data exploited.

B. Static-friction-regime contact detection (Classification)

In this experiment, we utilize the dataset introduced in
Lin et al. [14] for estimating static-friction-regime contacts
in the foots of the Mini-Cheetah quadruped robot. The dataset
consists of real-world proprioceptive data (q̂, ˙̂q, base linear
acceleration, base angular velocity, and leg feet positions and
velocities) captured over a history of 150 time-frames. These
measurements were obtained from inboard sensors during



Fig. 4: Static-Friction-Regime contact detection results comparing CNN, CNN-aug, and ECNN. Left: Sample efficiency
in log-log scale. Middle: Average legs F1-score. Right: Classification metrics on test set performance of models trained with
the entire training set. The selected metrics include contact-state (y ∈ R16) accuracy (Acc) and f1-score (F1) for each leg
binary contact state. Due to the sagittal symmetry of the robot, the left front (LF) and right front (RF) legs are expected to be
symmetric, as well as the left hind (LH) and right hind (RH) legs. F1-score is presented considering the dataset class imbalance
(see section C-D). The reported values represent the average and standard deviation across 8 different seeds.

locomotion, encompassing various gaits and terrains. The
dataset also includes y ∈ R16, representing the ground truth
contact state of the robot, which was estimated offline using
a non-causal algorithm. Our goal is to train a causal function
approximator f̂ (x;φ) to predict the contact state based on the
input proprioceptive data.

The Mini-Cheetah robot in the real-world exhibits an ap-
proximate reflection symmetry group, G ≈ C2. As a result,
both the proprioceptive data x and the contact state y share
the symmetry group G (see section C-D). In this experiment,
we compare three variants of function approximators: the
original Convolutional Neural Network architecture proposed
by Lin et al. [14] (CNN), a version of CNN trained with
data augmentation (CNN-aug), and a version of CNN that
incorporates hard-equivariance constraints (E-CNN).

The sampling efficiency and average leg contact state classi-
fication results are depicted in fig. 4-left-&-middle. The equiv-
ariant model, E-CNN, demonstrates superior generalization
performance and robustness to dataset biases compared to the
unconstrained models (refer to section C-D2). Following E-
CNN, CNN-aug exhibits better performance than the original
CNN. In fig. 4-right, we evaluate the classification metrics
of the test set when using the entire training data. The E-
CNN model outperforms both CNN-aug and CNN in contact
state classification and average leg contact detection. Notably,
exploiting symmetries helps mitigate suboptimal asymmetries
in the models, preventing them from favoring the classification
of one leg over others (observe legs LF and RF in fig. 4-right).
Further details can be found in section C-E.

VII. CONCLUSIONS & DISCUSSION

In this work, we present the definition of Discrete Morpho-
logical Symmetry (DMS). A capability of some dynamical
systems to imitate the effect of rotations, translations, and
infeasible reflections of space with a feasible discrete change
in the system configuration. Using the language of group

theory we study the set of DMSs of a dynamical system
as a symmetry group G and conclude that: (1) A system
with a symmetry group G exhibits G-equivariant generalized
mass matrix and dynamics. (2) That the symmetries of the
dynamics extend to optimal control policies as well as to any
proprioceptive and exteroceptive measurements, related to the
evolution of the system’s dynamics.

We establish the necessary theoretical abstractions to inves-
tigate and identify DMSs in any dynamical system, irrespective
of the number of symmetries present. This new formalism
allows us to identify the reflection/sagittal symmetry, prevalent
in humans, animals, and most robots, as the simplest morpho-
logical symmetry group G = C2. Crucially, we use the same
formalism to identify and exploit DMSs in real-world robotic
systems with a greater number of symmetries.

In addition, we provide an open-access repository that
facilitates the efficient prototyping of G-equivariant neural
networks for exploiting DMS in various applications involving
rigid-body dynamics, such as robotics, computer graphics, and
computational biology. This repository includes a growing
collection of symmetric dynamical systems, with their cor-
responding symmetry groups already identified. Furthermore,
we present compelling empirical and theoretical evidence
supporting the utilization of DMSs in data-driven applications
through data augmentation and the adoption of G-equivariant
neural networks. Both symmetry exploitation techniques result
in improved sample efficiency and generalization.

Limitations: Our work makes two assumptions: (1) that the
system symmetry group G is finite, and (2) that the symmetries
of the system are exact. For details see section D.

