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Abstract

The most standard approach to resolve the inherent am-
biguities of the non-rigid structure from motion problem is
using low-rank models that approximate deforming shapes
by a linear combination of rigid basis. These models are
typically global, i.e., each shape basis contributes equally
to all points of the surface. While this approach has been
shown effective to represent smooth deformations, its per-
formance degrades for surfaces composed of various re-
gions, each following a different deformation rule. Piece-
wise methods attempt to capture this type of behavior by lo-
cally modeling surface patches, although they subsequently
require enforcing global constraints to assemble back the
patches. In this paper we propose an approach that com-
bines the best of global and local models: it locally con-
siders low-rank models but, by construction, does not need
to impose global constraints to guarantee local patch con-
tinuity. We achieve this by a simple expectation maximiza-
tion strategy that besides learning global shape bases, it
locally adapts their contribution to each specific surface re-
gion. Furthermore, as a side contribution, in order to split
the surface into different local patches, we propose a novel
physically-based mesh segmentation approach that obeys
an energy criterion. The complete framework is evaluated
in both synthetic and real datasets, and shows an improved
performance to competing methods.

1. Introduction

Simultaneously estimating non-rigid 3D shape and cam-
era motion from a monocular image sequence, i.e., the Non-
Rigid Structure from Motion (NRSfM) problem, is severely
ill-posed because many different 3D shapes can produce
very similar image observations. The problem becomes
even more challenging when input data is corrupted by ar-
tifacts such as noise or missing data. Over the past decade,
a wide body of research has been proposed to tackle these
complex situations [6, 22, 26, 39]. At the core of most these
methods, lies the assumption that objects do not arbitrar-
ily change their shapes, and that their deformations can be
ruled by low-rank models. Among them, the more widely
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Figure 1. Overview of our approach for non-rigid reconstruc-
tion. The input to our algorithm is a series of 2D point tracks in a
monocular video (top). We initially compute a mean shape using
rigid factorization (mid-left). We then apply a new physics-based
segmentation algorithm to split this shape into regions that have a
similar energy pattern (mid-left,right). These regions are fed into
our novel strategy that models the shape globally but allows to
locally interpret each of the segmented regions. The outcome of
our algorithm is the 3D shape in all video frames (bottom) and the
camera poses. Note how the results show how our approach cap-
tures correctly the local deformations produced in the mouth and
eyes. The figure is best viewed in color.

used are the low-rank shape models [10, 31], in which the
3D shape is spanned by a linear combination of rigid and
global basis weighted by time-varying coefficients. This has
raised a number approaches for sparse [17, 26], dense [20]
and even sequential [1, 30] reconstruction.

While effective, global models are constrained to shapes
that exhibit a homogeneous physical behavior, and are
prone to fail for surfaces composed of different local defor-
mations, like those we can find in a biological structure with
different tissues, or in a human face expressing emotions,
where the deformation is mostly focused on the mouth and
the eyes area. There have been several attempts at tack-
ling this by means of piecewise methods [16, 19, 33, 37]
that split the shape into small overlapping patches or seg-
ments and independently model each of them. However,
these approaches either require local rigidity constraints and
become limited to isometric deformations [16, 37], or need
to solve an optimization problem per each patch and subse-



quently relying on post-processing steps to assemble back
all patches and enforce global consistency [19, 33].

In this paper we propose a novel low-rank global model
with local interpretation that allows the fitting of models to
small regions, while still retaining the global consistency
of the shape without the need of post-processing operations
nor requiring overlapping of neighboring regions, solving
a single optimization problem. In addition, since no in-
extensibility constraints are imposed, our method can han-
dle non-isometric motions. Like in global low-rank model-
ing, we approximate surface deformation by a linear com-
bination of rigid shape basis. However, our main novelty
is to specifically weight the contribution of each basis for
each segment, that is, instead of using a single time-varying
weight per shape basis, we use as many weights as patches
or regions the surface is made of. By doing this, we are
able to learn the more specific deformation patterns each
region may undergo. Although our approach introduces
additional unknowns —the per-basis weights— to the global
NRSIM problem, we can learn them along with the shape
basis and the camera pose parameters using a probabilis-
tic expectation-maximization framework, similar to the one
applied in [5, 39] for learning different deformation models.

