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Abstract

This paper describes an on-line approach for estimating
non-rigid shape and camera pose from monocular video se-
quences. We assume an initial estimate of the shape at rest
to be given and represented by a triangulated mesh, which
is encoded by a matrix of the distances between every pair
of vertexes. By applying spectral analysis on this matrix,
we are then able to compute a low-dimensional shape ba-
sis, that in contrast to standard approaches, has a very di-
rect physical interpretation and requires a much smaller
number of modes to span a large variety of deformations,
either for inextensible or extensible configurations. Based
on this low-rank model, we then sequentially retrieve both
camera motion and non-rigid shape in each image, opti-
mizing the model parameters with bundle adjustment over a
sliding window of image frames. Since the number of these
parameters is small, specially when considering physical
priors, our approach may potentially achieve real-time per-
formance. Experimental results on real videos for different
scenarios demonstrate remarkable robustness to artifacts
such as missing and noisy observations.

1. Introduction

The simultaneous 3D reconstruction of rigid structures
and the camera motion using a set of uncalibrated images
has been extensively studied over the last few decades.
The rigidity prior has proven to be a powerful constraint
to solve the problem, allowing practical and robust solu-
tions [21]. However, rigid reconstruction techniques fail
when applied directly to time-deforming objects such as
a piece of cloth or a beating heart. In order to overcome
this limitation, Non-Rigid Structure-from-Motion (NRSfM)
techniques have been proposed [5, 8, 15, 18, 38], allowing
one to recover the 3D shape of non-rigid objects over time.
This task is a fundamental problem in computer vision,
with potentially many real-world applications in sports, the
movie industry or medical imaging. Since many different

3D shapes can have similar image measurements, NRSfM
is an inherently ill-posed problem and additional a priori
knowledge about the camera motion and the deformation
of the object have been considered [9, 16, 38]. Only very
recently, this problem has been also tackled in a sequen-
tial manner [2, 3, 7, 28]. In this case, the estimation of
time-varying objects can only be done by considering the
observations until current frame. However, this scenario is
paramount for bringing such algorithms to real situations
(e.g., in augmented reality or operating rooms) that require
real-time solutions. For these cases, solving the problem
assuming neither deformable 3D training data nor a defor-
mation model is particularly challenging.

In this paper, we present a new shape basis interpretation
to code non-rigid shapes. We only need a rest shape esti-
mation of the deformable object, which we obtain from the
first few frames of the monocular video. Using this shape,
we compute a matrix encoding the distances between ev-
ery pair of points of the shape, which then allows obtaining
a reduced shape basis by means of spectral decomposition.
The shape basis has direct physical interpretation and is sub-
sequently used to span the deformation of the object in a
low-rank space in which the time-varying coefficients have
to be estimated. We propose incorporating this low-rank
model into an on-line Bundle Adjustment (BA) framework
to simultaneously retrieve the camera pose and the time-
varying shape. Our approach may potentially run in real
time, since the number of parameters to optimize per frame
is relatively small. In addition, our method estimates the
shape basis at low computational cost compared to state-of-
the-art algorithms, since the eigenvalue problem we need
to solve is fairly simple. We show our approach to be ade-
quate to encode both inextensible and extensible deforma-
tions without knowing any 3D training data in advance. The
complexity of our on-line method is linear with the number
of points, so it can handle a wide variety of scenarios, go-
ing from sparse to semi-dense or dense objects. Further, our
method is robust to corrupted observations such as missing
data and noise.



2. Related Work

Modeling a deformable 3D object using low-rank mod-
els has become a very popular approach in computer vi-
sion [8, 11, 15, 18, 29, 33, 36, 38]. Low-rank shape mod-
els were firstly proposed to code the time-varying shape
by means of a linear subspace of a set of deformation
modes. These models, together with orthonormality con-
straints on the camera motion, have proven successful in
the 3D reconstruction of many real-world non-rigid ob-
jects. Both unknown shape basis and coefficients were esti-
mated by factorization-based algorithms [11, 15], or adding
additional priors such as temporal and spatial smoothness
[9, 25, 38] by means of optimization techniques. On the
other hand, [8] proposed applying the low-rank constraint
to the temporal evolution of each 3D point instead of apply-
ing it over the spatial configuration of the shape basis. To
this end, each 3D point position was independently coded
at every instant by means of a linear combination of trajec-
tory basis based on the Discrete Cosine Transform (DCT).
Later, this compact DCT representation was used in [20] to
approximate the time evolving shape basis coefficients, by
implicitly imposing temporal smoothness on each 3D point
trajectory.