Further work: For data-driven applications the benefits
of DMSs suggest the computational design of symmetrical
dynamical systems. While for control applications, the G-
equivariance nature of the generalized mass matrix suggests
research on the numerical implications of this previously
unexploited constraint in optimal control.
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APPENDIX A
PROPERTIES OF ROBOTIC SYSTEMS WITH DMSS

Here, we present a geometric (instead of albegraic) develop-
ment analog to section IV-B. For clarity of the explanation, let
us imagine two different Euclidean spaces and two versions of
the robot: the original space (with reference frame o) and robot
with coordinates q and q̇, and the virtual rotated/reflected
space (with a reference frame o, with configuration Xo

o =î
Rg ro
0 1

ó
) and virtual robot with coordinates g · q and g · q̇

referenced to o. Noting that in the case of a reflection, the
virtual robot has reflected versions of each rigid body.

For eqs. (3) and (5) to hold, there must exist an action g ∈ G
transforming the real robot configuration g ·q, g · q̇ resulting in
the same kinetic energy as the virtual robot’s kinetic energy:

T (g · q, g · q̇) = 1
2

nB∑
i=1

miṙ
ᵀ
g,iṙg,i + wᵀ

g,iIiwg,i

.
= 1

2

nB∑
k=1

mkṙ
ᵀ
k ṙk + wᵀ

kIkwk = T (g · q, g · q̇),

(10)

where ṙg,i, wg,i, mi and Ii are the linear and angular velocity,
mass, and inertia matrix of the transformed body i (referenced
to o). Likewise, ṙi, w i, mi and Ii are the equivalent quantities
for the virtual robot and body i (referenced to o).

A. Symmetries of kinematic parameters:
Ignore momentarily the influence of the mass and inertia

in terms of the real and virtual bodies. We can assert that for
eq. (10) to hold, the transformed configuration should result
in a kinematic tree indistinguishable from the virtual robot’s.
Thus, for everybody i in the real robot kinematic tree, there
should exist an equivalent virtual body k (as seen in fig. 6, not
always k = i). By equating the linear and angular velocities
of the real and virtual bodies, referenced to o, and expressing
the velocities as functions of the generalized coordinates we
obtain:

ṙg,i = ṙk
.
= Rg · ṙk

JTi(g · q)g · q̇ = Rg · JTk(q)q̇

JTi(g · q)g = Rg · JTk(q) (11)
wg,i = wk

.
= |Rg |Rg ·wk

JRi(g · q)g · q̇ = |Rg |Rg · JRk(q)q̇,

JRi(g · q)g = |Rg |Rg · JRk(q), (12)

where JTi(q), JRi(q) ∈ R3×n are the position and orienta-
tion analytical Jacobians (describing the instantaneous velocity
vectors contributed by each DoF to body i) of the real robot
at a configuration q [26]. Formulating eq. (12) for each of
the nB bodies of the robot we obtain at best nB × 3 × n
non-linear equations that can be used to assert if g exists.
In practice, the action representation ρQ(g) and especially its
component acting on the joint space ρQJ

(g) can be trivially
determined by solving eq. (12) (or equivalently eq. (7)) for
each body from top to bottom of the kinematic tree (i.e., base
first, end-effectors last), if g exists.
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Fig. 5: Properties of bodies capable of imitating a true reflection g of space (w.r.t the yz-plane in this case), with a proper
transformation g involving only a rotation and translation. The first row shows the original bodies with their respective angular
velocities w , subjected to trivial symmetry transformation e (dashed lines represent the principle axes of inertia of the bodies),
and the second and third rows display the effect of g and g on the bodies and angular velocities, respectively. The first
column displays a rigid body with symmetric mass distribution, for which g exists, as the reflected and rotated bodies share
an equivalent angular kinetic energy. The second column shows a rigid body with asymmetrical mass distribution, for which
the rotation g, that produces a kinematic symmetry, results in the reflected and rotated bodies having different angular kinetic
energies (eq. (2)). The third column shows two bodies with asymmetrical mass distributions, each a reflected version of the
other, in this case, the action g swaps bodies configurations to imitate the configuration and energy state of the reflected bodies
transformed with g . Angular velocity is a pseudo-vector (or axial-vector), for which a reflection transformation is computed
as wg = |Rg |Rgw (see Quigley [19]).

B. Symmetries of dynamic prameters

Let us assume kinematic symmetry and direct our attention
now to the influence of the mass and inertia terms on the
kinetic energy of a single rigid body when it is transformed
with the action g, which imitates a true reflection of space
g . Focus on the first two columns of fig. 5. Because of the
kinematic symmetry the CoM of the reflected and transformed
bodies coincide, both bodies have equivalent linear compo-
nents of kinetic energy. However, for arbitrary rigid bodies,
the reflected and transform bodies will have different angular
components of kinetic energy. Note that in the general case,
the transformed and reflected bodies’ inertia will differ, thus
even if both bodies have the same angular velocities, their
kinetic energy will differ.