An additional contribution of our work is a physically-
inspired technique to perform mesh segmentation, which
we use to generate the local regions that are fed to the
NRSIM algorithm. This segmentation holds on a modal
analysis performed to the mean shape and splits the sur-
face into regions with similar energy patterns. An schematic
of the overall approach, and how the segmentation and re-
construction algorithms are combined is depicted in Fig. 1.
Quantitative results on synthetic data, as well as qualitative
results on real video sequences, will show the advantages of
our approach.

2. Related Work

Reconstructing a time-varying 3D surface while estimat-
ing camera pose from solely the observation of 2D point
trajectories, is a severely under-constrained problem that
requires additional prior information. The most standard
prior consists in constraining the surface to lie on a global
low dimensional shape space [24, 41]. These early ap-
proaches built upon the well-known closed-form factoriza-
tion method for rigid reconstruction [38]. Later, several iter-
ative methods were proposed to recover the shape and pose
parameters [18, 26, 31, 39], which, on top of the low-rank
constraints, incorporated temporal and spatial smoothness
on the shape. Another way to enforce temporal smoothness
is through differentials over the 3D shape matrix by directly
minimizing its rank [17, 20].

While global methods have been extensively used in the
literature, they may perform poorly when parts of the ob-
ject obey different deformation rules. To address this prob-

lem two new families of solutions were proposed, the local
trajectory-based models and the piecewise methods. [7]
introduced trajectory models through a series of predefined
basis of a discrete cosine transform to independently span
the trajectory of each object point. Later, priors on trajec-
tories were incorporated using 3D point differentials [40]
and further combined with the global shape model in [23].
Alternatively, piecewise solutions split the surface into a
number of patches and independently model and solve each
of them. However, these methods usually require track-
ing more points than global approaches to locally enforce
isometry constraints that help to disambiguate the prob-
lem [16, 37]; or on the other hand, to enforce a smooth tran-
sition from the local models to a global one, these methods
rely on a large number of overlapping patches [19, 33]. This
may require being able to match features between neighbor-
ing patches, which can be difficult in practice.

Contributions. We propose two main contributions. First,
we present a novel solution for non-rigid reconstruction that
combines the best of global and local models into a sin-
gle framework. We resemble local methods in that our ap-
proach can locally model surface regions with distinct phys-
ical behavior. And, like in global models, we can do this
without then having to enforce global continuity, which is
inherently guaranteed by our formulation. Furthermore, this
is achieved with just a small number of additional parame-
ters compared to existing techniques, which can be learned
with standard expectation-maximization. Our second con-
tribution is a new physically-grounded shape signature that
holds on a modal analysis decomposition. This signature is
used to segment a reference shape into regions with simi-
lar energy patterns, which become the local patches for the
reconstruction algorithm. The combination of both these
contributions shows favorable results compared to state-of-
the-art techniques, as we report in the results section.

3. Physically-based Mesh Segmentation

We next present our physically-based approach for mesh
segmentation that will be used as input to the reconstruc-
tion technique. We first revisit concepts of modal analysis,
the physical principle upon which we build a signature per
each 3D point of the mesh. This descriptor is then used to
generate multiple candidate segmentations, that are fed into
a consensus clustering for the final segmentation.

3.1. Revisiting Modal Analysis

Modal Analysis (MA) is a standard technique in struc-
tural engineering to reduce the degrees of freedom of a de-
forming shape by approximating it as a linear combination
of modes [11]. In MA, the N nodes of an object can be
regarded as physical elements (e.g., spring, triangle or tetra-
hedral meshes), and assemble their local contributions into
global stiffness K and mass M matrices. Both matrices



Figure 2. Sample examples of 3D mesh segmentation in gen-
eral meshes. In the results section we show further segmentation
examples specifically applied to the images we then feed to the
reconstruction algorithm. The figure is best viewed in color.

are computed following [3]. We can then solve equilibrium
equations and obtain the undamped free vibration response
of the 3D object caused by a disturbance with respect to the
shape at rest sy based on the following generalized eigen-
value problem:

K® =MQ® (1)

where ®=[¢,,..., Py, ..., P5y] are the 3N mode shapes
(eigenvectors) and diag(€2) their frequencies (eigenvalues).
Each eigenmode ¢, is a 3N x 1 vector representing the
displacements of all N nodes with respect to sg.

