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Abstract

In this work we exploit segmentation to construct ap-
pearance descriptors that can robustly deal with occlusion
and background changes. For this, we downplay measure-
ments coming from areas that are unlikely to belong to the
same region as the descriptor’s center, as suggested by soft
segmentation masks. Our treatment is applicable to any im-
age point, i.e. dense, and its computational overhead is in
the order of a few seconds.

We integrate this idea with Dense SIFT, and also with
Dense Scale and Rotation Invariant Descriptors (SID), de-
livering descriptors that are densely computable, invariant
to scaling and rotation, and robust to background changes.

We apply our approach to standard benchmarks on large
displacement motion estimation using SIFT-flow and wide-
baseline stereo, systematically demonstrating that the intro-
duction of segmentation yields clear improvements.

1. Introduction

Ever since the advent of SIFT [19], appearance descrip-
tors have become an indispensable tool in matching, recog-
nition, and retrieval, while a host of recent works such as
SURF [1], ORB [26], BRIEF [8] have been developed to fa-
cilitate their use in real-time applications. A different thread
of works, such as Daisy [32], dense SIFT [34] or the dense
Scale-Invariant Descriptors [13] have demonstrated that it
is possible to efficiently compute descriptors densely, i.e.
for every pixel, and use them as a generic low-level image
representation on a par with filterbanks.

A problem that emerges when applying dense descrip-
tors is invariance; unlike interest points, which allow for
some estimation of local scale and orientation, on arbitrary
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Figure 1. We exploit segmentation to construct appearance de-
scriptors that are robust to background motion and/or occlusions.
Left to right, top to bottom: (1) Source image and a feature point
x. (2) RGB encoding of the first three soft segmentation masks
of [16]. (3) Segmentation-based affinity between x and the whole
image (as per Eq.(2)). (4) Affinity values at the cells of a SIFT
descriptor. (5) RGB encoding of first three principal components
of dense SIFT. (6) Same as (5), but using the affinity mask in (4).
We obtain much sharper features, which are built using only from
the object’s interior. We obtain similar results by applying this
technique to the SID descriptors of [14].

image locations scale estimation is not obvious. Some re-
cent advances to address this problem include the treatment
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of scale- and/or rotation-invariance in [14, 13, 11, 27] as
well as invariance to non-rigid deformations in [17, 22].

In this work we push this line of works a step further
to also deal with occlusion effects, i.e. cases where the
plane of the point is partially hidden by another plane ly-
ing closer to the camera. Recent work has demonstrated the
merit of incorporating occlusion: [32] reported substantial
performance improvements in multi-view stereo by treating
occlusion as a latent variable, while [24] demonstrated that
exploiting a soft figure/ground segmentation can boost the
performance of a sliding-window detector.

Our main contribution in this work is a new approach
to suppress background information during descriptor con-
struction. For this we use soft segmentation masks to com-
pute the affinity of a point with its neighbors, and shun the
information coming from regions which are likely to belong
to other objects.

We extract soft segmentation masks before descrip-
tor construction, using either Normalized Cut eigenvectors
[28, 20], or the Global Boundary masks of [16], with the
latter coming with a minimal computational overhead. We
combine this scheme with dense SIFT, and the dense Scale-
and Rotation-Invariant Descriptor (SID) extraction of [13],
thereby constructing a descriptor that is dense, invariant
to rotations, scaling, and occlusions. We evaluate our ap-
proach on large-displacement, multi-layered motion and
wide-baseline stereo. We demonstrate increased perfor-
mance with respect to state-of-the art appearance descrip-
tors: dense SIFT, dense SID, and the dense Scale-Invariant
descriptors of [11]. Most importantly, we demonstrate that
the introducion of segmentation results in systematically
better results over the respective baselines.

Our approach is particularily simple - it involves a
single parameter, that we tuned with a few images
and then used throughout all experiments. It is also
very efficient, introducing an overhead of a few sec-
onds. We make our Matlab-based code publicly available
from http://vision.mas.ecp.fr/Personnel/
iasonas/descriptors.html.

