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Abstract—Perception and manipulation of rigid objects has
received a lot of attention, and several solutions have been
proposed. In contrast, dealing with deformable objects is a
relatively new and challenging task because they are more
complex to model, their state is difficult to determine, and
self-occlusions are common and hard to estimate. In this
paper we present our progress/results in the perception of
deformable objects both using conventional RGB cameras and
active sensing strategies by means of depth cameras. We provide
insights in two different areas of application: grasping of textiles
and plant leaf modelling.

I. INTRODUCTION

3D perception of deformable objects using RGB cameras

has been one the most studied research fields within com-

puter vision. There exist a large number of techniques for this

purpose, such as stereovision, shape from shading, structure-

from-motion or shape from texture. For robotics applications,

monocular techniques that require one acquisition are prob-

ably the most interesting approaches, because they avoid the

occlusion problems that appear when dealing with multiple

views and a single camera may be easily incorporated on

a robotic arm, for instance. On the negative side, retrieving

non-rigid shape using one single image is a highly ambiguous

problem, because many different shapes may have similar

projections. In our group, we have researched on techniques

for addressing this [1], [2].

On the other hand, the problem may be highly simplified

when using the now popularized 3D cameras. The technology

of 3D cameras has quickly evolved in recent years, yielding

off-the-shelf devices with great potential in many scien-

tific fields ranging from virtual reality to surveillance and

security. In particular within robotics, these cameras open

up the possibility of real-time robot interaction in human

environments, by offering an alternative to computationally

costly procedures such as stereovision and laser scanning.

Time-of-Flight (ToF) cameras, provided by Mesa Imaging

and PMD Technologies among others, appeared first and

attracted a lot of attention with dedicated workshops (e.g.,

within CVPR’08) and a quickly growing number of papers at

major conferences. These days the appearance among others

of the Kinect camera, with the Light Coding technology

provided by PrimeSense and based on Structured Light (SL),

has received even greater attention, because of its low cost

and simplicity of use.
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(a) Kinect camera on the robot (b) Detail of the ToF+color cam-
era sensor

Fig. 1: Experimental setup with the robot arm used in the

experiments in two different configurations.

We have studied the use of ToF cameras to assist robot

learning of manipulation skills in a kitchen environment.

Since this entailed mobile manipulation of rigid objects

guided by a human teacher, we surveyed near one hundred

previous works in three scenarios of application, namely

scene-related tasks involving mobile robots in large environ-

ments, object-related tasks entailing robot interaction at short

distances, and human-related tasks dealing with face, hand

and body recognition for robot-human interfaces [3]. Our

conclusion was that ToF cameras seem especially adequate

for mobile robotics and real-time applications in general,

and in particular for the automatic acquisition of 3D models

requiring sensor motion and on-line involved computations,

which was the target application finally developed [4].

We now have interest in two different scenarios involving

deformable objects. One is the perception of textiles to

estimate adequate grasping points. In the context of the

PAU project [5] perception and manipulation of deformable

objects is investigated, as the problem is challenging consid-

ering its high dimensionality and the difficulties related to

the uncertainty.

The other scenario is aimed at enhancing the perception

of plants. The ongoing project GARNICS [6] aims at au-

tomatically monitoring large botanic experiments so as to

determine the best treatments (watering, nutrients, sunlight)

to optimize predefined aspects (growth, seedling, flowers)

and eventually guiding robots, like the one in Figure 1, to

interact with plants in order to obtain samples from leaves

to be analyzed or even to perform some pruning. Here the

interest is focused on 3D model acquisition of deformable

objects (leaves) and their subsequent manipulation.

Color vision is helpful to extract some relevant plant

features, but it is not well-suited for providing the struc-



tural/geometric information indispensable for robot interac-

tion with plants. 3D cameras are, thus, a good complement,

since they directly provide depth images. Moreover, plant

data acquired from a given viewpoint are often partial or

ambiguous, thus planning the best next viewpoint becomes

an important requirement. This, together with the need of

a high throughput imposed by the application, makes 3D

cameras (which provide images at more than 25 frames-per-

second) a good option in front of other depth measuring

procedures, such as stereovision or laser scanners. Since now

ready-to-use SL cameras are also available, we undertook a

comparative assessment of the usefulness of both ToF and

SL cameras to acquire (possibly deformable) object models

at close distances and to calibrate them with respect to the

robot for subsequent manipulation.

The paper is structured as follows. First we present our

advances in reconstructing deformable objects using one sin-

gle RGB camera. Then, in Sec. III we present two different

depth camera technologies: ToF and SL. The first area of

application, grasping of textiles, is described in Sec. IV.

Active vision, with the camera mounted on a robotic arm,

is presented in Sec. V in relation to the botanic application.

Finally, Sec. VI is devoted to some discussions about the

results and possible exploitation of these technologies.

II. NON-RIGID RECONSTRUCTION USING A SINGLE RGB

CAMERA

It has been shown that the 3D shape of deformable

surfaces can be very effectively recovered from even single

images provided that enough correspondences can be estab-

lished between that image and one in which the surface’s

shape is already known [7], [1], [8]. While effective, these

techniques only return one reconstruction without accounting

for the fact that several plausible shapes could produce virtu-

ally the same projection and therefore be indistinguishable on

the basis of correspondences and geometry alone. In practice,

as shown in Fig. 2, disambiguation is only possible using

additional information, such as that provided by shading

patterns.