The frequency spectrum pattern can be used to infer
physical properties of the object [1, 35]. In particular, [1]
used the mode frequency to classify them into bending and
stretching types. Within each category, in turn, it was shown
that eigenmodes with lower frequencies are mode shapes
that require less energy to be excited, and govern global de-
formation. In contrast the most high frequency modes dom-
inate local deformations. Recall that this principle was suc-
cessfully used to code the deformations of an object exclu-
sively by observing its mean shape, and we here use these
observations to obtain region-based features under defor-
mation and to segment a mesh based on an energy criterion.
We next describe the details of the segmentation algorithm.

3.2. Energy-Preserving Segmentation Algorithm

Deformable mesh segmentation is an active research
topic in 3D shape analysis. Much of the focus in this area
consists in building point signatures robust to non-rigid de-
formations. These descriptors are then used to perform the
actual segmentation in schemes like [21, 25, 32]. The nature
of such signatures may be very different (global or local, ge-
ometric or topological, volumetric or superficial, intrinsic or
extrinsic) [15] and its review is beyond the focus of this pa-
per. Just to name a few, it is worth mentioning descriptors
based on geodesic distances or on the Laplace-Beltrami [34]
and its variants like the Heat Kernel Signature [14, 36].

Drawing inspiration in these works, given a point x on
the surface, we define its global signature G(x) € R3*2P
by taking the value of the first p eigenvectors on both the
bending and stretching family shapes, weighted by a func-

tion of the corresponding eigenvalue. The G(x) is:

1 1 1 1
— X|, ..., —— X|, —¢,|%x|,..., —=@,. x| |,
| ol s bl b e,
p bending modes p stretching modes
2

where ¢, [x] are the 3 components of ¢, at the point x,
{ Db wjp } are the pairs eigenmode/eigenvalue of the bend-
ing deformation and {¢;,w;s} the corresponding stretch-
ing pairs. Lower-energy mode shapes, i.e., those related
with global deformations, will have a stronger contribution.

A straightforward approach to perform an energy-based
segmentation, could be simply running a standard k-means
clustering based on the shape embeddings defined by
Eq. (2). However, the results obtained this way turned not
to be stable and strongly depended on the initial seeds cho-
sen to initialize the k-means. In order to obtain more stable
segmentations, we followed the consensus segmentation ap-
proach proposed recently in [21, 32]. The main idea is to
first generate an ensemble of segmentations by running the
clustering algorithm multiple times, and then computing a
consensus segmentation that is as close as possible to all the
others (see Fig. 1). More specifically, let B € RE*N be a
representation of the B segmentations, where BIb, j] is the
label of the j-th point in the b-th segmentation. The consen-
sus segmentation y can then be retrieved by computing the
Fréchet sample mean:

B
argmin » ~ d* (B[b, +,y), 3)
Yo =1

where d is a semi-metric to measure the distance between
segmentations, and B[b, «] is the b-th row in B, i.e., the b-th
partial segmentation. For further details we refer the reader
to [27, 32]. Figure 2 shows segmentation results on some
synthetic objects of the benchmark TOSCA [13]. Although
our segmentations are not visually symmetric, they produce
more accurate solutions compared to competing methods,
as we show on real objects in the results section.

4. Global-to-Local Deformation Model

In this section we introduce our global shape model with
local interpretations. We start reviewing classical global
low-rank shape models, upon which, we will then build our
proposed approach.

4.1. Classical Global Low-rank Shape Model

Representing the non-rigid deformation of an object as a
linear combination of rigid, global shape bases is a well-
known practice. Such a low-rank shape basis has been
computed by learning techniques like principal compo-
nent analysis over a set of training data [12, 29], apply-
ing modal [1, 9] or spectral [4] analysis over a rest con-
figuration, or estimated on-line using data-driven meth-
ods [20, 26, 31, 39].



Let us consider an object represented by N 3D points
and observed in T frames. Let also denote by x!, =
[z, 9!, 2] T the 3D coordinates of the n-th point at frame
t,and by st = [(x4)7,...,(x})"]" the 3N-dimensional
representation of the shape. We can approximate the in-
stant shape s’ by a mean shape s, together with a lin-
ear combination of R mode shapes s, r € {1,...,R}
where s, = [(s1,)", ++,(Snr) s o, (sn)"]T, and
Sns = [TnrsYnors Znr] | are the coordinates of the n-th
point on the r-th shape vector. If we concatenate these

modes into a matrix S = [s,...,sg] € R*V*® we can
write st = sq + S¥’, or equivalently:
t t
X1 51,0 s11 ... Sir ... S1,R 1
s les R o
n| = n,0 n,l e n,r R n,R r
: : :
Xy SN0 SNl -+ SNy ... SNR ’(/}R

“)
where 1" is an R-dimensional vector with the time-varying
coefficients for the shape at time ¢.

