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Abstract—We present to the robotic community a fully
autonomous navigation solution for mobile robots operating
in urban pedestrian areas. We introduce our robots and the
experimental zone, overview the architecture of the navigation
framework, and present the results after3.5km of autonomous
navigation. We expose the main lessons learnt by the scientific
team and identify the issues to improve future works.

. INTRODUCTION

Pedestrian areas are becoming common in modern cities,
due to environmental and social concerns, and it is expected
that urban service robots will be deployed in such areasan th
near future, to aid people in tasks such as transportation of
goods, guidance or taxi service. The study of these issugs wa
one of the goals of the URUS project (Ubiquitous networking
Robotics in Urban Settings), which has presented scientific Fig. 1. Tibi and Dabo, urban service mobile robots.
and technological advances on these topics [1].

This paper is concerned with autonomous navigation for a . .
urban, service, mobile robot. In this context, the navayati :mmapped, dynar;nc obsta}cles. A.” th!s Ieadds to ne\llv chal-
framework will be requested witho toqueries sent by some enges in terms of perception, estimation and control.

upper-level task allocation process, or directly by an afmer Irrlmthls fc (?Intext',[ t:empape; p\)/:es?in:]s to tthr(raw IjOb?t'r? gofmr'
These queries will indicate a goal point in the map coordinat UMY @ TUlly autonomous navigation syste esigned fo
rban service robots operating in pedestrian areas. The ex-

frame, and thus the robot’s navigation framework also works > . . ; .
g rimental area is 80000m? section of a car-free university

in the map coordinate frame. GPS-based navigation remeﬁ’im us. The experiments were carried out with our robots
an unreliable solution for mobile robots operating in urba pus. P

areas, due to coverage blackouts or accuracy degradation [nllz;i antid nDarb%it pl(t:tl:re(jv n rflgurnet ti-\. f\fterltrevflewltng the
so that additional work is necessary for robot localization avigation architecture, we prese € resufts ol autansm

S . nao\[/igation experiments totalling ov&skm, highlighting the
In recent years significant advances have been experience . . .
iSsues we encountered and their cause, and exposing the main

in the area of autonomous navigation, specially thankseo tr?

S . . ... lessons learnt by the scientific team in order to identify the
efforts of the scientific and engineering teams particigati - . .
critical aspects to improve future works.

in the DARPA Urban Challenge as [3], as well as other This paper is organized as follows. Section Il briefly de-

contests [4]. Even if this body of work is designed for__. . .
. i . . . —_scribes the robots at our disposal and the experimental area
car-like vehicles running on roads, some important ide

X ' : '9€8Section 111 presents the navigation architecture. Seckion
translate to robots of different configurations operating i . o : .
) . . . summarizes the localization algorithm. Sections V and VI
pedestrian areas, specially in terms of software and naviga ! . .
resent our path planning and path execution algorithms.

tion architecture. However, urban pedestrian areas p‘res%ection VIl is concerned to the obstacle avoidance system,

additional challenges to the robotic community, such ag . . .
. eefllng with terrain features such as ramps. Results are
narrow passages, ramps, holes, steps and staircases,las We

o : . Xposed in section VIII, and section IX presents the main
as the ubiquitous presence of pedestrians, bicycles amd ot L
lessons learnt by the scientific team.
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UTM-30LX, is mounted at a height adf0cm scanning the
vertical plane in front of the robot. Segway platform also -

provides wheel odometry data. Verica
A large section of the Universitat Pdditnica de
Catalunya’s (UPC) Campus Nord in Barcelona was outfit{| encoders [T bcaiston
Yy p
ted as an experimental area. This installation covers over segway | | B

10000m?2, including six buildings and a square. The campus M%VJS‘H.{ RRT:@«% WayFant H# path
is placed on a hilly region and features differences in heigh|-—">* Contro] | P29 || execution Plannna
of up to10m in the experimental area, resulting in a series of X
ramps, which the robot must be able to navigate, and drops = Reactive Loop, 10Hz

and staircases, which should be avoided, as well as typical
obstacles such as bulletin boards, bicycle stands, trastara
flower pots. Figure 2 shows two pictures of this environmentig. 3. Process diagram for our navigation architecturehBzock is an
The map of the experimental zone can be seen in figure 41dependent process. Arrows are TCP connections.
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Process communications are based on YARP open-source
middleware [5]. For a further description of the software
architecture, please refer to [6].

