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Abstract— We present an approach to the problem of 3D
map building in urban settings for service robots, using three-
dimensional laser range scans as the main data input. Our sys-
tem is based on the probabilistic alignment of 3D point clouds
employing a delayed-state information-form SLAM algorithm,
for which we can add observations of relative robot displace-
ments efficiently. These observations come from the alignment
of dense range data point clouds computed with a variant of
the iterative closest point algorithm. The datasets were acquired
with our custom built 3D range scanner integrated into a mobile
robot platform. Our mapping results are compared to a GIS-
based CAD model of the experimental site. The results show
that our approach to 3D mapping performs with sufficient
accuracy to derive traversability maps that allow our service
robots navigate and accomplish their assigned tasks on a urban
pedestrian area.

I. INTRODUCTION

3D mapping in urban environments has been recognized
as a challenging task in the past. Urban settings have many
specific characteristics, e. g., non-flat terrain, occasional poor
GPS coverage, underpasses, points with aliasing, moderate
vegetation, and sunlight exposure severely subject to shad-
ows.

In order to avoid problems related to cameras, such as
illumination issues, 3D mapping in outdoor environments has
been usually addressed using 3D laser range finders. In this
paper we describe a solution to the Simultaneous Localiza-
tion and Mapping (SLAM) problem in urban environments,
using three-dimensional laser range scans as the main data
input.

The intended application of this solution is the building
of the necessary maps for a heterogeneous fleet of service
robots that navigate in urban settings during the execution
of their tasks [1]. For this purpose, from 3D point cloud
maps we also compute traversability maps, which are 2D grid
layers with continuous-valued cells indicating the maximum
traversability speed.

Our approach consists of the probabilistic alignment of
3D point clouds employing a delayed-state Extended Infor-
mation Filter (EIF) SLAM algorithm. From consecutive 3D
point clouds we compute relative pose constraints with the
Iterative Closest Point (ICP) algorithm [2]. In our approach
to point cloud fitting, we use a hierarchical correspondence
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Fig. 1. Final map of the experimental site computed with our approach.

search strategy, using a point-to-plane metric at the coarsest
level and a point-to-point metric at finer levels. When search-
ing for point matches, we use kd-trees to reduce the compu-
tational complexity. And, during the minimization step, we
perform compensation between translation and rotation by
using a weighted distance metric [3].

The pose constraints computed from consecutive 3D point
clouds are then used as relative pose measurements in a
6 degrees-of-freedom (DOF) delayed-state information-form
SLAM algorithm. State transition and measurement models
are computed using motion compositions. In addition, mo-
tivated by [4], we employ a reordering of the information
matrix and a QR decomposition to efficiently recover the
covariance and state estimate.

Finally, once we have these 3D point clouds correctly
registered we derive traversability maps by dividing the
environment into cells and assigning velocities for each cell
using the kinematic model of the mobile robot.

The reminder of this paper is organized as follows. A brief
description of the related work is presented in section II.
In section III we describe our strategy for computing pose
constraints from 3D point clouds. Section IV is devoted
to explain our SLAM algorithm. The experimental setup
is described in section V and the corresponding results
are shown in section VI. In Section VII we show how
traversability maps are extracted from 3D scans. Finally,
concluding remarks are depicted in Section VIII.

II. RELATED WORK

Mapping with 3D laser range finders has been addressed
in many ways. A non-probabilistic approach is proposed in
[5], where the alignment of two scans is done mainly by
improvements to the basic ICP algorithm proposed in [2].
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Nevertheless, probabilistic methods allow a straightforward
way to distribute errors when closing a loop. One possibility
for 3D probabilistic SLAM in outdoor environments is to
employ a delayed-state framework with an Extended Kalman
Filter (EKF) [6].

However, using an EIF within the delayed-state framework
has better scalability properties compared to the EKF [7]. A
delayed-state EIF generates exact sparse information matri-
ces and, during open loop traverse, the information matrix
becomes tri-block diagonal as consecutive robot poses are
added to the state. At loop closure, the matrix structure is
only modified sparsely, setting information links between
non-consecutive robot poses. Thus, one advantage of the
delayed-state information-form for SLAM is that predictions
and updates take constant time, assuming an efficient or
approximate way for state recovery is used to evaluate
Jacobians.

The approximations performed by linearizations, together
with covariance and state recovery and data association are
issues of concern in the use of EIF filters for SLAM. In
[8] we proposed an alternative to reduce the overconfidence
effects of linearizations by closing only the most infor-
mative loops, decreasing the total number of loop closure
links, maintaining the sparsity of the information matrix.
The technique not only defers filter inconsistency but also
has better scalability properties. As for state recovery in
information form, efficient techniques for exact recovery of
covariance and state estimates are proposed in [4] and [9].
Our latest work shows that during open loop traverse exact
state recovery can be performed in constant time, and that
we can perform efficient data association in O(log n) for
the delayed-state EIF framework [10].