4.2. Local Interpretation of Global Shape Models

We next describe our strategy to provide the global mode
shapes with the ability to adapt locally. Let us assume our
shape s to be partitioned into C' clusters. Without loss of
generality we consider the N points x%,, n € {1,..., N} to
be sorted in such a way that the [V first points belong to the
first cluster, the next N» points belong to the second cluster,
and so on, until the C-th cluster!. Note that Zle N.= N,
i.e., we do not assume overlapping between the points of
neighboring clusters. Our goal is to let global shape basis to
adapt differently to each cluster.

To allow the global shape basis S to adapt locally for
each of the clusters, we will follow a simple strategy, where
the components s,, , of S will be re-arranged into a 3N x
RC block diagonal matrix S and the vector of coefficients
ap" will be expanded to an RC-dimensional vector ¢¢. In
particular, the global model of Eq. (4) will be rewritten as
the following global model with local interpretation st =
so + Set, or equivalently:

5(5 §170 §1 0 e e 0 Lptl
XLl = |Sco|+ |0 S. 0| |¢l
: . : .o )
X C,0 o ... ... ... S¢ Pc
®)
where X! = [(x§) ", ..., (x5, x.) "] are the N, 3D points

of the c-th cluster, and § = 1 + Z;;} N; indexes the first

'Without this assumption, in the following we should define a permu-
tation function that indexes the pixels of each cluster. But for clarity of
presentation, we have declined doing so.

3D points of the cluster (recall that we assumed all points
to be sequentially ordered in s*). The vector S, o is formed
in a similar manner from the elements of the shape at rest
so% and ! = [l ,..., ¢k g]" are the cluster specific
weights. The block diagonal matrices are formed by simply
re-arranging the terms of the original matrix S. For instance
Sc is a N, X R matrix with the form:

55’1 5572 e Sg,R

~ S§+1,1 S554+1,2 <.+ S§54+1,R

S54+N.,1 S§+N.2 S§+N.,R

Note that with this formulation, each shape cluster can
be locally adapted by means of their particular coefficients
.- The global and local shape bases have exactly the same
number of non-zero components (see classical global model
in Eq. (4)). This is why we claim our new model is a global
one, but with local interpretations. The only additional pa-
rameters correspond to the vectors of coefficients, which
has grown from size R in 1), to size RC in . The new ma-
trix of shape basis S has 3N R non-null parameters, which
exactly correspond to those of the original matrix S. Indeed
the two matrices can be related by means of an RC' X R
compression matrix C as follows:

SC=S(1c®1Ig) =S8, (7)

where ® denotes a Kronecker’s product, Ip is the R-
dimensional identity matrix and 1 is a C-dimensional vec-
tor of ones. When considering one single cluster, C = I,
and our model becomes the classical global one. By con-
struction, the compression matrix C has rank R, and the
inverse mapping cannot be computed. For later computa-
tions, we can alternatively represent Eq. (7) as:

(CT @ I3n)vec(S) = vec(S), (8)
where vec(-) denotes the vectorization operator.

5. Recovering Shape and Motion with the new
Deformation Model

We now describe how to introduce our global low-rank

shape model with local interpretations into the formulation

of the NRSfM problem, to jointly obtain camera motion and
non-rigid shape by solving a single optimization problem.

5.1. Problem Formulation

Let us consider an orthographic camera observing a dy-
namic object which at a time instant ¢ is represented by a

2Note that the vectors st and sq are exactly the same in Eq. (4) and
Eq. (5), respectively. In the latter we have just grouped the components
per each of the clusters.