In [2], we introduced an effective way to sample the space

of all plausible solutions. We achieved this by representing

shape deformations in terms of a weighted sum of deforma-

tion modes and relating uncertainties in the location of point

correspondences to uncertainties in the mode weights. This

let us explore the space of modes and, in the end, select a

very small number of likely ones, which correspond to 3D

shapes such as those depicted in the top row of Fig. 2.

In practice, to select the best one, we used lighting infor-

mation that comes from either distant or nearby light sources.

The latter was particularly significant because exploiting it

would involve solving a difficult non linear minimization

problem if we did not have a reliable way to generate 3D

shape hypotheses. In our examples, this was all the more true

since the lighting parameters are initially unknown and had

to be estimated from the images. This also means that we

could have used other sources of shape information besides

shading. We showed that these approaches outperformed
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Fig. 2: Handling 3D shape ambiguities. Left Column. An

image of a surface lit by a nearby light source and the

corresponding ground truth surface. Three other Columns.

In each one, a different candidate surface proposed by our

algorithm is shown in black. The corresponding projection

and synthesized image given automatically estimated lighting

parameters are shown below. As can be seen in the second

row, its projection is very similar, even though its shape may

be very different from the original one. In other words, the

candidates cannot be distinguished based on reprojection er-

ror alone. However, when comparing the true and synthesized

images, it becomes clear that the correct shape is the one at

the top of the second column.

state-of-the-art methods [9], [1].A few sample frames of the

results are shown in Fig. 3.

In other words, our contribution was an approach to

avoiding being trapped in the local minima of a potentially

complicated objective function by efficiently exploring the

solution space of a simpler one. As a result, we only had to

evaluate the full objective function for a few selected shapes,

which implied we could use a very discriminating one if

necessary.

In the following sections we will turn to other approaches

that instead of capturing the 3D structure using RGB cam-

eras, directly use the information of depth sensors. Although

RGB cameras offer a more general solution that may poten-

tially be used in unconstrained and outdoor environments,

the depth sensors represent a robust solution specially in

situations where lighting may be controlled.

III. DEPTH CAMERAS

We will consider two different 3D camera types, a Cam-

Cube ToF camera and the Kinect sensor.

ToF camera is a relatively new type of sensor that delivers

3-dimensional images at high frame rate, simultaneously

providing intensity data and range information for every

pixel. Figure 4 shows the depth image of a plant leaf with

the depth values coded as different color values.
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Fig. 3: Results of reconstructing shape from single RGB images using [2] and two other approaches [9], [1]. Top three rows:

Results of a bending paper. Bottom three rows: Results of a deforming T-Shirt. Note that our results are consistently more

accurate. The reconstruction figures are color coded, such that reddish areas represent regions with larger errors.

Depth measurements are based on the well-known time-

of-flight principle [10]. A radio frequency modulated light

field is emitted by the system and then reflected back to

the sensor, which allows for the parallel measurement of its

phase (cross-correlation), offset and amplitude [11].

Kinect uses an infrared structured light emitter to project

a pattern into the scene and a camera to acquire the image of

the pattern, then depth is computed by means of structured

light algorithms. Additionally, among others sensors, the

Kinect integrates a high resolution color camera.

Kinect was developed with the aim of robust interactive

human body tracking and great efforts have been made in

this direction [12]. After the Kinect protocol was hacked,

the community rapidly started to use it, first with the same

aim of human interaction and afterwards in other areas, like

robot navigation1. Later, the official library was made public

through the OpenNi organization.

Both camera types can deliver depth images at reasonably

high frame rates. The main difference is in resolution:

ToF cameras still have limited resolution (typically around

1See for example the initiative of commercially releasing
a low-cost robot based on iRobot Create and Kinect at
http://www.willowgarage.com/turtlebot

200 x 200), while the Kinect depth camera exhibits VGA

resolution. Both camera types are auto-illuminated so in

principle they can work in a wide variety of illumination

conditions.

One common problem with both cameras is that they

do not provide a dense depth map. The delivered depth

images contain holes corresponding to the zones where the

sensors have problems, whether due to the material of the

objects (reflection, transparency, light absorption) or their

position (out of range, occlusions). As will be presented in

the next sections, Kinect is more sensitive to this problem

by construction.

To compare both cameras in one of our scenarios, we take

several images of a shirt (Fig. 5) in different configurations.

Both cameras offer good depth estimation of the shirt, and

even small wrinkles can be identified. The close views with

ToF and Kinect provide lots of details. Observe clearly the

shape of the collar (Figs. 5b and 5f), the different depths in

the top image of the wrinkled shirt (Figs. 5c and 5g), and

the details of the shirt sleeve (Figs. 5d and 5h).