III. COMPUTATION OF RELATIVE POSE CONSTRAINTS

The purpose of the Iterative Closest Point (ICP) algorithm
is to compute the relative motion between two partially over-
lapped 3D point clouds. The algorithm iteratively minimizes
the Mean Square Error (MSE) over point matches proceeding
as follows: for each point in one data set, the closest point
in the second one is found or vice-versa (correspondence
step), then the motion that minimizes the MSE between the
correspondences is computed (registration step), finally, the
point matches are updated (update step).

A. Point to Point Distance

Traditionally, the minimization is performed over the sum
of Euclidean distances. However, we resort to a metric that
gives different weight to sensor rotation than translation [3].
This distance between points p1 and p2 is defined as

d(p1, p2) =

√

‖δ‖2 −
‖p1 × δ‖2

k
, (1)

with k = ‖p1‖
2 + L2, δ = p2 − p1, and L is a user

specified weighting factor that trades-off between translation
and rotation. Note that when L → ∞ the new distance tends
to the Euclidean distance. In our experiments L = 30, see
Fig. 2.

(a) L = 30.

(b) L → ∞ (Euclidean distance).

Fig. 2. Comparison of ICP metrics.

B. Sampling Strategy and Outlier Removal

The iterative nature of the ICP minimization step requires
reduced sample sets to be used. To this end, point clouds are
uniformly sampled, which helps also to reduce sensor noise.
Unfortunately, performing ICP over sampled data is very
sensitive to data content, e.g. noise level, occlusion areas,
complexity of the range data, etc. When the number of out-
liers is large, many wrong correspondences are unavoidable,
and would produce convergence to a local minimum leading
to poor final overlap, or in the worst case, to divergence. We
shall remember that the original ICP algorithm considers data
sets without outliers, which is not our case. For this reason,
after sampling, outlier removal is performed by keeping
only those points with a mean distance from their k-nearest
neighbors lower than an experimentally chosen threshold.

C. Correspondence Search

Several metrics can be used to compute feature correspon-
dences in 3D range data, such as point-to-point, point-to-
plane, and point-to-projection with triangular surfaces [11].
In our method we propose a hierarchical correspondence
search, using a point-to-plane strategy at the coarsest level
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and a point-to-point metric at finer levels.
The closest plane to a query point is computed by fitting a

planar patch to the approximate nearest neighboring (ANN)
points from the reference data [12]. The plane is least squares
fitted [13], and the fitting error stored. If the plane fitting
error is larger than a given threshold, we consider that the
plane does not have sufficient support and the point-to-point
metric is used instead.

Several approaches to dismiss possible outliers during the
correspondence step in the ICP have also been proposed. We
choose to remove wrong correspondences limiting the angle
between adjacent normals and also rejecting those correspon-
dences whose distances are larger than some multiple of the
standard deviation of all distances within the matching set.

IV. 6 DOF POSE SLAM

We refer to Pose SLAM as the delayed-state information-
form of SLAM in which one estimates the state vector x,
containing the history of poses from time 0 to k, given
the history of proprioceptive observations Z and the set of
motion commands U . Using the canonical parameterization,

p(x|Z, U) = N (x; µ,Σ) = N−1(x; η,Λ), (2)

Λ = Σ
−1, and η = Σ

−1
µ, (3)

where µ is the mean state vector and Σ its covariance matrix,
and Λ and η are the information matrix and information
vector, respectively.

In our implementation one robot pose (the k-th component
of the state vector x) is defined as

xk =
[

t"k ,Θ"
k

]"

, (4)

where tk = [xk, yk, zk]" indicates the position of the robot,
and Θk = [φk, θk,ψk]" is the vector of Euler angles to
represent the orientation.

The noise-free motion model is defined using the com-
pounding operation [14], and defines the state transition
model, relating state components xk+1 and xk,

xk+1 = f(xk,uk)

= xk ⊕ uk, (5)

and uk is the relative motion between consecutive poses as
computed with the ICP algorithm, i.e. the relative travelled
distance and the relative rotation change.

A first order Taylor series approximation of this model is
given by

xk+1 ≈ f(µk,uk) + F(xk − µk) + wk, (6)

where

F =
∂f

∂x

∣

∣

∣

∣

µ
k
,uk

, (7)

and zero mean white noise wk with covariance Σu, used to
accommodate for higher order terms and modeling errors.