3N vector st. We can write the projection of the 3D points
onto the image by:

p'=Q's'+n’, ©)

where p' is a 2N-vector with the projected points, Q! =
Iy ® R and has size 2N x 3N, R! are the two upper rows
of a full rotation matrix and n’ is a 2/N-dimensional vec-
tor of Gaussian noise. Note that this projection model as-
sumes mean-centered 2D projections, and thus the transla-
tion component of the pose is not considered. Our problem
consists in, given the observation of temporal point corre-
spondences p' corrupted by noise n?, fort € {1,...T}, re-
covering the shape s’ and camera rotation R? for all frames
of the sequence. We can introduce the shape model of
Eq. (5) into the projection Eq. (9) as:

p' = Q'(so + Se') + n". (10)
5.2. Probabilistic Global Shape Model with Local
Interpretations

In order to jointly learn shape and motion, we follow the
recent works on probabilistic NRSfM [5, 39]. The overall
approach consists in first defining a probabilistic distribu-
tion over the observations p* on Eq. (10), and then esti-
mating the model parameters that maximize its likelihood
function using an EM-based algorithm.

To achieve this, we assume the time-varying coefficients
! become latent variables and follow a zero-mean Gaus-
sian distribution ¢! ~ N (0;Igc). If we also assume
that the observation noise follows a Gaussian distribution
n’ ~ N(0;0%I2y), it can be showed that the projected
points p’ are normally distributed:

pt ~ N (Qtso; Q'SSTQ! " + O'QIQN) Can

Solving the NRSfM problem is then equivalent to learn-
ing the parameters of this distribution. We next describe
how we do this by performing Maximum Likelihood Esti-
mation (MLE) on this latent variable problem using EM.

5.3. Parameter Learning with EM

The MLE distribution in Eq. (11) is learned using EM
in a similar manner as done in [5, 39]. Concretely, given
the 2D point trajectories p = {p*',...,p” }, we aim at es-
timating the parameters @ = {R!, ..., R”,S, 02}, taking
the weight coefficients ¢! as latent variables. We next de-
tail the specific equations involved in each of the '— and
M —steps over which the EM algorithm iterates.

E-Step. The first step in EM consists in estimating the pos-
terior distribution over the variables ¢’ given the observa-
tions p’ and the current model parameters ®. Assuming
i.i.d. observations, it can be shown that this distribution is:

p('Ip", R!,S,0%) ~ N(pl; 2, (12)

with:
ph, =A'(p" — Q'sg) ; T, =Ipo — A'Q'S,
A'=8T(Q") ' (0’Loy +Q'SSTQ! ).

M-Step. In the M-step, we seek to maximize the likeli-
hood of the observed data (or minimize its negative log-
likelihood) with respect to the modal parameters ©. For this
purpose, we replace the latent variables by their expected
values, and build the following negative log-likelihood
function £ = 553, | E [Hpt — Q'(so + SW)H%} +
NTlog(2mo?), where E [-] denotes the expectation oper-
ator. In order to update each model parameter, we compute
its corresponding partial derivative assuming the rest of pa-
rameters are fixed, set it to zero and solve it. We next detail
the update rules we obtain for every parameter.

Updating the Deformation Model S. Note that the like-
lihood L is a function of the global-to-local matrix S we
have introduced in this paper. However, as seen in Eq. (5),
S is block diagonal and their only non-zero elements are
the same as those of the classical global shape matrix S in
Eq. (4). We therefore proceed by first estimating the matrix
S to then build the extended version S.

Since the likelihood function £ does not explicitly de-
pend on S, we need to resort to Eq. (8) that maps StoS
to then solve for g—g = 0. In this way, we can compute the
mapping in closed-form (with no need to invert the matrix
C), obtaining finally the following update rule for the shape

basis:
T

vee(S) « (C'e 1) (Z (oo Q”Qt)>

t=1

T
X vec <Z QtT(pt — Qtso)upr) ,

t=1

where we use the expectation Tf‘mp =E [¢'(¢)T] = Efp +
il (pl,) "

Updating R and 0. The update rules for the rotation ma-
trices and 2D noise parameter can be computed in a more
straightforward manner from a direct computation of the
partial derivatives L/OR! = 0 and 9L/00? = 0. For
the rotation matrices we just need to ensure that they lie
on the smooth manifold defined by the orthogonal group
SO(3), which we achieve following the iterative approach
proposed in [2]. Model parameters are initialized running a
rigid factorization algorithm [28].

5.4. Practical Considerations

We next briefly discuss several details of our approach
regarding its ability to handle outliers and the influence of
the number of clusters.
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Figure 3. Synthetic results on the Facel and Expressions se-
quences. For each experiment, we show the input images at the
top, and at the bottom a frontal and side views of the reconstructed
shapes. For the reconstruction views, we also include colored tri-
angles and points to represent the cluster they belong. We set the
number of clusters to C' = 4 for the Facel and to C' = 5 and for
Expressions. The rank of the shape model is set to R = 2 and
R = 4, respectively. Best viewed in color.