IV. MAP-BASED LOCALIZATION

The localization process estimates the 2D robot position
_ _ _ referenced to the map coordinaf€™ = (&, 4", 607),
Fig. 2. Two pictures of the experimental zone. and the associated uncertainties. This has been implechente
with a basic particle filter (PF), a recursive algorithm that
I1l. NAVIGATION ARCHITECTURE estimateg a probability density function of the. state of a

L , . system given a set of observations and a prediction model.

OLI,II’ navigation (figure 3) consists of four_ separateé modryq density function is represented by a set of samples of
ules_. localization, path planm_ng, path execut_|on, andas  yhe giate space, each one having a weight related to the
avoidance. The obstacle aypld_ance module is in turn_made HPobabiIity of current observations given the system sigte
of tr_lree blocks: traversability |r_1ference, Iogal plannm_gﬂ in a sample point. The pair formed by a sample vector and
motion control. The path planning module is responsible of | eignt s called garticle. Further details on PF’s in [7].
fmdmg a global path bgtween the platform and its goal on The proposed filter integrates the wheel odometry and the
a static map of the environment uporga to request. The front and back laser data. Th@opagation step is made
qther components conform_two different cqntrol I<_)op_s. Th y advancing each particle following a simple differential
first loop, the obstacle avoidance module itselfraactive kinematic model with the wheel odometry data. At the
gnd IS in charge o.f moving the robpt _to local goals, ?Xpress%(grrection step of iterationt, each particleX? updates
in the robot coordinate framé; . Itis important to point out its weight computing the likelihood between the real laser

that this loop does not depend on the localization eStimaB%servation availabley, , and theexpectecbne, of, (X?):
since it only ensures that the robot will arrive to a local L LA

goal while avoiding the obstacles perceived by on board p(oh | X1) o L (o}, 03 (X)) €10,1] (1)
sensors. The second loopdsliberative and is tasked with
guiding the robot through the different waypoints formingOur approach computes on-line the expected observations
the path {X",..X;" }, up to the goal. The deliberative from particle positions. To compute such expected obser-
loop includes the localization module and the path exenutiovations, the robot needs a model of its environment, imple-
process, which uses the current localization estirﬁéﬁéto mented as a 2D geometric map of the experimental area. This
transform the waypoints from map coordinaf€g', to robot map, coded following a vector format compatible with the
coordinatesXy, . This local goal is the input of the obstaclestandard Geographical Information Systems (GIS), dessrib
avoidance module, thus closing the deliberative loop. a set of obstacles, while each obstacle is represented with a
Both loops, platform driver and acquisiton processes ruget of segments. However, the map is augmented with height
concurrently in the same computer. The reactive loop rurisformation, thus each segment has a height component [8],
at 10Hz and the deliberative one 8Hz. Since the platform necessary to compute expected laser observations consider
moves at speeds up ton/s these rates are deemed sufficiening the laser device mounting height on board the robot.
The software framework follows a service-oriented archi- Figure 4 shows the localization output in blue and the
tecture, with the aim to ease software integration betweemheel odometry position in green for a single execution
the developers: each block of figure 3 has been implemented the campus. Our approach has been proved to deal
as an independent process, accessible through an interfawdustly with the presence of unmodelled obstacles such as



pedestrians, thanks to comparing expected and real laser pibocedure uses circle-based search regions to smoothly cor
servations, without any feature extraction step. The pgegdo rect deviations from the path. This algorithm carries a low
PF has achieved an execution rate3bfz. Some issues are computational load. Figure 5 shows a sample situation and
encountered dealing with ramps and other three dimensiorthe following pseudo code overviews the algorithm.
elements, which are discussed in section IX.