Many approaches estimate the shape basis on the fly, but
the problem quickly becomes under-constrained when large
deformations need to be represented [11, 15, 29, 38]. To
reduce the number of parameters to estimate one can use ei-
ther a pre-defined shape or trajectory basis. For pre-defined
shape bases, the problem complexity can be reduced using
dimensionality reduction techniques such as Principal Com-
ponent Analysis (PCA) [10, 27, 33] over a set of non-rigid
3D training data. In a similar way, a 3D shape basis can
be built using trained 2D shapes by means of an active ap-
pearance model [41, 42] for 3D reconstruction of faces or
using latent states in a directed acyclic graph [35]. However,
the accuracy of these methods depends on the appropriate-
ness of the training data, which is hard to obtain in practice.
Modal Analysis (MA) was proposed to obtain a mode shape
basis based on a physical model of a known object [30, 34],
or on the shape at rest estimated by means of an initial ex-
ploration of the object [2, 4].

On the other hand, invariant transformations for isomet-
ric deformations have been proposed applying MultiDimen-
sional Scaling (MDS) on geodesic distance matrices over a
template [13, 17,22, 37] in 3D shape recognition. These ap-
proaches rely on obtaining new configurations where point-
wise euclidean distances are approximately equal to the
original point-wise geodesic distances for both 2D and 3D
cases. These methods were extended to represent quasi iso-
metric deformations for 3D face recognition [12].

In this work, we exploit the available information from
an initial exploration of the deformable object acquired
by an orthographic monocular camera, to compute a pre-

defined shape basis and model its deformation over time.
Our approach uses this exploration to obtain a 3D shape at
rest that is used to compute a dissimilarity measure based on
a representation of the structure. Then, we apply an algo-
rithm similar to MDS to obtain a reduced shape basis, which
can be interpreted and used to encode both inextensible and
extensible deformations. Although we also use a rest shape
estimation, unlike MA [2] our method does not require a
deformation model, nor 3D training data like PCA-based
methods [27, 33]. In fact, our model can be seen as a simpli-
fication of the standard MA, that reduces the computational
cost while still being valid for a large variety of objects, in
particular when the object’s material properties are quasi-
homogeneous.

3. Proposed Deformation Model

Euclidean distance constraints have typically been used
to recover isometric transformations of a deforming object
over time [32]. Although these constraints are very restric-
tive, they have proven to be a powerful prior to solve the
inherent ambiguities of both template-based [27, 31, 39]
and template-free [14, 39] methods. However, these con-
straints cannot be applied when the object surface under-
goes stretching and/or shearing deformations. In this work,
we propose using the distance information on the 3D rest
shape to compute a shape basis that is valid to code both
inextensible and extensible deformations, without any other
prior information.

3.1. Modeling Distance Matrices

Let us consider a 3D shape at rest of a dynamic ob-
ject made of p 3D points, represented by the matrix S =
[$1,82,- ., 5;,...,5,], where the columns represent the 3D
coordinates for each point s; € R3. We describe the
object using a triangular mesh, where each vertex corre-
sponds to a 3D scene point and the list of vertexes is writ-
ten as S := {§; € R*}/_,, and the index set of S as
N, :={1,...,p}. An edge represents a line segment con-
necting two different vertexes of S, and can be expressed
by a tuple of indexes (j,h), j,h € Np,j # h. The list
of edges £ C N, x N, is denoted by € := {(j,h)e}7—y
where n is the number of edges. Finally, we obtain a tri-
angular mesh by means of a Delaunay’s tessellation, where
we represent the list of triangles 7 C N, x N, x N, as
T :={(,h, 1)}, with j,h,l € N, j #h #1# j, and
m being the number of triangles in the mesh. Each trian-
gle contains three edges, and we eliminate all the repeated
edges from all triangles to obtain £ from 7. A path between
the points §; and §y, is a sequence O(j, k) = {8;}7_,, fol-
lowing the piecewise non-directed edges denoted by the set
€ that connect the points on the set S.