Let p, pg and pg be frames located at the CoM of the
original, reflected and transformed bodies, aligned with the
principal axes of inertia of each of the bodies. Similarly,
denote Io and Ig

o as the original and transformed bodies
inertias referenced to o, and Ig

o
as the reflected body inertia

referenced to the reflected Euclidean space o. In order to

comply with eq. (12), we must ensure that:

wo ᵀ
g Ig
o wo g = wo ᵀ

g Ig
o

wo g , ,

(Rg wo )ᵀ Ig
o (Rg wo ) = wo ᵀ

g Ig
o

wo g

| wg
o = |Rg |Rg wo ,

Ig
o = Rg Ig

o
Rg

| wo ≡ wo g , RgRg = I,

Ro pg Ig
pg Ro pg ᵀ = Rg R

o pg Ig
pg

Ro pg ᵀRg

| Ia = Rb a Ib Rb aᵀ,

Ro pg Ig
pg Ro pg ᵀ = Rg R

o p Rp pg Ig
pg

Rp pg ᵀ Ro pg ᵀRg ,

Ro pg .
= Rg R

o p Rp pg (13a)

| Ip ≡ Ig
pg ≡ Ig

pg
.

What eq. (13a) states is that in order for the reflected and
transformed bodies to have equivalent angular kinetic energy,
both bodies should have co-linear (or aligned) principal axes
of inertia. This allows us to describe Ro pg as a function
of the original body configuration Ro p and two reflection
matrices: the true reflection of space Rg and a body specific
diagonal reflection matrix Rp pg , which exists only if the rigid



body has a symmetric mass distribution. A visual example for
symmetric and asymmetrical rigid bodies is presented in fig. 5
left and middle columns. A similar analysis follows for DMSs
imitating rotations

C. Symmetric position and velocity constraint configuration
spaces

Although it is implicitly implied on eq. (2) that the con-
strained position Q and velocity TqQ configuration vector
spaces should also be symmetric or equivariant, this property
might be easily overlooked. As mentioned in section IV the
relevance of morphological symmetries relies on the equivari-
ant nature of the system dynamics (eqs. (1) and (3)), which
imprints symmetry constraints on optimal control policies
and proprioceptive and exteroceptive measurements. However,
with non-symmetric constrained configuration spaces, eq. (2)
will not hold for every system state q ∈ Q, q̇ ∈ TqQ, and any
uncontrolled or controlled trajectory of the system dynamics
shall not have a symmetric equivalent trajectory, as this has the
potential to violate the constraints of the configuration space.

APPENDIX B
EFFICIENT CONSTRUCTION OF G-EQUIVARIANT NNS FOR

DMS GROUPS G
As mentioned in section V our work builds upon the

framework for the construction of G-equivariant NN of Finzi
et al. [6]. The core limitation of this framework is the inability
to handle large dimensional spaces, due to the computational
and memory complexities. For instance, for an equivariant
layer with input dimension n and output dimension m, the
computational complexity of finding the equivariant linear
map basis B (which is quadratic O((mn)2r2) through the
Krylov subspace method) and the memory complexity of
B ∈ Rmn×r | r ≤ mn, become easily intractable for moderate
n and m dimensions. This limitation is openly discussed in
the EMLP repository README.md, but regretfully not in the
original paper.

In practice, we found these limitations when trying to
construct the equivariant version of the Contact CNN [14] in
our second experiment. This architecture in its internal layers
has n,m > 2000, for which: (i) the Krylov subspace method
complexity renders the operation intractable with standard
hardware and (ii) the matrices B of internal layers required
storage of 1[Gb] > for moderate input output dimensions
(m,n ≈ 250) and 1[Pb] > for m,n > 2000). See section C for
a comparison between dense and sparse matrix representations.

A. Trainable parameter reduction of G-equivariant layers (for
G a DMS group)

Determining analytically the number of trainable parameters
(i.e. the rank r) of an G-equivariant layer is, in general,
an unresolved problem. However, for DMS groups, r can
be computed once the input-output action representations are
known. The requirement to compute r is that actions affecting
the linear maps are a semi-direct product6 of the input-output
groups, and the input-output representations are generalized

permutation matrices. These conditions are met for most DMS
groups (see section D).

The equivariance constraints of eq. (9) on linear maps
of perceptron (or convolutional) layers imply a reduction of
trainable parameters from |w| = mn to |c| = r ≤ mn.
For DMS groups, r is associated with the number of unique
orbits of the elements of w. Thus we can compute this value
using the orbit-counting theorem (also known as Burnside’s
Lemma), which states that the number of orbits is the average
number of fix-points of G, that is r = 1

|G|
∑
g∈G |wg |, where

wg .
= {w ∈ w : g · w = w} represents the set of elements

of w that are invariant to g (i.e. fix-points). Those fix-points
can be identified by the elements on the diagonal of ρW(g)
that are equal to one. Therefore, for a G-equivariant layer, the
number of trainable parameters is determined by:

r = 1
|G|
∑
g∈Gχ

1
ρW (g) = 1

|G|
∑
g∈G χ

1
ρin(g-1) · χ1

ρout(g), (14)

denoting χ1
ρ(g) : G → N as the number of fix-points of the

action representation ρ(g). Therefore, the number of trainable
parameters can range from |w|/|G| ≤ r ≤ |w|, depending on
the fix-points of the layers’ input and output spaces.