Algorithm 1 Path execution

Require: path and positionEstimate
circleList = createClircleList(path)

index =1
V4 | repeat
for (i = index + 1; i >=index — 1; i — —) do

if positionEstimate is inside circleList[i] then
globalGoal = circleList[i + 1].center()
index =1+ 1
localGoal = globalGoal T'r(positionEstimate)
sendlocalGoal 10 obstacle Avoidance
break

end if

end for

Fig. 4. Localization estimate (blue) and odometry (green)ingumn until positionEstimate is not inside circleList[last]
autonomous navigation test in the Campus experimental aratedDiines
form a20mx20m grid.
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When a new path is provided by the planning module,
the path execution algorithm generates a list of circle$ wit
V. PATH PLANNING center at each waypoint and radius the distance to the

The path planning module computes global paths betwed¥!0Wing point. The algorithm then searches the circles
the platform and its goal on a static map of the environmen?,round the last known robot position estimate. If the robot i
so that the output of this module is a set of waypointQ“Side one of those circles, the center of the next circleig s
in the map coordinate frame. It is executed when a ne@s the new local goal to the obstacle avoidance. Otherwise,
global goal is requested. The module takes as input a glob¥f check if the robot is inside a recovery zone, defined as
cost gridmap, as well the physical properties of the robdhe mean distance .between points around the path. If th|§ is
such as its size and kinematic constraints. The cost m&p case the robot is sent to the last known goal; otherwise,
we have used in our experiments is the distance transforf€duest is sent to the path planner for a new path. Figure 5
computed from a binary map of the static obstacles. Tha'OWs the procedure.
planner computes a search graph in which nodes represent
robot poses and graph edges represent collision-free motio U |_|'LI - = § Lr
arcs fulfilling robot’s kinematics. In order to limit the seh
space, graph expansion is performed using a fixed arc °
length and a discrete number of arc curvatures. The graph i I:l I:l I:l I:l ® D
explored using thed* algorithm, where the heuristic is the o
nave grid-distance to the goal, computed on the cost mag * n AN
using Dijkstra’s algorithm. It is worth noting that using a ®
fixed arc length and angle discretization usually impliest th
the plan is not able to reach the exact goal pose, makingFig. 5-|_ t\_NaypﬁintS p_;gvided tﬁy t_hel paft_fl} Félannsrtin re_'t;, p«’:tl_tBCBtﬁO_n

T e list In yellow wi searcn circles tiled, robot pasim estimate In
necessary to use an acceptapce threshold. Tibi and F)apo ha‘{ufé and green arrow pointing the new local goal.
used a threshold &focm, precise enough for our application.

VI. PATH EXECUTION VII. OBSTACLE AVOIDANCE

The mission of the path execution algorithm is to have The motion planning problem is well studied when using
the robot follow a series of waypoints, as provided by tha priori information [9]. However, many techniques are
path planning algorithm, into a smooth trajectory, everhwit not applicable when the environment is unknown or highly
the presence of unmapped obstacles. Most path planners hamic. This problem is compounded by the fact that both
had the peculiarity that, when a path is clear of obstaclefje environment and the robot carry uncertainties due to
they generate a fairly straight path with rather separatesknsing and actuation, so that it is not feasible to treat
waypoints. With obstacles in the way, however, there ammotion planning separately from its execution. To solves¢he
several twists in the resulting path and the waypoints aggoblems, sensory information is required in the plannimgj a
very close to one another. Inspired by that fact, te proposewntrol loop, enabling for reactive navigation. A widelged,