Dealing with missing data. The EM-based optimization
framework we propose, allows to naturally handle missing
observations due to occlusions or outliers. To do this, we
need to consider the missing observations at initialization
and optimization. At initialization, we can obtain the miss-
ing entries by imposing smooth trajectories in the image
plane, as done in [23]. For the optimization stage, the miss-
ing entries p! are updated during the M-step by considering
the expected latent values and the model parameters as:

P!« Q'(si0 + Si '), (13)

where S,* represents the shape contribution for the i-th
point. In the experimental section, we will show our ap-
proach performs robustly to large amounts missing data.

Number of clusters. The number C' of clusters a shape is
segmented is manually chosen. We could have used statis-
tical measures for doing so (e.g., information criteria) but
we found it not necessary. In any event, the value of C has
direct implications both in the computational cost (the size
of the latent variables ¢! is RC) and in a lesser extend, in
the accuracy. In the results section we will evaluate several
choices of the parameter C, which represent good compro-
mises between computation time and accuracy.

6. Experimental Evaluation

We next present quantitative and qualitative results of our
approach on a wide variety of objects and types of deforma-
tions. These results can be best viewed in the supplemental
video. When a quantitative evaluation is reported, we pro-
vide the mean 3D reconstruction error as defined in [19, 20].

N‘ EM»LDS‘ PTA ‘ CSF2 ‘ KSTA ‘EM»PND‘ Ours ‘

Expressions 4.42(5) T47T712) | 3.02(3) | 3.46(4) 2.56(3)
Facel 5.08(2) | 3.62(2) | 2.10(4) | 2.08(3) 12.12 1.94(2)
Face2 2.81(2) | 2.67(2) | 2.50(3) | 2.34(3) 4.08 1.80(2)

Table 1. Quantitative comparison on mocap sequences. We
compare our approach against: EM-LDS [39], PTA [7],
CSF2 [23], KSTA [22], and EM-PND [26] in terms of esp[%)].
“—” indicates the algorithm did not manage to process the se-
quence. In all cases we show the results with the number of rank
R in the subspace (in brackets) that gave the lowest e3p.

6.1. Synthetic Data

We consider a synthetic benchmark with three sequences
annotated with 3D ground truth. Two of the sequences
are from [8] and show faces performing simple deforma-
tions and gestures. Each sequence consist of 100 frames
and 313 points. We denote these datasets as Facel and
Face2. We also use the mocap sequence from [42], which
shows a 3D face performing over-exaggerated expressions.
Although this data is not originally meant for evaluating
NRSfM methods, we process it to generate a sequence of
384 frames and 997 2D point tracks, which we denote it as
Expressions.

We will compare our approach against the following
methods that use low-rank models on both shape and tra-
jectory spaces. Particularly, we consider: EM-LDS [39],
and EM-PND [26] for shape space; PTA [7] for trajec-
tory space; the Column Space Fitting (CSF2) [23] and the
Kernel Shape Trajectory Approach (KSTA) [22] for shape-
trajectory methods®. The parameters of these methods were
set as suggested in the original papers. For the optimization
stage, we only have to set the rank of the subspace R. The
number of clusters, is set to C' = 4 for the Facel and Face2
experiments and to C' = 5 for the Expressions experiment.

The mean 3D reconstruction errors are summarized in
Table 1. Observe that our approach consistently outper-
forms the rest of competing approaches. In Fig. 3 we show
some qualitative results including the 2D input data and the
reconstructed 3D shape, along with the regions that have
been computed by the segmentation algorithm. Note that
no discontinuities are observed at the boundaries of neigh-
boring regions, indicating that our approach can naturally
enforce global consistency with no need to use specific post-
processing operations.

Regarding the computation time, the Facel and Face2
sequences required about 0.88 sec. to be segmented, and
about 14.40 sec. to compute the 3D shape. For the Expres-
sions sequence the segmentation and reconstruction times
were 2.13 sec. and 363.12 sec., respectively. It is worth
to point that EM-PND [26], which is acknowledged to be

3We also considered using the block matrix approach of [17], but did
not manage to make it work for none of the sequences. We presume the
number of linear-matrix-inequality constraints this method uses is not suf-
ficient for the proposed sequences.
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Figure 4. Mean 3D reconstruction error in the Expressions sequence, as a function of basis rank R and the number of clusters C. Left:
Noise-less 2D data. Middle: The 2D observations have been corrupted with Gaussian noise of standard deviation 0,,0ise = 0.01%, where
K represents the maximum distance of an image point to the centroid of all the points. Right: Robustness to 50% random missing data.