B. Parameter initialization of equivariant layers for DMS

Consider a Equivariant Neural Network architecture com-
posed of multiple layers of equivariant linear (or convolu-
tional) layers of the form ly := σ( lW lx + lb), being l the
layer index, lx ∈ Rn and ly ∈ Rm the layer’s input and output
vector spaces, lW .

=
∑r
k
lck

lB:,:,k ∈ Rm×n the layer’s linear
map, lB ∈ Rm×n×r the layer’s r basis vectors spawning the
space of equivariant linear maps, lc ∈ Rr the layer’s trainable
parameters, and lb ∈ Rm the layer’s bias vector.

For the optimal flow of information throughout the network,
it’s relevant to initialize the trainable parameters such that the
variance of activations (during inference/forward-propagation)
and gradients (during back-propagation) is kept constant,
avoiding activations/gradients from vanishing or exploiting
[8]7.

The derivation is based on the equivalent process for
unconstrained layers presented in He et al. [10]. Let the
layer’s activations before the non-linearity be denoted by
lz = lW lx + lb, such that ly = σ(lz), and note that
lx = l−1y. Furthermore, we will assume the elements of
lc and lx are mutually independent and sampled from two
independent distributions, denoting the random variables of
the two distributions as lc and lx.

The core difference in the initialization of unconstrained
and equivariant layers lies in the way the linear map is

7See Pierre Ouannes blog: pouannes.github.io/blog/initialization

https:\/\/pouannes.github.io\/blog\/initialization\/#xavier-and-kaiming-initialization


parameterized. For equivariant layers we have:

Var( lW lx + lb) =

m∑
i

n∑
j

Var
(
lWi,j

lxj
)
| Var( lb) = 0

=

m∑
i

n∑
j

Var

((
r∑
k

lck
lBm,n,k

)
lxj

)

, = Var
(
lc lx

) m∑
i

n∑
j

r∑
k

B2
m,n,k︸ ︷︷ ︸

λlB

(15)

| Var

(∑
a

sa
const

p

)
=
∑
a

s2aVar(p)

In the forward-propagation scenario, we are interested in
conserving the variance of the activations throughout layers,
that is we must ensure Var( lz) = Var( l−1z). Using eq. (15)
we obtain:

Var( lz) = Var( lW lx + lb)

m Var( lz) = λlBVar
(
lc lx

)
Var( lz) =

λlB
m

Ö
E(lc2)︸ ︷︷ ︸
Var(lc)

E( lx2)− E(lc)2︸ ︷︷ ︸
=0

E( lx)2

è
Var( lz) =

λlB
m

Var(lc)E
(
l−1y2

)
| lx = l−1y = σ( l−1z)

Var( lz) =
λlBλσ
m

Var(lc)Var( l−1z) (16)

| E
(
l−1y2

)
= λσVar

(
l−1z

)
Var( lz) ≡ Var( l−1z) (17)

| Var
(
lc
) .

=
m

λlBλσ

where λσ in eq. (16) is a non-linearity dependent scalar
computed analytically or empirically (see He et al. [10]).
In eq. (17) we conclude that if we sample the equivariant
layer trainable parameters lc from a distribution ensuring
Var(lc)

.
= m

λlBλσ
, the variance of the activations across

equivariant layers remain constant. A similar procedure can
be applied to the backward propagation case, concluding that
in order to maintain a constant variance of the gradients across
the network layers we should sample the trainable parameters
ensuring Var(lc)

.
= n

λlBλσ
. As remarked in He et al. [10]

both variance values for the forward and backward propagation
cases lead to the proper flow of information in the network.
On fig. 7, it can be appreciated that our method achieves
equivalent results for equivariant architectures as [10] does
for standard linear and convolutional architectures.

APPENDIX C
IMPLEMENTATION DETAILS & CODE

Additional to this section, we provide open-access code
with the scripts for reproducing the experiments of this work,

the parameters of the models used for comparison, along
with additional interactive examples visualizing morphological
symmetries of both robotic systems and data.

A. Efficient data augmentation
Since any input x and output y spaces of equivariant archi-

tectures have matrix symmetry action representations, ρX (g),
ρY(g), it is possible to perform batched data augmentation,
reducing the computational complexity of augmenting a batch
of Nb samples from Nb matrix-vector multiplications to a
single matrix-matrix multiplication, preferably performed after
data is loaded to GPU for optimal performance.