We form our proprioceptive observation model also using
the compounding operations. The noise-free measurement
model is given by Equation 8, which tells us how much the

robot has moved between any robot pose xi and the current
pose xk,

zik = h(xi,xk)

= (xi ⊕ xk, (8)

The linearized measurement model is given by

zik ≈ h(µi, µk) + H(xi,k − µi,k) + vk, (9)

where xi,k = [x"i ,x"k ]" , vk is zero mean white measurement
noise with covariance Σz , and

H =

[

∂h
∂xi

∣

∣

∣

∣

µi

∂h
∂xk

∣

∣

∣

∣

µk

]

. (10)

A. State Augmentation

In the delayed-state framework we do not marginalize
out past robot poses as in other classical SLAM approaches
such as the EKF and the EIF. Instead, we append the time-
propagated robot pose xt+1 to the state vector, obtaining the
prior probability distribution

p
(

x0:k,xk+1|Z
k, Uk+1

)

= p
(

x0:k|Z
k, Uk

)

p (xk+1|xk,uk+1) , (11)

where x0:k represents the robot trajectory before time k +1,
and Zk and Uk are the history of observations and odometry
increments up to time k, respectively. This probability is
factored into the product of the state posterior at time k and
the transition probability multiplied by the prior probability
—i.e. the posterior distribution computed at time k. For
Gaussian distributions, the parameters η and Λ of Eq. (11)
in the form of (2) are given by

ηk,k+1 = η̄k,k+1 + F
"
augΣ

−1
u (f(µk, uk) − Fµk) (12)

and

Λk:k+1,k:k+1 = Λ̄k:k+1,k:k+1 + F
"
augΣ

−1
u Faug, (13)

in which Faug =
[

−F I
]

, and η̄k+1 and Λ̄k+1,k+1

represent the posterior information vector and information
matrix at time k, with zero entries for time k +1, indicating
infinite uncertainty for that robot pose.

The augmentation process introduces information only
between the new robot pose xk+1 and the previous one
xk. Moreover, the shared information between the new pose
xk+1 and the rest of the robot trajectory x0:k−1 is always
zero when we have not closed any loop. This matrix results
in a naturally sparse information matrix with a tridiagonal
block structure.

B. State Update

After augmenting the state we add observations with the
EIF update equations,

ηi,k+1 = η̄i,k+1 + H
!
Σ

−1
z

`

zk+1 − h(µi, µ̄k+1) + Hµ̄i,k+1

´

(14)

Λi:k+1,i:k+1 = Λ̄i:k+1,i:k+1 + H
"
Σ

−1
z H, (15)
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where zk+1 is the observation at time k + 1, which is the
relative pose measurements between the current pose xk+1

and any pose xi.

In the same way as with the prediction step, given the two-
block size of the measurement Jacobian H in Eq. (10), only
the four blocks relating poses i and k +1 in the information
matrix will be updated.

C. Covariance and State Recovery

Motivated by [4], we employ a QR factorization of the
information matrix to solve Λµ = η and ΛΣ = I, for µ

and Σ.

In order to reduce the fill-in in the right triangular matrix
from the QR factorization, we first reorder the information
matrix using the column approximate minimum degree (CO-
LAMD) ordering [15], then we apply QR factorization to the
reordered information matrix and solve for each state variable
via back substitution.

V. EXPERIMENTAL SETUP

The goal application of the work presented in this paper
is to build the required maps for a heterogeneous fleet of
service robots in urban settings [1]. With these maps the
robots should be able to perform path planning and navigate
to accomplish their tasks, such as guidance, assistance,
transportation of goods, and surveillance.

Our experimental site is the Barcelona Robot Lab, lo-
cated at the Campus Nord of the Universitat Politècnica de
Catalunya, part of the URUS project, and equipped with a
camera network. This experimental area has over 15,000
square meters, several levels and underpasses, poor GPS
coverage, moderate vegetation, several points with aliasing,
large amounts of regularity from building structures, and
sunlight exposure severely subject to shadows. An aerial
view of the site is shown in Fig. 6.

In order to build the maps described in this paper, we
built our proprietary 3D scanning system, using a Leuze
RS4 scanner and controlling its pitch with a DC motor and
a computer. The system was installed atop an Activmedia
Pioneer 2AT robotic platform. The system yields 3D point
clouds with ranges up to 30 meters, and sizes of about 76,000
points. The sensor noise level is ±5 cm in depth estimation
for each laser beam. Figure 3 portrays the complete device.

VI. 3D MAPPING RESULTS

The robot was teleoperated through the site along a path
of over 600 m (see Fig. 4(a)). The figure contains results
from state augmentation purely from concatenation of ICP
computed motion constraints. The hyper-ellipsoids shown
indicate marginal covariances of the robot position. Position
uncertainty is larger along the direction perpendicular to the
motion plane. This open loop traverse causes an increment
of the accumulated estimation error. The mapping strategy
discussed closes 19 loops, with the consequent improvement
on localization uncertainty, as depicted in Fig. 4(b). The
complete alignment of the 3D point clouds is shown in Fig. 1.

Fig. 3. 3D laser range finder mounted on our robotic platform.