Figure 5. Real Video Sequences. For each sequence we show on the top the input images with the 2D tracking data (circles) and the
reprojected 3D object (dots). In the row below we show the 3D reconstructed shape from a different viewpoint. Colored regions, represent
the retrieved segments (C' = 6 for Back and Heart; C = 5 for Face).
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Figure 6. Local-to-global interpretation. We display the temporal evolution of the weight coefficients ¢°. The number of basis is R = 3
for all sequences, and the number of segmented clusters is C' = 5 or C' = 6. Note that for the Face sequence the 5 interpretations are very
similar, so our local interpretation model becomes a global one. For Back and Heart sequences, we observe larger deviations, and hence
the local interpretation is well suited to model this type of deformations. Best viewed in color.

at the top of the state-of-the-art in low-rank shape mod-
els, took 303.87 sec. to process both Facel and Face2
sequences, and hence our method also outperforms this
method in terms of efficiency.

We also use the Expressions dataset to evaluate our ap-
proach as a function of the dimensionality R of the low-rank
model, and of the number C' of clusters. The results are
shown in Fig. 4 for the noise-less case (left), when adding
2D noise to the input data (middle) and against missing data
(right). The overall pattern is that there is little influence of
these two parameters, as long as more than one cluster is
chosen. This result indicates that choosing more than one
cluster is advantageous for the kind of sequences we have
chosen, where distinct regions obey different deformation
patterns. In the Expressions sequence, for instance, the de-
formation of the mouth is very different from that of the
cheek or the forehead. Finally, we also validate our physics-
based segmentation compared to a Laplace-Beltrami cri-
terion [32, 34]. The results in Table 1 for this case are:
2.90(3), 2.49(2) and 1.91(2), respectively. This means our
segmentation approach provides more accurate reconstruc-
tions than competing distance-based descriptors [32, 34].

6.2. Real Video Sequences

We also qualitatively evaluate our approach on three real
and semi-dense sequences (about 1,000 points). We first
process the back sequence, with 150 frames showing the
back of a person deforming sideways and flexing [33]. We
use the 878 point tracks provided by [20]. Figure 5-top
shows the 3D reconstruction. We also represent the physics-
based segmentation. The second sequence (79 frames,
1,332 points) shows a beating heart acquired during by-
pass surgery. Figure 5-middle depicts the 3D reconstruc-
tion, where one of the main challenges is to handle the
small camera motion. Finally, we process a real face se-
quence (125 frames, 1,442 points). Figure 5-bottom shows
the 3D reconstruction and the segmentation we obtain. In-

terestingly, note how the clusters seem to group areas with
similar physical behavior, like the two eyes, and a distinc-
tive region around the mouth.

In Fig. 6 we show the temporal evolution of the coeffi-
cients ¢! in Eq. (5) for each of the clusters C' = {1,...,6},
and for each of the basis R = {1,2,3}. Note that for
the Back and Heart sequences the coefficients differ much
more among clusters, than for the Face sequence. This re-
sponds to the fact that the latter, only shows a small amount
of non-rigid deformation around the mouth and eyes areas,
which could be appropriately modeled by a global model
(or equivalently considering C' = 1, one single cluster).
Our approach automatically behaves this way, by making
the weights of the different clusters almost identical.

7. Conclusion

In this paper we have presented a new low-rank model
for representing the shape of deformable objects. We have
shown that classical low-rank global models can be locally
interpreted by just rearranging their terms and introducing
new region-specific coefficients. With this strategy we get
the best of existing global and local models: ability to spe-
cialize the model to local object regions, and no need to en-
force global consistency on these local interpretations. Ad-
ditionally, we have proposed a new physically-based mesh
segmentation approach, that computes local regions based
on an energy-deformation criteria. We illustrate the effec-
tiveness of both these contribution in the NRSfM problem,
where our solution produces more accurate 3D reconstruc-
tions than state-of-the-art approaches. Even though our re-
sults are accurate, our future work is oriented to refine the
mesh clustering while learn shape and motion.
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