B. Hyperparameter tunning
The only hyper-parameter tunned for each model and model

variant was the learning rate. For all model variants presented
in this work (except the original Contact-CNN model from Lin
et al. [14], which we retrained using the same hyperparameters
reported by the authors) we ran a grid-search in log-scale
among 20 different learning rates. In this scenario, we always
used the entire training dataset and optimized w.r.t computed
loss in the entire validation partition. The learning rate values
used for each model are depicted in section C-D2.

C. Experiment: CoM Momentum Estimation
The dataset for the CoM estimation experiment was gen-

erated using Pinocchio [3], which in turn uses the URDF
models of the robots Solo and Atlas, to extract the kinematic
and dynamic parameters required to compute the Centroidal
Momentum Matrix AG(q) matrix [17], with which computing
the CoM momentum reduces to:

g · h = AG(g · q̂)g · ˙̂q | ∀g ∈ G. (18)

g · h ≈ f̂
Ä
g · q̂, g · ˙̂q;φ

ä
| ∀g ∈ G. (19)

Where eq. (18) expresses the analytical G-equivariant function
to compute the CoM momentum. While eq. (19) is the
approximation of this function by an G-equivariant NN, with
parameters φ.

1) Determination of the input and output representations
ρX (g), ρY(g) | g ∈ G: Both robots Solo and Atlas evolve
in the Euclidean space of 3-dimensions. Therefore their con-
figuration space can be decoupled into Q

.
= E3 × QJ . After

identifying their symmetry groups and their corresponding E3

and QJ representations (ρE3(g), ρQ(g) | ∀ g ∈ G), identifying
the representations of the input and output spaces of the
NN function approximator (eq. (19)) becomes a trivial task
considering that:ï

ρEd(g) 0
0 ρEd(g)

ò
︸ ︷︷ ︸

ρY(g)

ï
l
k

ò
︸︷︷︸
y

≈ f
Åï
ρQJ

(g) 0
0 ρQJ

(g)

ò
︸ ︷︷ ︸

ρX (g)

ï
q̂
˙̂q

ò
︸︷︷︸
x

ã
| ∀ (g, g)|g ∈ G, g ∈ E3 (20)

Defining x =
î
q̂
˙̂q

ó
∈ R2nJ and y = h ∈ R2d ≡ R6. Note that

by definition any improper transformation applied to a pseudo-
vector (e.g. angular velocity/momentum, torques) is computed
as |R|R · k.



Dense Memory [Bytes] Sparse Memory [Bytes]
Layer Type n m ρw (g) B ρw (g) B

1D-Conv 54 64 764.41M 191.10M 221.18k 110.59k
1D-Conv 64 64 1.07G 268.43M 262.14k 131.07k
1D-Conv 64 128 4.29G 1.07G 524.28k 262.14k
1D-Conv 128 128 17.18G 4.29G 1.04M 524.28k
Percept 4736 2048 6.02P 1.50P 620.75M 310.37M
Percept 2048 512 70.36T 17.59T 67.10M 33.55M
Percept 512 16 4.29G 1.07G 524.28k 262.14k

TABLE I: Comparison of memory complexity of individual layers of the equivariant version of Contact-CNN [14]
(ECNN). This example compares the sparse and dense representations of matrices B ∈ Rmn×r and the |G| group action
representations ρw(g) ∈ Rmn×mn, for the symmetry group G = C2 of the Mini-Cheetah robot, with r = mn/2 (see eq. (14)).
Here, n,m represents the input and output dimensions of each layer. The dense memory complexity of all action representations
increases with the group order |G| while the memory complexity for B decreases with larger group orders (since r ≤ mn
becomes smaller). We assume floating point representations with 32 bits.

RF LF RH LH y g · y LF RF LH RH
0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 2 0 0 1 0
0 0 1 0 2 1 0 0 0 1
0 0 1 1 3 3 0 0 1 1
0 1 0 0 4 8 1 0 0 0
0 1 0 1 5 10 1 0 1 0
0 1 1 0 6 9 1 0 0 1
0 1 1 1 7 11 1 0 1 1
1 0 0 0 8 4 0 1 0 0
1 0 0 1 9 6 0 1 1 0
1 0 1 0 10 5 0 1 0 1
1 0 1 1 11 7 0 1 1 1
1 1 0 0 12 12 1 1 0 0
1 1 0 1 13 14 1 1 1 0
1 1 1 0 14 13 1 1 0 1
1 1 1 1 15 15 1 1 1 1

TABLE II: Symmetric contact state for Mini-Cheetah
quadruped robot. Considering its morphological symmetry
group C2 = {e, g}. Each leg binary contact state (LF: Left
Front, RF: Right Front, LH: Left Hind, RH: Right Hind) is
displayed with its corresponding robot contact state y.