We next exploit the distance information to compute a
symmetric p x p distance matrix D from the shape at rest.



First of all, we present different alternatives to compute this
matrix.

A distance matrix D could be modeled employing
geodesic distances —considering the shortest path between
all pairs of points— on S, applying the fast marching ap-
proach for curved domains [23] or length estimation based
on graph search [24]. However, for simplicity, in this work
we will approximate the distance matrix D by using Eu-
clidean or Manhattan distances, respectively.

Euclidean Distance Matrix: We first define the Euclidean
distance matrix D g that contains the Euclidean distances
between pairs of points on S as:

Dy =(bl) +1,b" — 257S)? (1,1) -L), (D

with b = > (S® S) ap x 1 vector. 1, and I, represent
a p x 1 vector of ones and a p X p identity matrix, respec-
tively. © indicates the Hadamard product, i.e., entrywise
product, and % the element-wise square root. Note that the
second product is to fix a null diagonal, avoiding numerical
errors. This matrix is a good approximation for quasi-planar
shapes and it is the same as the geodesic distance matrix for
perfectly planar shapes (see Fig. 1).

Manhattan Distance Matrix: We also define the general-
ized Manhattan distance matrix Dy, for 3D irregular do-
mains, that contains the Euclidean distances between pairs
of points following the path of minimal cost from j to h by
means of the Dijkstra’s shortest path:

p(p—1)/2

DZM = [:)1 dmn(ja h)7

p—1

dm (4, h) = ménj; de(j, j+1)
where D is the distance assembly operator, i.e., this matrix
is assembled from distances between points d,,(j, h) just
considering p(p — 1)/2 terms since the matrix is symmetric
with null diagonal. This matrix is a good approximation
when it is considered a small neighborhood, such as into
dense shapes (see Fig. 1).

3.2. Shape Basis Computation

We now describe how the deformable shape basis is esti-
mated. Following MDS [1, 17], we apply a double centering
and normalization transformation to the distance matrix D
by means of the centering matrix C = I, — %lpl;,r . Then

we perform a spectral decomposition of D = —%CDC by
solving the standard eigenvalue problem:

Dy; = witp;, @)
where (v;,w7), j € N, represent the p x 1 eigenvectors

and eigenvalues of D, respectively. We compute the nor-
malized to one length eigenvectors [[1;[|2 = 1 to satisfy

the orthonormality conditions: @bjT]_Ddzh = w]zt,bijh and

Figure 1. Distance definition. We represent Euclidean d.(j, h)
and Manhattan d,,(j,h) distances on non-planar and planar
shapes between the points j and h. Geodesic distance dg(j, h) is
well approximated by Euclidean distance in planar or nearly pla-
nar objects. For non-planar objects it is better approximated by the
Manhattan distance. Best viewed in color.

1/;;1# n = O;n, with 05, the Kronecker’s delta. Note that in
the literature, MDS is typically applied to a distance matrix
to obtain new configurations where point-wise distances re-
main approximately constant [17, 37], i.e., it is applied to
isometric deformations. In contrast, this will not be the case
of our approach since thanks to the physical interpretation
we propose, both inextensible and extensible deformations
can be coded.

3.3. Shape Basis with Physical Interpretation

Modeling the non-rigid deformation of an object through
a linear combination of mode shapes is a standard practice
in computer vision [8, 11, 15, 18, 29, 33, 38]. While most
techniques use a full shape basis (3p-order vectors), we pro-
pose using the eigenmodes computed in previous section,
that is a reduced shape basis (p-order vectors). We can rep-
resent some non-rigid 3D displacement U over a rest shape,
by a linear combination of r of these modes, each with dif-
ferent physical interpretations, as:

U =®AT, 3)
where ® € R3*3 is a transformation matrix and Y € R"*P

contains the r reduced mode shapes associated to a p-points
structure S :