2. Related work
After the seminal works of SIFT [19] and Shape Con-

texts [3], large strides have been made in improving per-
formance [4, 21, 35, 29] and efficiency [1, 25, 8, 26] and
decreasing memory requirements [12, 6, 30].

A complementary research direction that started from
Daisy [32] and dense SIFT [34] is to extract dense im-
age descriptors. This is motived both by experimental evi-
dence that dense sampling of descriptors yields better per-
formance in Bag-of-Words classification systems [23], but
also from applications such as dense stereo matching which
require dense features.

Other problems are less amenable to SIFT-like descrip-

tors, including the treatment of non-rigid deformations,
scale, and occlusions. Recent advances have shown that
kernels based on heat diffusion geometry can effectively
describe local features of surfaces subjected to non-rigid
deformations and photometric changes by representing the
image as a 2D surface embedded in 3D space, given the
pixel coordinates and its intensity [22].

Regarding scale, the standard approach to accommodate
scale changes is scale selection [19], which however is only
applicable to singular points where scale can be reliably
estimated. An alternative that allows to compute scale-
invariant descriptors densely is the Scale- and rotation-
Invariant Descriptor (SID) of [14], which exploits a combi-
nation of logarithmic sampling and multi-scale signal pro-
cessing to obtain scale- and rotation-invariance. To achieve
this the image is sampled over a log-polar grid, which turns
image rotation and scaling into descriptor translations. The
latter can be discarded by computing the Fourier Transform
magnitude, which is unaffected by translations. The prin-
ciples of Daisy were recently used in [13] to efficiently
compute dense SIDs.

A more recent work on scale-invariant descriptors is the
Scale-Less SIFT (SLS) of Hassner et al [11]. Their ap-
proach is to compute a set of SIFT descriptors at differ-
ent scales, and then project these into an invariant low-
dimensional subspace that ellicits the scale-invariant as-
pects of these descriptors. This descriptor comes at an in-
creased computational price, and is not rotation-invariant
by design, but gives clearly better results than dense SIFT
in the presence of scaling transformations. We include also
this state-of-the-art descriptor in our multi-layered motion
benchmarks.

Regarding occlusions, there is little work around ap-
pearance descriptors. In [24], an implicit color segmenta-
tion of objects into foreground and background was used
to augment histograms of gradients for people detection.
The Daisy paper of [32] demonstrated clear performance
improvements in multi-view stereo from treating occlusion
as a latent variable and enforcing spatial consistency with
Graph Cuts [5]. To deal with occlusions, a predefined set of
binary masks was applied over the Daisy grid coordinates,
effectively disabling half the grid at different orientations—
the descriptor being a ‘half moon’ instead of the full cir-
cle. These masks are applied iteratively, interleaved with
successive rounds of stereo matching, yielding increasingly
refined depth estimates.

Our work was largely inspired by the performance im-
provements demonstrated in [32]. These show that separat-
ing foreground and background results in a distinct boost
in performance. A marked difference with [32] is that we
make this approach applicable also to the case where a sin-
gle image of the scene is available; furthermore we do not
constrain the masks to be of a half-moon shape, and show
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how this technique can be combined with the construction
of a descriptor that is invariant to scale and rotation, in ad-
dition to occlusions and background motion.

3. Segmentation-aware descriptors

3.1. Soft segmentations

Our goal is to construct appearance descriptors that are
not only local, but also contained within a single sur-
face/object (‘region’ from now on). In this way changes in
the background, e.g. due to layered motion, will not affect
the description of a point in the interior of a region. Simi-
larly, when a region is occluded by another region in front of
it, even though we cannot recover its missing information,
we can at least ignore irrelevant occluders.

Our problem is connected with segmentation, where one
wants to extract a partition of the image into homogeneous
regions. Despite rapid progress on this area, it is understood
that the problem is still far from solved. We therefore turn
to algorithms that do not strongly commit to a single seg-
mentation, but rather determine the affinity of a pixel to its
neighbors in a soft manner. This soft affinity information is
then incorporated into descriptor construction.