2) Practical details of the dataset generation: The URDF
files of the robots Solo and Atlas are generated using XACRO
scripts, which replicate the structure of limbs to their sym-
metric counterparts, making the dynamics of the robots in
simulation exactly G-equivariant. However, the algorithm for
computing the CoM momentum from Pinocchio is numerically
sensitive, resulting in the orbits of the momentum G ·h devi-
ating slightly from the theoretical orbits. Therefore to reduce
numerical errors and ensure the theoretical equivariance of the
data, we replace every target variable by the average of its orbit
y = h

.
= 1
|G|
∑
G · g−1(AG (ρQ(g)q̂) ρQ(g) ˙̂q) | ∀ g ∈

G.

D. Experiment: Static-Friction-Regime Contact Detection

The dataset presented in [14] is composed of output samples
y ∈ R16, where each dimension of y represents a logit of a
specific contact state, among the 16 different combinations
of each of the 4 legs possible binary contact states. The input
samples y = {zi}150i=0 ∈ R54×150, are a history of 150 samples
z = [q̂, ˙̂q,a,w ,p,v] ∈ R54. Where q̂ ∈ RnJ , ˙̂q ∈ RnJ ,a ∈
R3,w ∈ R3,p ∈ R12,v ∈ R12 are the MIT-Mini-Cheetah

robot joint-space positions, velocities, base linear acceleration,
base angular velocity, and each of the four legs feet’s position
and velocities, respectively, referenced to the robots base frame
B.

The function approximator to learn is expected to be approx-
imately equivariant to the reflection group C2, considering the
sagittal symmetry of the robot morphology. Therefore:

g · y = f̂ (g · x;φ) | g ∈ G = C2 (21)

1) Determination of the input and output representations
ρX (g), ρY(g) | g ∈ G: The MiniCheetah robot evolves in the
Euclidean space of 3-dimensions. Therefore its configuration
space can be decoupled into Q

.
= E3 ×QJ . After identifying

their symmetry groups and their corresponding E3 and QJ

representations (ρE3(g), ρQ(g) | ∀ g ∈ G), we can identify
the representations of the input and output spaces of the NN
function approximator (eq. (21)), considering that:

ρY(g)y ≈

f

(
ρQJ (g) 0 0 0 0 0

0 ρQJ (g) 0 0 0 0

0 0 ρE3 (g) 0 0 0

0 0 0 ρE3 (g) 0 0

0 0 0 0 ρp(g) 0
0 0 0 0 0 ρp(g)


︸ ︷︷ ︸

ρX (g)

 q̂
˙̂q
a
w
p
v


︸ ︷︷ ︸

x

)

| ∀ (g, g)|g ∈ G, g ∈ E3

Where the representation ρp(g) acting on p ∈ R12

and v ∈ R12 is determined understanding that each
of the feet positions (pRF ,pLF ,pRH ,pLH) and velocities
(vRF ,vLF ,vRH ,vLH) are simply vectors living in E3. Thus,
we must apply the euclidean action ρE3(g) while at the same
time permuting the feets (similar to the permutation of the



Robot Model G lr Samples
Solo MLP/EMLP C2 & K4 2.4× 10−3 100k
Atlas MLP/EMLP C2 1.5× 10−3 500k

MiniCheetah CNN C2 1.0× 10−4
730k

MiniCheetah E-CNN C2 1.0× 10−5

TABLE III: Robot, Models and Dataset parameters.

kinematic subchains described by ρQJ
(g)):

g · p = ρR4(g)⊗ ρE3(g)︸ ︷︷ ︸
ρp(g)

p, | ∀(g, g)|g ∈ G, g ∈ E3 (22)

=

ï
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

ò
⊗ ρE3(g)

ï pRF
pLF
pRH
pLH

ò
| g 6= e

g · v = ρR4(g)⊗ ρE3(g)︸ ︷︷ ︸
ρp(g)

v | ∀(g, g)|g ∈ G, g ∈ E3 (23)

=

ï
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

ò
⊗ ρE3(g)

ï vRF
vLF
vRH
vLH

ò
| g 6= e

Being ρR4(g) | ∀g ∈ C2 two regular representations of C2 stack
in block diagonal form to form a permutation representation
in 4-dimensional space, representing the right-left symmetries
of the 4 kinematic tree’s subchains (four legs). The nature
of the representation ρQJ

(g)
.
= ρR4(g) ⊗ Ins might be better

understood if you consider that we apply ρR4(g) to each set
of symmetric DoF in the kinematic three, which for the Mini-
Cheetah is ns = 3 sets of symmetric DoF (see fig. 2-right).
See simpler examples in fig. 6.

Lastly, the representation for the contact state ρY(g) is given
by the permutation matrix relating y and g · y described in
section C-D.