real-time approach, based on the artificial potential fieldgach iteration until reaching the maximum scanner’s apertu
was presented in [10] and extended by [11]. Other method$90°). Radius limit is necessary to avoid faulty solutions
extract higher-level information from the sensor datahsuccaused by the sensors’ inherent weakness to occlusions, and
as [12], based on inferring regions from geometrical propethe path execution module must provide a goal within range.
ties. While these methods don't take into account the phlysicH the local planner is unable to find a solution, the robot
properties of the platform, two common approaches doingtops and upper-level modules are notified. Otherwise, the
so are the curvature velocity method [13] and the dynamigath is smoothed and the tree discarded, and the first point
window (DW) approach [14]. in the path is provided to the motion controller as the new
Our proposal combines a local planner with a slightijocal goalX;'. This process is depicted in figure 7. Please
modified DW, producing motion control commands suitableote that we do not perform any kind of feature extraction.
for the platform. Decoupling planning and execution is a
common practice in obstacle avidance (OA), as the full A A
path planning problem is typically too complex for realim i B
processing. Inputs to the local planner are the local gbg, . ‘ h
provided by the path execution module, and sensor datat: fron et .
laserof, = and odometryy,. The output of the local planner
is an obstacle-free goal, denoted By . This goal is the 7 ) ‘
input for the motion controller, which computes commands
for translational and rotational speeds. robot robor |
While this approach is sufficient for traversing flat areas, . t’ A g’
some modification must be made before it can handle an
envwonment containing ramps. (which must be ,overcome[hg. 7. Local RRT planner with incremental search space ig. @astacles,
and staircases or drops (which must be avoided). Thig the front horizontal laser scan points with a clearamceed. On the left
problem cannot be solved with a single laser scanner, sintie tree, in blue, after a few iterations. On the right theiioh in purple
the entry to a ramp is seen from its base as a wall at a distarfd the final, smoothed path in green.
determined by the laser's mounting height. This is com-
pounded by the fact that our robots are statically unstaide a
pitch forward or backward for self-balancing, most notabl

We do not allow the robot to move backwards. This is
because (1) our Segway robots can rolate® with ease, and
y(2) as will be described later in this section, the third tase

when entering or traversing a ramp, reducing laser vigjbili o . : .
" canner, pointing forwards, is required to safely navigate
up to 1m. Therefore, we propose an additional componen : .
certain features of the experimental zone.

to the OA module, in charge of performing traversability
inference over the data provided by the vertical Ia&fp‘;. B. Motion controller

We introduce the local planner and motion controller first, oyr motion controller is based on the DW approach [14].

and later present the trgversability inference methodi€i®  This method circumvents the complexity of the full path

shows the OA block diagram. planning problem by considering small time increments pe-

riodically, at a high rate. The approach considers only géhos

O, > TRAVERSABILITY ofL'”,lH configurations reachable \./vith?n the .aIIot.te.d time fra_me for
o, »| INFERENCE [y the current state (thédynamic window implicitly complying

o MOTION with the robot's dynamic constraints. This space is then

. 0L, l CONTROLLER discretized into a number of cells, for which an objective

X, - LOCAL , ) function is maximized. This function considers a trade-off

PLANNER X, between velocity, target heading and clearance to obstacle

\
<

<

Y

G(’va) = O"uf’u(va w) + (Jégfg(v, w) + acfc(va w) (2)

The clearance cost function measures the time until coflisi
for the cell’s configuration, relative to the platform’s bking

. . . time, as described in [15], while the cost functions for
The local planner has been implemented using a R""p'dI%Ioci'ﬁy and heading measure closeness to the configusation

exploring Random Tree (RRT) [16]. RRTs explore 4that maximize translational velocity and minimize the angl

workspace by incrementally building a tree, creating N the goal, respectively. The platform’s dynamics must be

bra(ljn?_hek_s byhgeneranr;]g p<|)|nts rand_omlyl In c:he_ Wor:kSpa(fﬁcorporated into the velocity cost function so as not to
and linking them to the closest point already in the treq o ohqot the goal, and into the target heading cost fumctio

for Wh'Ch an obstacle-]‘ree line of sight exists. The fronE% avoid an oscillating behavior. We achieve this by defining
laser is used to determine the presence of obstacles, and the

Fig. 6. Obstacle Avoidance block diagram.