N i1 i ... i
d’z ¢21 ¢22 1[’2]0

—

T —

. . . (4)
'l,b;!— 1/)7’1 1/%2 s ¢rp
A € R3*7 is a deformation transformation matrix that con-

tains the time-varying coefficients to interpret each reduced
mode shape as:

I‘; Yal Ya2 e ’Ya'r‘
A= I‘gr = V1 V82 - V| )
].-‘7_ ea! Yr2 .- Vrr

where we get three different mode shapes per eigenvector
in the reduced basis solving Eq. (2), since we model defor-
mations in a 3D space. Note that every I' component is a
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Figure 2. Mode-shape interpretation. Left: Three interpretations of the contribution of the some modes of the proposed reduced shape
basis Y over a rest shape (black mesh). Each column corresponds to a different eigenvector, and each row, to its specific interpretation:
T, T'g and I';. That is, every deformation is generated by setting one specific element of A to an arbitrary positive weight, and all the
rest to zero. Right: Eigenvalue frequency spectrum of D, computed using Euclidean distances: we show eigenvalues w; in decreasing
magnitude. Note how the energy drops until the last one, that is zero up to numerical precision. Best viewed in color.

r x 1 vector that corresponds to a different interpretation of
the reduced basis.

Since the principal directions in which our data varies
are not normally aligned with the global axis system, we
have to transform the computed eigenvectors before adding
them to the shape at rest. First, we obtain a 3 x 3 covariance
matrix = as:

T
~(8-G.e1))(s-G.21))) . ©
where s, is the mean values vector of all the data points in
the rest shape and ® denotes the Kronecker product. After
that, we compute a transformation matrix ® by stacking the
three eigenvectors of = together as columns, to transform
the eigenvectors to the global system. To obtain ®, we use
the properties of the orthogonal matrices, i.e., ® = &~ .

To analyze the computed eigenvectors of D, we sort
them in a frequency spectrum from higher to lower fre-
quency (see Fig. 2(right)). We observe that most defor-
mation energy is in the eigenvectors with higher frequency,
and these dominate the global deformation. Therefore the
largest eigenvalues of D contribute the most to the vari-
ance, and justifies the fact of using a low dimensional sur-
face representation with only the first eigenvectors. There-
fore, in practice it is not necessary to solve the full eigen-
value problem in Eq. (2), and only first r eigenvectors have
to be computed, leading to a reduced computational cost.
In Fig. 2(left) we plot the interpretations the some mode
shapes, for a shape at rest corresponding to a hemisphere
with hole.

In Table 1 we provide a qualitative comparison against
other techniques that make use of shape bases. Similar to
MA techniques [2, 4, 30], we only need to estimate the rest-
ing shape instead of using non-rigid 3D training data —with
deformation— like PCA-based [27, 33] methods. However,
our method does not need a deformation model to compute

[1]

Met Qua. Training | Model | Accurate | Complexity
PCA X v (3p)%r
MA X v (3p)%r
Ours v p2r

Table 1. Shape-basis techniques comparison. We provide a com-
parison with other methods to obtain a shape-basis family. We
consider learning methods such as PCA, physics-based ones such
as MA and our interpreted model. While PCA-based methods can
become very accurate if appropriate training data is available, in
practice this is not often the case. Physics-based methods do not
need training data, but a deformation model is mandatory to de-
fine the behavior. In contrast, our interpreted model needs nei-
ther training data nor a deformation model. In addition, since our
shape basis is computed by solving a p-order eigenvalue problem,
instead of a 3p-order, our technique is more efficient. We repre-
sent the computational cost by a function f(p, r) with p and r the
number of points and modes, respectively. We show strong (v')
and weak (X) qualities.

stiffness and mass matrices where material properties (such
as the Poisson’s ratio) are known, reducing the amount of
prior knowledge. Regarding complexity, our method solves
a p-order eigenvalue problem instead of a 3p-order such
as PCA or MA, and hence the memory requirements are
much smaller. This is an important advantage for real ap-
plications with limited computational resources [40]. As
a consequence, our method reduces the complexity from
flp,r) = 9p?r to f(p,r) = p*r [19] to solve the eigen-
value problem in Eq. (2).