We explore two different approaches to extracting such
soft segmentations. First, we use the approach of Maire et
al [20]; in brief, [20] combines multiple cues to estimate
a probability of boundary cue Pbσ(x, y, θ), which is then
used to estimate a boundary-based affinity using the ‘inter-
vening contour’ technique of [28]. These local affinities are
subsequently ‘globalized’ by finding the eigenvectors of the
relaxed Normalized cut criterion. Instead of trying to form
a hard segmentation out of the resulting eigenvectors we use
them as pixel embeddings which bring closer pixels which
are likely to belong to the same region and pull apart pix-
els which do not belong together—we thus stay closer in
spirit to the Laplacian eigenmaps works of [2]. The affinity
of two pixels is computed as the euclidean distance of their
respective embeddings.

We also use the soft segmentation masks of Leordeanu
et al [16]—there the authors use local color models con-
structed around each pixel to construct a large set of fig-
ure/ground segmentations. These are then projected to a
lower dimensional subspace through PCA, which provides
us with a low-dimensional pixel embedding. The main ad-
vantage of these features is that they are obtained at a sub-
stantially smaller computational cost.

For simplicity, we refer to the eigenvector embeddings
of [20] as ‘Eigen’, and to the soft segmentation masks of
[16] as ‘SoftMask’. Fig. 2 shows the first three coordinates
of the ‘Eigen’/‘SoftMask’ embeddings as an RGB image.
Note that the embeddings from Gb have higher granularity,
which makes them a bit more noisy, but also better suited to
capturing smaller features.

Image Pb embeddings Gb embeddings

Figure 2. Soft segmentation cues: We show as RGB maps the first
three coordinates of the ‘Eigen’ embeddings (middle column) and
the ‘SoftMask’ embeddings (right column).

3.2. Descriptor construction

We now describe how the pixel embeddings described
above can be used to render local descriptors robust to back-
ground changes and/or occlusions. Our technique is equally
well applicable to dense SIFT [34], Daisy [32] and dense
SID descriptors [13]; we focus on SID, as it allows us to also
achieve scale- and rotation- invariance, but later on will re-
port results for dense SIFT as well. We will make our code
publicly available, and therefore refrain from providing all
of the details required to reproduce the results.

We start with a brief introduction of the SID descrip-
tor: the log-polar sampling technique of [14, 13] al-
lows us to densely compute scale- and rotation-invariant
features through the Fourier Transform Modulus/Fourier-
Melin transform technique. We sample the neighbourhood
around a point with a log-polar grid, defined by K rays at
angles θk = 2πk/K, and N rings spaced at increasing in-
tervals. The measurements on those points are obtained af-
ter smoothing the image by Gaussian filters whose scale σn
increases for larger radii, and extract image derivatives at 4
orientations and two polarities, using steering to have mea-
surements aligned with the angle directions.

This results in a K × N measurement matrix for every
feature channel. By design, image scalings and rotations of
the image amount to translations over the radial and angular
dimensions, respectively, of this descriptor. From the time-
shifting property of the Fourier Transform we know that if
we have a Fourier Transform pair h(k, n)↔ H(jωk, jωn),
then

h(k − u, n− v)↔ H(jωk, jωn)e−j(ωku+jωnv) (1)
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This means that the Fourier Transform Magnitude
(FTM) |H(jωk, jωn)| is unaffected by signal translations;
applying this observation to our descriptor matrix we real-
ize that this provides a scale- and rotation-invariant quantity.
Alternatively, we can apply the Fourier transform only over
scales, to obtain a scale-invariant but rotation-dependent
quantity. We will refer to the scale- and rotation-invariant
descriptor as SID and to the scale-invariant but rotation-
sensitive descriptor as SID-Rot.