A. Local RRT-based planner

v

search space is restricted to sectors of a circle centered on TV _ Vo .V _ dgoar, Kr = Tooa
L K R stop apmaz ’  goal Vi ! Ty,

the robot with radius the distance to the goal. The sectors TR 3
TR Vo . R _ Og0al . K'R — 1goal
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stop

are initially restricted in angle, increasing the searchcsp

stop — agmaz '~ goal Vo



So that Kt and Kr give us a measure of the difficulty traversable surface is used as an additional parametendor t
of stopping the robot in either case. We determine adequateotion controller, limiting the translational speed oreditly
acceleration rates for different valuesdf- and Kz and use stopping the robot in close proximity of an obstacle.
them to devise a control law experimentally, as we find it too
complex to fully model the behavior of the Segway robots.
The control law and current state provide us with target
values for the velocity and heading cost functions, which :
are a measure of closeness to these values. The functions _ T e T
are weighted as followsy, = 1, ay = 2, a. = 5.

The reactive loop runs at a higher frequency than the ’ !
deliberative loop, and so while the path execution module 10 4
does not provide a new, updated goal, the OA algorithm
updates its current goal by odometry data only.

C. Dealing with ramps 3 . P i

False obstacles due to ramps may be filtered by incorpo- o
rating the localization estimate and using the GIS map to
identify the situation, but we feel this solution would gitga Fig. 8. Vertical (left) and frontal (right) laser scans foSagway robot in
compromise the robustness of ou.r_navigation system. Thtlrﬁ),?éci fﬁﬁﬁ’rga;‘;’e'ﬁ‘ytgsu”;ﬂd's?d‘;f (e?q?jt}t;})g_)’lr? ;irr?epr <|:?aesger,e tsr?emﬁcsa?los\gnal
our approach is based on an additional laser scanner plageficated in the picture cannot be reached without tratiigainference.
at the robot’s waist, rotated 90n its side so that it scans
the vertical plane in front of the robot. This laser scanser i Traversability inference is computed in arouhd- 20ms
used to infer whether the robot can traverse this region efepending on the number of steps. The local planner typi-
space, and enables us to detect some obstacles outside dhiy takesl — 10ms. The computational cost for the DW
field of view of the horizontal laser as well. depends on its granularity, taking for instartfe— 50ms for

The campus features three different kinds of traversables x 15 cells. The OA loop is conditioned by the sensors
surfaces: flat, sloped with a relatively even incline, andipdate rate and runs &6Hz.
transitions from one to the other. The sensor’s observation
can thus be modeled with one or two line segments. Linear VIIl. ASSESSMENT OF RESULTS
regressions are extracted from the sensor data by leasiThe navigation system was validated in a series of exper-
squares fitting, using the average regression error to-deté@nents conducted over two days. All the processes shown
mine its quality. Prior to this computation, the verticatda in figure 3 were running on a DELL XPS 1313 laptop on
scan is pre-processed by removing points beyond the OA®ard the robot. An external laptop connected through wifi
algorithm range §m) or due to interference with the robotto the on board computer was dedicated to sendgtheo
chassis. The process is divided into three steps, executedtjuests and for online monitoring. Requests were pairs of
in order, and it is terminated whenever one of these stepS§Y coordinates selected manually on the map, typically
produces a satisfactory solution. We consider: (1) a singlovering large distances over the campus. 34 requests were
regression using all valid data, (2) two regressions, ualhg handled, 27 of which were successfully accomplished by
data sorted over the horizontal axis and divided into twe sethe robot. Total runtime of both experiments was about 155
by a threshold, for a set of thresholds over the horizontahinutes, with the robot actually navigating for about 87
axis, and (3) a single regression, iteratively removing theminutes and covering an estimated distance of @vekm.
points furthest away from the robot over the horizontal axi¥hese experiments were conducted on a real, populated
until conditions are met. In all cases a maximum regressiagetting on a working day, so the robot encountered many
error and a minimum regression length must be satisfiedbstacles (mostly people) in the way and 13.7% of navigation
In case 2, two additional conditions are enforced in ordeime was spent in obstacle avoidance mode. Failing requests
to ensure the compatibility between segments: the verticalere due to incorrect localization (5), a software bug (1)
gap and the angular difference between regressions mustdred obstacle avoidance issue (1). During each experimental
sufficiently small. Thresholds are determined empiricédly day, the processes were only initialized at the start of the
the available sensors at the campus environment. experimental session, and only the localization module was

