IROS 2009 Workshop

Network Robot Systems: Network Robot Systems: Network Robot Services for the Elderly

October 15, 2009 St. Louis, USA

Organizers: Norihiro Hagita *ATR Intelligent Robotics and Communication Laboratories, Japan* Alberto Sanfeliu *Technical University of Catalonia, Spain*

Hiroshi Ishiguro Intelligent Robotics Laboratory, Graduate School of Engineering, Osaka University, Japan

Takayuki KandaATR Intelligent Robotics and Communication Laboratories, Japan

Combination of Distributed Camera Network and Laserbased 3D Mapping for Urban Service Robotics

J. Andrade-Cetto, A. Ortega, E. Teniente, E. Trulls, R. Valencia, A. Sanfeliu IROS'09 Workshop on Network Robot Systems St. Louis, Missouri

October 2009

Outline

- . Introduction
- Laser-based 6DOF SLAM
- From range maps to traversability maps
- From range maps to camera network calibration

Introduction

- A much needed step, usually neglected in SLAM implementations, is to compute maps useful for robot path planning and navigation.
- In this presentation we show how SLAM results are used to create useful maps for the URUS project.

Introduction: Overview

Scan matching

- Iterative Closest Point over consecutive range scans
 - ANN: Approximated Nearest Neighbor Search (Mount and Arya, 1997)
 - Euclidian space
 - Very efficient (divides the space using kd-trees)
 - NNSS: Nearest Neighbor Search in Spherical Space (Minguez et al., 2006)
 - Divide the space using spherical coordinates.
 - Gives more weight to the rotation.
 - Higher computational cost

Scan matching

 Biota et al. Proposed a metric for the registration step which compensate translation and rotation.

$$d_p^{ap}(p_1, p_2) = \sqrt{\|\delta\|^2 - \frac{\|p_1 \times \delta\|^2}{k}} \qquad \qquad k = \|p_1\|^2 + L^2$$

- We combined Biota's icra06 metric with a correspondence search on the Euclidean space.
- We proposed a hierarchical new correspondence search strategy:
 - Using a point-to-plane strategy at the highest level and a point-to-point metric at finer levels.

6DOF SLAM

- Pose SLAM: Eustice06, Ila09
 - Delayed-State Extended Information Filter.
 - Estimates a state vector containing the history of poses.

6DOF SLAM

State augmentation:

Experimental Site

- Over 15,000 sq. meters
- Several levels and underpasses
- Poor GPS coverage

- Sunlight exposure severely subject to shadows
- Moderate vegetation
- Several points with aliasing
- Large amount of regularity from building structures

Experimental setup: Laser 3D

- 3D point clouds with ranges up to 30 meters
- 76,000 points per cloud
- Sensor noise level is ±5 cm in depth estimation

Experimental setup: Robotic platform

- Pioneer 3AT robot
- Other sensors: GPS, INS

3D Mapping results

3D Mapping results

- Results are compared to manually built CAD model.
- The CAD model was made using geo-referenced information.

Traversability maps

- 2D grid layer. Each cell indicates maximum linear velocity.
 - 1. Horizontal cut at robot laser height to create 2D layer.
 - 2. Morphological operations to enlarge obstacles to produce a binary grid map.

Institut de Robòtica i Informàtica Industrial

Traversability maps

- 2D grid layer. Each cell indicates maximum linear velocity.
 - 1. Horizontal cut at robot laser height to create 2D layer.
 - 2. Morphological operations to enlarge obstacles to produce a binary grid map.
 - 3. For each robot configuration in the grid, compute the set of admissible actions that do not produce a collision.
 - 4. And select the minimum for all orientations of the maximum linear velocities at each xy location.

Camera Network Calibration

Institut de Robòtica i Informàtica Industrial

Istitut de Robòtica i Informàtica Industrial

Plane and line segmentation

• A very efficient graph-based region growing algorithm is used to segment planes from the range map.

Plane and line segmentation

Planes are intersected to extract line segments.

Istitut de Robòtica i Informàtica Industrial

Coarse calibration

- User interaction with a GUI:
- Select initial camera location, viewing direction and field of view.

 $P(\vartheta_j) = K[R|t]$

Coarse calibration

SIC 🕕

Nonlinear optimization

- 3D to 2D line matching with nonlinear optimization
- Iterate over each of the camera parameters
- Minimize distance between laser projected points and • image points on the matching lines

$$\hat{\vartheta}_j = \arg\min_{\vartheta_j} \sum_i \left\| m_i - h\left(P(\vartheta_j) \cdot M_i \right) \right\|^2$$

Homographies of the walking areas.

- Use the calibration results to compute homographies of the walking areas
- These can be used to measure traveling distances or traveling speed of robots and people