Having provided the outline of SID, we now proceed to
describe how we combine soft segmentation masks with it.
Using the embeddings described in the previous subsection,
we have an embedding of every pixel into a space where
euclidean distances indicate how likely it is that two pix-
els will belong to the same region. When constructing a
descriptor around a point x we construct the affinity w[i]

between x and every other point on its grid, G[i](x), i =
1 . . .KN as follows:

w[i] = exp
(
−λ · d(x,G[i](x))

)
, where (2)

d(x,G[i](x)) = ‖y(x)− y(G[i](x)‖22 (3)

In Eq. 3, y(·) is the embedding of point ·, and λ is a design
parameter that determines the magnitude of the weighting;
we experimentally determine good values for λ in Sec. 4.
We then multiply these weights w[i] ∈ [0, 1] with the mea-
surements extracted around each grid point:

D′[i] = w[i]D[i], i = 1, . . . ,KN, (4)

where for SID D[i] is the concatenation of D convolved
oriented gaussian derivatives at grid point i, while for SIFT,
D[i] are the entries of the SIFT cell positioned at [i].

Multiplying by these weights effectively shuns measure-
ments which come from the background (occluders, back-
ground planes, other objects). As such, the descriptor ex-
tracted around a point is affected only by points belong-
ing to the same region with and remains robust to back-
ground changes. As our results indicate, this particularily
simple modification yields noticeable improvements in per-
formance.

4. Experimental evaluation
We study two different scenarios: video sequences with

multi-layered motion, and wide baseline stereo. We explore
the use of both of the embeddings described in 3.1, and
several dense descriptors (SID, Segmentation-aware SID,
dense SIFT, Segmentation-aware dense SIFT, SLS). We use
the ‘S’ prefix to indicate ‘Segmentation-aware’ so for in-
stance ‘SSID’ stands for our variant of SID.

For SID construction we use the implementation of [13],
which adopts Daisy to compute dense features. We take
N = 28 rays, K = 32 steps and D′ = 4 derivatives,

which are computed with oriented gaussian filters [10]. The
derivatives preserve the polarity as in [32], so that the ef-
fective number of orientations is D = 8. We exploit the
symmetry of the FTM to discard two quadrants, as well as
the DC component, which is affected by additive lighting
changes, and we normalize the resulting descriptor to have
unit L2 norm. The size of the descriptor is 3328 for SID and
3360 for SID-Rot. We refer to the publicly available code
for further details.

4.1. Multi-layered Motion

We test our approach on the Berkeley Motion Dataset
(Moseg) [7] which is an extension of the Hopkins 155
dataset [33]. This dataset contains 10 sequences of outdoor
traffic taken with a handheld camera, three sequences of
people in movement, and 13 sequences from the TV series
Miss Marple. All of these sequences exhibit multi-layered
motion. The dataset provides ground truth segmentation
masks for a subset of frames in every sequence, roughly
in one out of ten frames.

We evaluate SSID with ‘Eigen’ and ‘SoftMask’ embed-
dings against: Dense SIFT (DSIFT) [34], SLS and SID. We
use SLS both in its original form and a PCA variant made
publicly available by the authors: we refer to them as SLS-
paper and SLS-PCA—a SLS is size 8256, whereas its PCA
variant is size 528. For all the SID-based descriptors we also
consider the rotation-sensitive version SID-Rot. We use the
same parameters for both SID and SSID unless stated oth-
erwise.

We use the 10 traffic sequences, pairing the first frame
with all successive frames for which we have ground truth
segmentation masks, which yields 31 frame pairs. The im-
ages are resized to 33%, in particular to permit compari-
son with SLS, which has high computational requirements.
To take advantage of the segmentation annotations we use
SIFT-Flow [18], a variant of optical flow methods which
uses densely sampled SIFT descriptors instead of raw pix-
els to solve the correspondence problem, while preserving
spatial discontinuities—this framework is publicly available
and can be applied to any SIFT-like feature vector, as shown
in [11]. To evaluate each descriptor we use the flow esti-
mates to warp the segmentation mask for the second frame
over the first, and compute its overlap with the ground truth
using the Dice coefficient [9]. We use this experiment to
determine the values for the λ parameter of SSID (Eq. (2)):
λ = 0.7 for ‘Eigen’ and λ = 37.5 for ‘SoftMask’.