This inference process enables the robots to enter arsinitialized after a localization failure. All but one ofig¢
traverse ramps by removing points from the front laser'siscanstances where the robot got lost correspond to navigation
incorrectly indicating the presence of obstacles priootal on ramps, where perception is severely impaired since the
planning (see figure 8). Staircases are easy to discrimindialancing behavior of the platform forces the horizontal
when seen from the bottom. From above, the laser’s accura@aser to point directly to the ramp surface. The obstacle
presents a problem, resulting in observations similar ds¢h avoidance failure happened when the robot was dangerously
of a ramp, and the slope’s steep incline is then used tose to a glass door, unseen by the lasers due to illummatio
identify the surface as not traversable. The length of thissues, and the red emergency button was prudently pushed.




Table | lists the experiments, detailing the total navigati expected observations in a 2D model limits their reliagilit

time until reaching the goal, the time spent on active olstacspecially when the robot navigates on ramps or close to them,
avoidance, and the final status of the request. Table $ince most of the laser scanner rays are colliding with the
summarizes the results. A short video is attached to thisppapramp surface. This issue is even more critical for Segway-
showing the robot following a path while avoiding obstaclesbased platforms due the balancing behavior. Moreover the

TABLE |
DETAILED RESULTS OF THE34 GO TOREQUESTS

balancing movement gives the robot an aditional 3D per-
spective of the environment poorly modelled with the 2D
approach. Future works in terms of localization should be
based on a 3D estimation of the robot position and the

Nav. OA Status Nav. OA Status ; ;
time (s) time (s) time (s)  time (s) development of 3D environment models and fast algorithms
;36%(-)8-1 5153 |éOC- Fail ??452 51128 SSl\J/SeES to compute expected laser scans.
. . uccess . ug -
1372 103 Success| 125 188  Success At the mo_tlon c_ontrol level, an_d_ due to safety reasons,
159.8 11.3  Success| 64 52.7  Loc. Fail obstacle avoidancés the most critical module. The pro-
185’660 Gé)-é gA Fail 19775 g-g ZUCCGSS posed approach for OA also meets the computational time
. . uccess . uccess H . . H .
2052 40 Success| 246 192  Success requeriments but remains very limited in terms of perceptio
84.1 2.0 Success| 212 452  Success Using two planar laser scanners, sweeping the vertical and
ﬁi-é 485 SLUCC?:SS_I 16138 gzg EUCCGSS horizontal planes in front of the robot, creates dangerous
. . OocC. rFal . uccess . . . . e
2932 16.2 Success| 154 295 Success blind areas, leaving the navigation syste_m _su_sce_pnblmaga
176.1 2.7 Success| 93 37.7 Success obstacles such as holes or steps. This limitation could be
179.6 6.5  Success| 100 42 Success improved using an hybrid laser-camera approach, sensing th
2762 315 Success 116 138 Success whole forward cone of the robot. Such an approach should
127.7 42  Success| 132 66.8  Loc. Fail _ _ 00t St pproach sh
125.2 15 Success| 104 6.5 Success meet real-time constraints while facing the challengithgy il
136.7 17.3  Loc. Faill 163 168  Success mination situations encountered in outdoor environments.
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