Segmentation-aware Deformable Part Models

Eduard Trulls¹, Stavros Tsogkas², Iasonas Kokkinos², Alberto Sanfeliu¹, Francesc Moreno-Noguer¹ ¹ Institut de Robòtica i Informàtica Industrial, Barcelona, Spain / ² Center for Visual Computing, Ecole Centrale de Paris/INRIA-Saclay, France

CONTRIBUTIONS

- 1. We present a method to build fast, soft segmentation masks from SLIC superpixels.
- 2. We build background-invariant features for **DPM**, combining *segmentation* and *detection*. Increase of 1.7% AP over PASCAL VOC 2007.

KEY FEATURES

- **Simple:** two parameters, adjusted per class.
- Fast: ~2.1 sec. for 266K iterations (root filter
- only). Convolution w/ filters takes longer: ~5 sec. • Generic: we show how to extend it to dense SIFT.

Code is available: https://github.com/etrulls

BUILDING THE MASKS

We compute multi-scale SLICs *once*. The masks are computed for every object hypothesis. This is fast, i.e. can be repeated at every displacement/scale.

SEGMENTATION-AWARE DPM

DPMs represent objects as star-shaped graphical models of a **root** and **deformable parts**. Score is given by the match with the template filters (unary) and the deformation of the parts (pairwise).

part deformation Goal: better unary costs. Method: split features into figure/ground channels. Features:

 $G^{seg}[i] = [G[i], G^+[i], G^-[i], M[i]]$

For both **root and parts.** Cross-validate λ per class. We build upon the code of Felzenszwalb et al [2].

SECOND PARAMETER: ALPHA-BLENDING

Problems with some categories. Idea: 'alpha-blending.'

 $M_{\alpha}[i] = (1 - \alpha)1[i] + \alpha M[i]$

i.e. $\alpha = 1$ our full-blown approach; $\alpha = 0$ segmentationagnostic. Also cross-validated per-class, after λ .

METHOD OVERVIEW

1. Match SLICs to window. Metric: intersection over union

RESULTS: DPM

We use DPM [5] as a baseline. Average increase of 1.7% AP on PASCAL VOC 2007.

Average AP for DPM: 32.0 **Ours:** 33.7

	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow
DPM	31.5	54.9	7.8	11.1	29.9	51.2	53.9	23.3	22.2	25.1
Ours	33.2	56.0	11.9	11.8	28.6	49.1	54.1	26.7	23.1	27.3
Diff.	1.7	1.1	4.1	0.7	-1.3	-2.1	0.2	3.4	0.9	2.2
	table	dog	horse	mbik	pers	plant	sheep	sofa	train	tv
DPM	table 29.2	dog 10.6	horse 56.8	mbik 44.5	pers 40.4	plant 13.6	sheep 20.2	sofa 30.2	train 42.2	tv 42.0
DPM Ours	table 29.2 29.9	dog 10.6 13.5	horse 56.8 59.8	mbik 44.5 46.8	pers 40.4 39.8	plant 13.6 14.7	sheep 20.2 22.8	sofa 30.2 36.1	train 42.2 46.7	tv 42.0 42.6

In addition to increased performance, we obtain **object segmentations** (pictured: root). Middle row: HOG block level. Bottom row: recomputed at the pixel level.

Multi-scale SLIC (*once*) **2. Affinity** to center of window **3. Soft mask** for this **window**

Given a **bounding box hypothesis**:

they match the window.

measure f[i].

Aggregate the **best-ranked**

Score the superpixels by how well

superpixels to build an affinity

Where λ determines the 'hardness'.

Ours (λ=0.5, α=100%), AP=42

-Ours (λ=0.5), AP=42.6

-DPM, AP=42.0

Ours (λ=0.7), AP=49.1

-Ours (λ=0.5, α=100%), AP=14.3

Ours (λ=0.5), AP=14.7

DPM, AP=13.6

Ours (λ=0.4), AP=53.8

-Ours (λ=0.7, α=25%), AP=22.8

-Ours (λ=0.7), AP=21.2

DPM, AP=20.2

Ours (λ=0.3, α=75%), AP=36.1

Ours (λ=0.3), AP=34.3

DPM, AP=30.2

Durs (λ=0.7, α=50%), AP=46.3

-Ours (λ=0.7), AP=44.4

DPM, AP=42.2

DENSE DESCRIPTORS & RESULTS

Goal is to **suppress background** structures during **descriptor construction.** How: 'gate' SIFT histogram bins with our SLIC-supported **soft segmentation masks**:

 $G^+[i] = M[i] \cdot G[i]$

 $G^{-}[i] = (1 - M[i]) \cdot G[i]$

MOSEG/JHU benchmark: traffic sequences with ground truth segmentation every ~10 frames. Task: match first & every annotated frame. Method: SIFT-flow [3]. Metric: DICE. DSIFT vs SDSIFT-Gb [4] vs SDSIFT-SLIC (ours). Results: better than DSIFT, comparable to [4], but faster.

1] Achanta, Shaji, Smith, Lucchi, Fua, Süsstrunk. SLIC superpixels compared to stateof-the-art superpixel methods. PAMI, 2012. [2] Felzenszwalb, Girshick, McAllester, Ramanan. Object detection with discriminatively trained part based models. PAMI, 2010. [3] Liu, Yuen, Torralba. SIFT flow: dense correspondence across difference scenes. PAMI, 2011. [4] Trulls, Kokkinos, Sanfeliu, Moreno-Noguer. Dense segmentation-aware descriptors. CVPR, 2013. [5] DPM release, v.5: <u>http://www.cs.berkeley.edu/~rbg/latent</u>