Fig. 3 shows the results for all the SID and SSID vari-
ants. We observe that the rotation-sensitive variants do bet-
ter, which is to be expected since the foreground elements
do not contain many rotations, and discarding rotations im-
plies a loss of information. SSID outperforms SID dramat-
ically, in particular for large frame displacements. Fig. 4
shows the best results obtained from our approach against
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Figure 3. Overlap results over the Moseg Dataset for SID and SSID
with ‘Eigen’ and ‘SoftMask’ embeddings. The results are accumu-
lated, so the first bin includes all frame pairs, and the second bin
includes frame pairs with a displacement of 20 or more frames.
Each bin shows the average overlap between all the frame pairs
under consideration. The following figures follow the same proto-
col.
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Figure 4. Overlap results over the Moseg dataset for all the dense
descriptors considered. For DISFT we show the results corre-
sponding to the best scale.

the other dense descriptors. The best overall results are ob-
tained by SSID-Rot with ‘SoftMask’ embeddings, followed
by the same descriptor with ‘Eigen’ embeddings—note that
the ‘SoftMask’ variant does better despite its drastically re-
duced computational cost. Additionally, we use the flow to
warp the image. Some large displacement results are shown
in Fig. 5—again, SSID outperforms the other descriptors.

4.2. Segmentation-aware SIFT

The application of soft segmentation masks over SID
is of particular interest because it alleviates its main
shortcoming—the requirement of a large patch. But its
success suggests that this approach can be applied to other
standard grid-based descriptors—namely SIFT. We extend
the formulation to SIFT’s 4 × 4 grid, using the ‘SoftMask’
embeddings which give us consistently better results with
SSID, and repeat the experiments over the Moseg dataset.
Fig. 6 shows the increase in performance over three dif-
ferent scales. The gains are systematic, but as expected
the optimal λ is strongly correlated to the descriptor size.
Fig. 7 displays the performance gains. Note that this vari-
ability could be potentially accounted by the low number of
samples—31 image pairs.

4.3. Wide-baseline Stereo

For stereo, we use the wide baseline dataset of [31],
which contains two multi-view sets of high-resolution im-
ages with ground truth depth maps. We use the ‘fountain’
set, since it contains much wider baselines in terms of angu-
lar variation than the ‘herzjesu’ set, which exhibits mostly
fronto-parallel displacements. As in the Daisy paper, we
use a much smaller resolution, in our case of 460×308. For
this experiment we use a set-up similar to that of [32]. We
discretize 3D space into k = 50 bins, and use epipolar con-
straints and the range of the scene to restrict the candidate
matches. We store the cost for the best match at every depth
layer, and feed this data to a global regularization algorithm
to enforce piecewise smoothness. We use Tree-Reweighted
Message Passing [15] instead of Graph Cuts [5].

For a first experiment we want to evaluate the accuracy of
each descriptor. We compute depth maps using this stereo
algorithm and evaluate the error on every visible pixel us-
ing the ground truth visibility maps from [31]—note that
this does not account for occlusion. We use the fully in-
variant versions of SID and SSID, as well as DSIFT, Daisy
and SLS. Note that for descriptors other than SID we align
the descriptors with the epipolar lines, to enforce rotation
invariance [32]. For SLS we use only the PCA version,
which has much lower dimensionality and is thus cheaper to
match. The results are shown on Fig. 8. Our segmentation-
aware descriptors outperform the others except for SLS—
but again we do not need to rotate the patch.