2) Details on dataset partitioning: We modified the original
dataset partitioning to properly evaluate the generalization
capacity of the models. The original dataset was composed
of 15 different recordings varying ground type and gait type
used during data collection (most recordings were performed
on a trot gait, which heavily biased the dataset to contact states
0, 6, and 9 of section C-D).

The authors of [14] partitioned all 15 recordings into
(70%, 15%, 15%) training, validation and testing. This parti-
tion was made such that the first 70% time-samples of each
recording were assigned for training, the following 15% to
validation, and the rest for testing.

Because we are interested in studying the generalization
capacity of the models and the out-of-training-distribution
performance, we modified this partitioning such that among
the 15 different recordings we selected randomly 5 recordings
for testing, and the remaining 10 recordings were used for
training splitting these recordings into (85%, 15%) training
and validation splits as in [14], that is, for each recording, the
first 85% data-samples go for training and the remaining for
validation.

The selected training-validation recordings were: air walk-
ing gait, concrete difficult slippery, concrete left circle, middle
pebble, rock road, asphalt road, concrete galloping, grass, old
asphalt road, sidewalk. While the selected testing recordings
were: air jumping gait, concrete pronking, concrete right circle,
forest, small pebble.

E. Mitigation of suboptimal asymmetries in model perfor-
mance

When comparing individual leg classification we see that the
equivariant model converges to having a similar performance
for each symmetric pair of legs, while the unconstrained
models converge to an asymmetrical suboptimal state favoring
the contact detection of one leg at the expense of reduced
performance for the symmetric leg (see LF and RF f1-scores).
This asymmetrical performance is attributed to the CNN and
CNN-aug models learning to extract temporal features for
both symmetric legs separately, increasing the likelihood of
converging to asymmetrical local minima. On the contrary,
the equivariant model E-CNN can be thought of as learning
to extract a single set of symmetric temporal features for
each symmetric pair of states (a consequence of the model’s
equivariance and parameter sharing). This implies that the
temporal features used for determining the contact state of,
say the left frontal leg, would also be used to determine the
contact state of the symmetric leg, the right frontal leg, and
vice-versa.

F. Equivariant Conv1D layers

For details on the construction of the Equivariant 1D Convo-
lutional layers reefer to 1. Note that the symmetry of a single
time-sample zi is shared across all time-samples y = {zi}150i=0.

APPENDIX D
LIMITATIONS

Our work makes two main assumptions:
1) Symmetries are exact: By assuming that a dynamical

system has exact and not approximate symmetries we are
departing from the real-world nature of DMSs since for
any robotic system in the real-world the manufacturing
and assembly process introduces errors/tolerances in
the kinematic and dynamic parameters of each of the
robot’s bodies. Likewise, the dynamics of animals in
nature are not perfectly equivariant since morphological
symmetries are only approximate symmetries. Although
exact symmetries seem to be a strong assumption, in
practice, the reality is that it is a common assumption
in the fields of robotics and control theory, in which
idealized models of the dynamics are often assumed (in
simulation and real-world).
On section VI we show that the exact symmetry bias
is justifiable and beneficial for learning function ap-
proximators processing the dynamics of approximately
symmetrical systems in the real world. However, the
authors highlight the necessity to properly address the
case of approximate equivariance, which we leave to
future work. To address this case, system identification
techniques [22] have been wildly used to approximate
the deviation of the kinematic and dynamic parameters
from the assumed values. While in the case of G-
equivariant NN Wang et al. [24], Finzi et al. [5] provide



Tri-Finger Robot G = C3

This fixed-based robot is symmetric w.r.t. rotations of space
by θ = 120◦ in the vertical axis. Therefore, its symmetry
group is the cyclic group of order three (G = C3). To
identify this symmetry group we apply the procedure in
section IV-C:

1) Identify XB and IB : As a fix-based robot, we define
XB to be the mounting structure supporting each
finger, and the gray disk delimiting the workspace (see
image).

2) Identify symmetries of IB : The inertia of this virtual
base IB is invariant to rotations by 120◦ in the
vertical axis. I.e., IB is invariant to XBρE3(g)

-1|g ∈
{e, gθ, g2θ} ≡ C3 (eq. (6)).

3) Identify modularity in the kinematic tree: There are
three symmetric kinematic subchains. Each finger is
composed of replicated versions of the same bodies.

4) Identify the DMS group G:
Consider that the transformation ρE3(g)XB

.
=

ρE3(g)XBρE3(g)
-1 (eq. (6)) can be interpreted as a rotation

of the virtual base by θ◦ followed by a rotation −θ◦ in
the z axis. Thus respecting the fix-base constraint of the
system. Denote the joint-space q = q̂ = [qᵀf1, q

ᵀ
f2, q

ᵀ
f3]ᵀ be

composed of each finger’s DoF (qfi ∈ R3).