(a) State estimate before loop closure.

(b) Estimated trajectory after loop closure.

Fig. 4. 6D range-based SLAM results.
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(a) Top view of the 3D map.

(b) A section of the map. The blue points indicate the robot position
estimates.

Fig. 5. Projection of the 3D point cloud on a 3D georeferenced CAD
model.

The accompanying video shows the complete map building
process.

The results of our mapping technique are compared em-
pirically to a manually built CAD model of the experimental
site. The model is made using geo-referenced information.
Figures 5(a) and 5(b) show two views of the final 3D point
cloud map projected into the 3D model.

VII. TRAVERSABILITY MAPS

After the 3D point clouds are aligned, we employ this
final map to derive 2D layers that allow robots to perform
localization. Additionally, from these 2D layers, we build
traversability maps in the form of 2D grid maps where each
cell indicates the maximum linear velocity in a given 2D
robot position (x, y).

The 2D layers are extracted cutting the 3D map at the
robot’s frontal laser height. Then, using topological infor-
mation the floor is removed. In the next step, the 2D layer
is discretized and transformed into a binary image, which
in turn is processed by morphological operations to increase
the size of obstacles, to filter noise, and to fill gaps. Thus,
this binary image is used as a grid map, with each cell
representing the presence of an obstacle at that location in
the environment.

Once a 2D layer is extracted and transformed into a

grid map, we build its corresponding traversability map as
follows. For every element in the configuration space we
determine the maximum linear velocity that generates a
collision-free path. Then, for a given robot position, we select
the minimum velocity from all orientations. This process is
detailed below.

We discretize the configuration space C, in 10 cm for the
robot position and 0.25 rad for robot orientation, and the
action space U = V × Ω, in 0.1 m/s for linear velocity and
0.01 rad/s for angular velocity, where V and Ω are the sets
of all possible linear and angular velocities, respectively.

Next, for each robot configuration qi = (x, y, θ)", we
compute the set A (qi) of all actions that generate a collision-
free path for this configuration as follows. Given qi ∈ C, we
test every control action uj ∈ U using the kinematic model
of our mobile robot, iterating k-times a fixed time step ∆t,
and for each action we generate a path

τ : s → X, (16)

where s ∈ [0, k∆t] and X ∈ C. From this path, we add uj

to A (qi) if, for every s, τ (s) is within the free space Cfree,
wherein collision detection is performed using the previously
computed grid map.

Finally, we compute a function that associates every robot
position (x, y) to the maximum linear velocity Vfree that
warrants a collision-free path

m : (x, y) → Vfree. (17)

To compute Vfree we define the set V (x, y, θ), which
contains all linear velocities from A (qi), for configuration

qi = (x, y, θ)", and the set

V (x, y) =
⋃

θ∈Θ

max (V (x, y, θ)) , (18)

where Θ are all orientations from Cfree. In consequence,
Vfree = min (V (x, y)) for a given robot position (x, y).

VIII. CONCLUSIONS

This paper presents an approach to the problem of 3D
map building in urban settings for service robots, which
consists of probabilistic alignment of 3D point clouds. A
delayed-state EIF algorithm was employed to build the final
map using only observations derived with our ICP algorithm.
Relative pose constraints from consecutive robot poses were
used to augment the state, and a sparse set of loop closures
is used to refine the estimate reducing the accumulated drift.

Our version of the ICP algorithm employs both point-to-
plane and point-to-point correspondence search at different
levels of granularity. A distance metric that weighted differ-
ently rotations and translation was used. Values of L between
30 and 50 for this metric worked well for our data sets.

Regarding the estimation process, we can note that the
delayed-state EIF allows an efficient and straightforward way
to distribute error when closing a loop, since observation
updates take constant time when an efficient or approximate
way for state recovery is employed, such as the one we used
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(a) 2D Layer superimposed on an aerial image (b) Corresponding traversability map. Velocity varies from 0 m/s (blue) to
1 m/s (red).

Fig. 6. Traversability map from 2D layers of the aligned 3D point clouds.

here. Finally, with this approach we were able to close loops
of aproximately 250 m of length, along a path of over 600 m.

Additionally we showed how, from the aligned 3D point
cloud, one can compute maps useful for robots path planning
and navigation; a much needed step usually neglected in most
SLAM implementations. Traversability maps were derived
by transforming the map of point clouds into a representation
compatible with the robot kinematic chracteristics.

Given the empirical comparison with the geo-referenced
CAD model and the orthographic views of the scene, our
approach performed well enough to derive the traversability
maps that allow service robots of our intended application
[1] to navigate and accomplish their assigned tasks. We
hypothesize that the overall estimation error of the presented
method varies from 5 cm to 50 cm. These values however can
not be verified with sufficient precision since no sufficiently
accurate ground truth is available.
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