We observe that our model is equivalent to the 3D-
implicit low-rank shape model proposed in [28], where the
shape basis is also represented by p-dimensional vectors.
However, we just use a distance matrix to compute the pre-
defined reduced shape basis. Hence, our problem is bilinear
instead of trilinear —including the camera motion— reducing



thus the number of parameters to estimate. This means that
our method is able to make the most of the available infor-
mation, since both formulations use exactly the same initial-
ization. In any case, since our reduced shape basis is pre-
defined from the shape at rest, we can also define an orthog-
onal shape basis as B, = ®A’Y € R3*P with 1 <1 < 3r,
where the A] matrix only contains a component different
to 0, and hence obtaining 37 components of the linear sub-
space, if all combinations are considered. Finally, the 3D
displacement could be computed as U = 27, ¢, B, with
¢, the weight coefficients of the linear subspace of rank 3r.

3.4. Physical Constraints

An interesting advantage of the proposed model is that
we can associate the entries of the deformation transforma-
tion matrix A with physical behaviors. To do this, we can
easily use prior knowledge about the deformation of an ob-
ject to pre-define some of the entries in A. For example,
when we process sequences of non-rigid objects that can-
not have stretching deformations —like a flag waving in the
wind- the entries in I', and I'g can be directly set to zero,
because the surface can not undergo in-plane deformations.
On the other hand, if the object has no bending deforma-
tions —like an elastic hair ribbon with planar forces— the en-
tries in I'; should be set to zero. For the general case, all en-
tries in A should be considered. We observe that while the
high-order bending modes can approximate better shape de-
formation, high-order stretching modes are very restrictive
and they can model unrealistic shape deformations.

4. NRSfM with the Proposed Basis

Assuming the 3D shape S/ with p points is observed by a
scaled orthographic camera, the projection W/ onto image
frame f can be written as:

! f
f f f
vi vy ...

where R/ is the truncated 2 x 3 rotation matrix (i.e.,
R/R/' = I,) and T/ stacks p copies of a 2 x 1 transla-
tion vector tf. Our aim is to sequentially recover the camera
motion (R, t/) and the 3D reconstruction of a deformable
object S/ in every frame f from 2D point tracks W/ in
a monocular image sequence. As our measurement matrix
can have lost tracks due to occlusions or outliers, we define
the binary vector h/ € {0,1}?*! that indicates absence or
presence of entries in W/, respectively. We propose using
the previously proposed deformation model to represent the
non-rigidity of the object over time.

4.1. Interpreted Deformation Model

We approximate the deformable shape using a combina-
tion of mode shapes. Estimating the 3D coordinates of the

deforming object at each frame f boils down to estimating
the deformation matrix AY in Eq. (3). Therefore we have
to estimate 3r parameters for each frame to define the cur-
rent configuration of the object. We can nevertheless reduce
this number of parameters considering physical constraints
as discussed in § 3.4.

In order to estimate A/, we will rewrite the orthographic
projection in Eq. (7) at frame f as:

w/ =R/ (S+<I>Af’r>+Tf. )
In the following section we detail the optimization process.

5. On-line Non-linear Optimization

In this section, we present our on-line approach to si-
multaneously retrieve the camera motion and the 3D recon-
struction of deformable objects. We use a few initial frames
—assuming a dominant rigid motion— to initialize and esti-
mate the rest shape and motion by using a rigid factoriza-
tion algorithm [26], a standard practice in sequential NRSfM
[2, 28]. In our case, we also compute a distance matrix
D to obtain a shape basis. Note that both & and Y ma-
trices are computed using the first frames as described in
§ 3. Therefore, our problem is reduced to the on-line esti-
mation of the deformation matrix A’ and the camera mo-
tion (R, t*) per image. This means the estimation of just
a few parameters per frame, which leads to a low compu-
tational cost system that may potentially run in real time.
For obtaining an on-line estimation as the data arrives, we
perform bundle adjustment on a temporal window of the
last WV frames, similar to [2, 6, 28]. Concretely, the model
parameters are estimated by minimizing the following en-
ergy function A (R, ¢, A") of all observed points over all
frames in the current temporal window W:

A= Zf: | (12en)o(W-R! (S + @A) -T') |3
i=f-W+1

f f f
A D IAGF+ N DAL+ A, Y [AAY3
i=f—W+2 i=f—W+2 i=f—W+2

where || - || » denotes the Frobenius norm. The operator A is
the variation AX? = X* — X'~ over the variable X. The
rotation matrices R?(q’) are internally parameterized using
quaternions, which guarantees orthonormality. Our energy
also includes a data term to penalize deviations of the image
measurements and temporal smoothness priors to penalize
strong variations in the model parameters whose influence
is regulated by A4, A; and A\,. These weights were deter-
mined empirically and unchanged for all experiments. It is
worth noting that our approach does not use additional in-
extensibility constraints, and hence extensible deformations
can be recovered. We minimize the energy A (R%,t%, A")
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Figure 3. Quantitative evaluation and comparison for Flag MoCap sequence. Left: Error esp for sequential methods BA-FEM [2]
and EM-FEM [4]; and for our methods BA-MSI-ED and BA-MSI-MD with varying number of mode shapes. We provide the performance
for both noise-free and noisy observations. Right: Input frames and 3D reconstruction with red (observed) and blue dots (missing points).
Black circles correspond to the 3D ground truth. Best viewed in color.

using sparse Levenberg-Marquardt. In order to initialize the
model parameters for a new incoming frame, we simply set
A=A R =R 'and t' = t'~ 1.

6. Experimental Evaluation

We now present our evaluation on real monocular videos,
providing both qualitative and quantitative results where we
compare our method to state-of-the-art techniques based on
low-rank models. For this comparison, we report the RMS
error across all non-rigid frames ny, which is defined as
= Ly I8 _Sarls where S is the 3D reconstruc-

- ISerll=
tion and S, is the 3D ground truth. Our algorithms are
denoted as BA-MSI-ED and BA-MSI-MD, using Euclidean
and Manhattan distance matrices, respectively.

First, we evaluate our approach on a 594-point sequence
of a waving Flag, provided by [4]. Since the deformation
contains little stretching (it can also be successfully mod-
eled using inextensibility, as shown in [39]), we can eas-
ily apply the physical constraints discussed in § 3.4 and set
to zero the first two rows of the matrix A. We compare
the proposed approach with competing sequential methods
based on low-rank models, BA-FEM [2] and EM-FEM [4].
The parameters of both methods were set in accordance
to their original papers. For all cases, we exactly use
the same initial exploration. We also present experiments
with noisy measurements, adding a zero-mean Gaussian
noise to every point in the object, with standard deviation
o = 0.01max;{|d.(j, x)|}, where the x-index corresponds
to the centroid of all the points.

Figure 3(left) shows the consistent reduction of the er-
ror as more mode shapes are considered. We observe that
BA-MSI-ED yields better results than BA-MSI-MD for this
sequence, since the rest shape is quasi-planar and the points
are sparsely distributed. This situation favors the modal
shapes computed by Euclidean distances. Our BA-MSI-
ED algorithm consistently outperforms BA-FEM [2], and
performs comparably to EM-FEM [4] for both noise-free
and noisy observations, with the additional advantage of
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Figure 4. Run-time comparison. We show run-time to compute
the shape basis for BA-FEM [2], and for our methods BA-MSI-ED
and BA-MSI-MD. Note that since EM-FEM [4] also uses MA, the
results are very close to BA-FEM [2]. For every case, we repre-
sent the computational cost to compute the matrices (in red) and
to solve the eigen-value problem (in blue). Left: Talking face se-
quence of 56 points. Right: Flag sequence of 594 points.

not requiring a deformation model. In any event, our meth-
ods outperform the sequential algorithm SBA [28] with an
error e3p[%)] of 7.10(38); and batch algorithms MP [29],
PTA [8], CSF2 [20] and EM-PND [25] with an error of
16.02(2), 14.11(2), 8.80(2) and 8.65, respectively. For low-
rank methods, we show the basis rank (in brackets) that
yielded the lowest error. Finally, we also represent our 3D
reconstruction for a few frames in Fig. 3(right), where we
randomly set a level of 40% missing points. For this case,
our method is quite robust, with an error e3p = 2.92%
when 20 mode shapes are used. In fact, our 3D reconstruc-
tion does not significantly degrade until a breaking point
around 80% of missing data in the measurement matrix.