Then we can define ρQJ
(g)

.
= ρR3(g)⊗ I3 | g ∈ C3. Being

ρR3(·) the permutation representation of 3 elements of C3 (3
kinematic subchains). For the generator action of the group
this is ρR3(g) =

î 0 1 0
0 0 1
1 0 0

ó
.

Lastly, we verify if G = C3 by testing all tentative group
actions for DMSs eq. (5).

Augmentation of data samples: Say we collect a dataset
of robot states (q, q̇) and cube states XC at every time
step t, to train the manipulation policy [7]. To obtain the
symmetric states, at every t, we need to understand that
since we are imitating the effect of a true rotation of space
g , the symmetric states are obtained by (g · q, g · q̇) and
(g ·XC

.
= ρE3(g)XC).

Bolt Bipedal Robot G = C2

Bolt is a bipedal robot with a sagittal plane reflection
symmetry (G = C2). This morphological symmetry allows
it to imitate the effect of arbitrary reflections of space
(g ∈ E3) by re-configuring its base and legs. To identify this
symmetry group we apply the procedure in section IV-C:

1) Identify XB and IB : XB is the robot base (hips)
body, with its corresponding inertia IB

2) Identify symmetries of IB : The base body has
symmetrical mass distribution w.r.t the sagittal
plane. Thus, IB is invariant to the transformation
XBρE3(g)

-1|g ∈ {e, gs} ≡ C2 (eq. (6)).
3) Identify modularity in the kinematic tree: There

are two symmetric kinematic subchains. The left leg
subchain and bodies are reflected versions of the right
leg subchain and bodies.

4) Identify the DMS group G:
Since a reflection w.r.t to the sagittal plane would imply a
true reflection of the rigid bodies of the legs, we need to
permute each body in the kinematic tree with each reflected
version. Denote the joint-space q̂ = [qᵀL, q

ᵀ
R]ᵀ as composed

of the left L and right R legs’ DoF (qL/R ∈ R3). Denote
the sign-relation between the DoF of the Left and right
legs’ degrees of freedom as sL|R ∈ R3.

Then we can define ρQJ
(g)

.
= ρR2(g)⊗ (sL|RI3) | g ∈ C2.

Being ρR2(·) the permutation representation of a 2 elements
of C2(2 kinematic subchains). For the non-trivial action of
the group this is ρR2(gs) = [ 0 1

1 0 ].

Lastly, recalling the definition of ρE3(g) in eq. (6), we verify
if G = C2 by testing all tentative group actions for DMSs
eq. (5).

Augmentation of data samples: Say we collect a dataset
of robot states (q, q̇) and ground reaction forces (fL,fR),
that we transform to the space of generalized forces as
(τfL , τfR), at every timestep t. This dataset can be used
to train a reactive locomotion policy as in Ordonez-Apraez
et al. [16]. The symmetric states, at every t, are then defined
as: (g ·q, g · q̇) and (g ·τfL , g ·τfR) ≡ (ρQ(g)τfL , ρQ(g)τfR)

Fig. 6: Tutorial example morphological symmetries of the Tri-Finger [7] and Bolt robots.

https://imgur.com/a/CYj8wTQ


Fig. 7: Comparison of the initialization method of unconstrained layers of He et al. [10] with our initialization method for
equivariant layers. Left and right columns correspond to MLP & EMLP architectures with σ = ReLu (left) and σ = Tanh
(right) non-linearities. Each row shows different initialization methods differing in the variance of the initialization distribution
of the layer’s trainable parameters. First and second rows show the forward and backward propagation cases of [10] for MLP
and of section B-B for EMLP, with Var(lc)

.
= m/(λlBλσ) and Var(lc)

.
= n/(λlBλσ), respectively. In these cases, the variance

of activations through the network depth remains nearly constant, as desired. The last two rows show the initialization of
layer parameters with a constant variance of 0.052 and 0.82, illustrating scenarios of activations vanishings and exploiting. All
intermediate layers have 256 neurons. In the equivariant case, the network is K4-equivariant.



clear and valuable approaches to learn approximate G-
equivariant NN.
It is relevant to highlight that, in physics-based sim-
ulation, the most common practice is to work with
the idealized model of dynamics. Thus, the assumption
of exact symmetries is justifiable and encouraged in
applications where simulation is a relevant tool.

2) Symmetry group is finite: This work narrows its focus
to DMSs, even do the definition of DMS eq. (5) can be
relaxed to cover continuous morphological symmetries
(an example of this continuous symmetry is the capa-
bility of a robot arm manipulator to imitate rotations
of space by rotating its first degree of freedom). This
assumption allows us to compute in linear time the basis
B of equivariant linear maps (restricted to groups with
finite regular matrix representations).
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