Most of Daisy’s performance gains on wide-baseline
stereo stem from its handling of occlusions, which are not
taken into account in the previous experiment. The Daisy
stereo algorithm introduces an additional depth layer with
a fixed cost, to account for occlusions, and exploits binary
masks in an iterative process to refine the depth estimate
(see 2). Note that the occlusion cost is a nuisance param-
eter: it can vary from one image set to another, or across
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First image Second image DSIFT SLS-PCA SID-Rot SSID-Rot, ‘SoftMask’

Figure 5. Large displacement image matching using SIFT flow, for different considered in this paper. We warp image 2 to image 1 using
SIFT-Flow with different descriptors. The ground truth segmentation masks of image 1 are overlaid in red (a good registration should bring
the object in alignment with the segmentation mask). We observe that segmentation-aware variant SSID-Rot does best, and is better than
SID-Rot (please zoom in for details). Similar improvements were observed for SDSIFT over DSIFT.
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Figure 6. Overlap results over the Moseg dataset for segmentation-
aware DSIFT at different scales.

different baselines of the same set, and it has a drastic effect
on the number of pixels marked as occluded.

We thus perform a second experiment to pitch this
state-of-the-art iterative approach against our segmentation-
based, single-shot approach. We run the Daisy stereo algo-
rithm for 5 iterations, and plot the results on Fig. 9. The per-
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Figure 7. Increase in average overlap using our approach on
DSIFT, from white (no difference in overlap) to red (largest in-
crease in overlap, which is 0.14). For clarification, note the corre-
spondence between the bottom left picture and Fig. 6 (λ = 40).

formance of SSID with ‘Eigen’ embeddings is comparable
of superior to that of Daisy on most baselines—we achieve
this on a single step, and without relying on the calibration
data to rotate the patch. Additionally, note that we set the λ
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Figure 8. Accuracy at different baselines, for visible pixels only.
For this figure in particular we do not consider an occlusion layer,
and do not use masks for Daisy.
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Figure 9. We compare the iterative process of Daisy to our single-
shot approach. The plot shows the accuracy at different baselines
(including visible pixels and occluded pixels).

parameter of Eq. (2) on the motion experiments and do not
retune it for the stereo experiments. Figure 10 displays the
depth estimates at two different baselines (image pairs 5-3
and 7-3)—the reference frame (3) is that on the last row of
Fig. 2.

4.4. Computational requirements

The cost of computing DSIFT descriptors [34] for an im-
age of size 320 × 240 is under 1 second (MATLAB/C++
code). SLS (MATLAB) requires ∼21 minutes. SID (a
highly optimizable MATLAB/C hybrid) takes ∼71 seconds.
SSID requires ∼81 seconds, in addition to the extraction
of the masks. Note that for all the experiments in this pa-

per we compute the ‘Eigen’/‘SoftMask’ embeddings at the
original resolution (e.g. 640× 480) before downscaling the
images—the ‘SoftMask’ embeddings (MATLAB) require
∼7 seconds, and the ‘Eigen’ embeddings (MATLAB/C hy-
brid) ∼280 seconds. The computational cost of matching
two images with the SIFT-flow framework depends on the
size of the descriptors, varying from ∼14 seconds for SIFT
(the smallest) to ∼80 seconds for SID/SSID, and ∼10 min-
utes for SLS-paper (the largest).

5. Conclusions and future work
This paper presents a novel strategy to dealing with back-

ground motion and occlusions by incorporating soft seg-
mentations into the construction of appearance descriptors.
We have applied this idea to different dense descriptors,
and with different methods of computing the soft segmen-
tations, demonstrating clear improvements in all cases. We
have shown improvements on the distinct tasks of wide-
displacement, multi-layer optical flow, and stereo. In par-
ticular for stereo, we obtain a performance comparable to
the state-of-the-art attained by the iterative version of Daisy
[32], but (1) without relying on calibration data to obtain
rotation-invariance, and (2) in a single step.

We believe that one of the most attractive aspects of our
work is its simplicity. Our technique involves a single pa-
rameter, λ; we have set that parameter on one application
with a small set of images, and ascertained its validity on a
remarkably different application.

Regarding future work, an obvious first application of
our work is that of object detection or classification. Our
approach should be amenable to scenarios such as those of
Fig. 1, but the effect of inter-class variability on our soft
segmentations remains in question. Second, we are inves-
tigating the applicability of the metric learning techniques
of [6, 30] to our descriptor. We believe this may not only
reduce its high dimensionality, but may increase its discrim-
inative power as well.
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