Regarding computational cost, we analyze the run-time
using non-optimized Matlab code to compute the shape ba-
sis, showing the matrices-computation complexity (stiff-
ness/mass for BA-FEM [2], and distance matrices for our
methods) and the solution of the eigen-value problem. Fig-
ure 4(right) summarizes these results. It can be seen that our
methods have significantly lower computational cost than
BA-FEM [2] to solve the eigen-value problem. Yet, while
the time for computing the Euclidean matrix is almost neg-
ligible, the computation of the Manhattan matrix can be-
come more expensive when the number of points increases



(we use an unoptimized Dijkstra’s algorithm to obtain the
distance matrix). In any event, the reduction of the compu-
tational cost using our BA-MSI-ED with respect to existing
approaches is remarkable. It is worth pointing that an op-
timized implementation to solve the eigen-value problem
would produce similar boosts in efficiency for every algo-
rithm.

We also process a 100-frame real video showing a Paper
bending and rotating, and provide a qualitative evaluation.
We employ the semi-dense 828-point tracks from [2]. Since
extensible deformations are not possible for this material,
we impose the physical constraints on the matrix A. Fur-
ther, we consider a shape basis with » = 30 mode shapes,
and use the metric of the BA-MSI-ED method. Figure 5
shows the reprojection of the deforming mesh into the im-
age plane accurately describing the real 2D motion. We also
display the recovered 3D reconstruction, retexturing the pa-
per surface with a logo. Recall that this augmentation is
performed on-line, upon the arrival of new frames.

We next test the Talking face sequence taken from a
video of a man simultaneously talking and moving his head.
We use 249 frames and 56 features tracks of the face. In this
case, we use our BA-MSI-MD method —similar results can
be obtained by BA-MSI-ED- with physical constraints that
prevent pure-bending deformations. In Fig. 6 we show the
reprojection of the deforming 3D mesh into the image plane
and our 3D reconstruction for several views using r = 30
mode shapes. We also show the run-time for this sequence
in Fig. 4(left).

Finally, we process a challenging Laparoscopic se-
quence of a beating heart captured during bypass
surgery [18]. This shows the generality of our approach to
recover the 3D reconstruction of extensible objects. In this
case, since obtaining a priori knowledge over the type of de-
formation may be difficult, we optimize with BA-MSI-MD
method the 3r(r = 10) parameters of the linear subspace
without applying any physical constraint. Figure 7 shows
some images and our 3D reconstruction for this semi-dense
sequence of 3024 points.

7. Conclusion

In this paper we have shown how to exploit the distance
information of a shape at rest to compute a shape basis that
can model both inextensible and extensible deformations.
We first compute a reduced shape basis at low computa-
tional cost by means of a spectral decomposition of the
data, that we will interpret later. The obtained shape ba-
sis is then used to encode the time-varying shape, without a
training step and in combination with simple regularization
priors, in order to sequentially retrieve camera pose and de-
formable shape within a low-cost BA-based algorithm. Our
claims have been experimentally validated on challenging
real videos, showing accurate results obtained on-the-fly.

Figure 5. Paper bending sequence. Top: Images of a deforming
piece of paper with reconstructed mesh. Notice how the 3D mesh
is correctly projected and bent into the image. We also show our
automatic retexturing of the paper sequence that is sequentially
computed. Bottom: General view of the textured 3D reconstruc-
tion seen from a different viewpoint.
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Figure 6. Talking face sequence. Top: Images of a face with
reconstructed mesh. Bottom: Original viewpoint and side views
of our 3D reconstruction.

Figure 7. Laparoscopic sequence. Top: Images of a beating heart
with reconstructed mesh. Bottom: Textured rendering of the re-
covered 3D reconstruction from a different viewpoint.

Regarding real-time capability, we consider that our method
is as a suitable groundwork for augmented-reality appli-
cations in real time, and have shown an experiment along
these lines. Further exploring this is part of our future work.
An interesting avenue for future research is to try other
dissimilarity measures such as Mahalanobis or chi-squared
distances as well as the Jensen-Shannon divergence.
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