As regards to Kinect, in Figure 5f occlusions appear in

the collar and this produces holes in the surface, presumably

due to bad readings as no occlusions are present. We should



(a) ToF depth (b) ToF depth closer view (c) ToF depth of wrinkled shirt (d) ToF depth closer view

(e) Kinect depth (f) Kinect depth detail (g) Kinect depth of wrinkled
shirt

(h) Kinect depth detail

Fig. 5: Images of a folded and a wrinkled shirt. Images are obtained by moving both ToF and Kinect cameras to obtain the

best possible depth acquisition. The wrinkles in the shirt, even if they are small, are visible with both cameras. (f) Observe

the holes in some parts of the surface and the occlusions in the collar.

note that the position, size and number of holes vary with

the sensor motion.

IV. GRASPING CLOTH USING DEPTH INFORMATION

Recently the problem of grasping and folding clothes with

a robotic arm has attracted much attention [13], [14], [15],

[16], [17], [18]. Its application ranges from automatizing

industrial cleaning facilities to domestic service robots.

There exist works devoted to determining the best/optimal

grasping point for a particular purpose (e.g. folding) once the

cloth is held by a robotic hand. However, most of the research

done in this area has been used in controlled environments

and simple heuristics have sufficed.

A common heuristic or workaround used by works ad-

dressing textile grasping, such as [15], [18], is to select as

grasping point the highest one in the 3D point cloud of the

cloth object. However, in practice, the highest point does

not need to constitute a good grasping point for robotic

manipulators.

We have investigated what constitutes a good initial

grasping point for a piece of cloth lying on a flat surface

in an arbitrary configuration. Below we propose a new

“wrinkledness” measure [19] that uses range information

that can be used to determine the most easily graspable

point at an affordable computational cost. Compared to other

works [14], we directly use 3D information obtained from

a low-cost sensor, therefore avoiding the expensive data

collection and manual annotation step required for SVM

training, and which not being vulnerable to learning errors.

Our initial assumption is that a good grasping point for a

textile object lying on a table is one where the cloth defines

ridges or other 3D structures, i.e. there are wrinkles. The

justification of this assumption comes from the nature of the

grasping mechanism, which in our case has three fingers,

with a total of four degrees of freedom. Lacking the precision

of movement, flexibility and the small(er) size of human

hands (which can pick up cloth objects from the edges), the

best point for a grasp for this type of hand is a pyramidal or

conic-like shape, such as the one produced by wrinkles.

We have developed a measure of the “wrinkledness” in

a point taking into account the depth information of its

neighbourhood. This measure is computed using a local

descriptor based in the surface normals of a 3D point cloud.

In particular, we use the inclination and azimuth angles

defined in the spherical coordinates representation of the

normal vectors:

(φ, θ) =
(

arccos
(z

r

)

, arctan
(y

x

))

(1)

where φ is the inclination and θ is the azimuth, (x, y, z) are
the 3D point coordinates, and r is the radius in spherical

ones, defined as:

r =
√

x2 + y2 + z2 (2)

Next, we model the distribution of the inclination and

azimuth values in a local region around each point. A

beneficial side effect of this process is that occluded regions

and areas where the Kinect was not able to estimate the depth

are naturally interpolated using the information provided by
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Fig. 6: Details for the five experiments conducted with a robotic arm (one per row). For each experiment is shown (in

order): the segmented “wrinkledness” map of the towel, the selected grasping point, and a picture of the robotic hand with

the grasped towel, if successful.

their neighbours, which reduces the sparsity of the point

cloud.

From this model of the local distribution of normal

angles in spherical coordinates, we seek to estimate the

“wrinkledness” of a point. This can be intuitively done by

looking at the spread of the angle histogram: the more

different orientations the surface takes, the more likely that

it is a highly wrinkled area. Although standard deviation is

probably the first measure of spread that comes to mind, it

is not a good choice, since a strongly bimodal distribution

can have a large standard deviation while having low spread.

A better choice is entropy, which does not suffer from this



(a) ToF depth (b) ToF intensity (c) ToF 3D point cloud

(d) Kinect depth (e) Kinect color (f) Kinect 3D point
cloud

Fig. 4: Typical images supplied by a ToF camera and a

Kinect camera. Figures (c) and (f) are the reconstructed 3D

point clouds for each camera. (c) Observe the false flying

points points between the leaf edge and background. (d)

Observe the holes between the leaf and the background due

to occlusions between the IR projector and the camera.

drawback:

H(X) = −

n
∑

i=1

p(xi) log p(xi) , (3)

where X is the n-bin angle orientation histogram, and xi is

the ith bin.

We tested our proposed “wrinkledness” measure in real

grasping experiments. Our experimental setup consists of a

robotic hand with three fingers installed in front of a flat table

of uniform color, in which a small red towel was randomly

positioned.

In all the experiments, a 2D histogram with a square

support region with a side of 33 pixels was used to generate

the “wrinkledness” map after segmenting the towel from the

table, and the point with the highest activation was selected

as the grasping point. Next the robotic arm was moved to the

point, and a grasp attempt was performed. Please note that

we are not claiming that the point with highest activation

in the map is necessarily the best possible grasping point.

However, we have used this simple heuristic with very good

results.

Four out of five tests ended with a successful grasp.

Figure 6 shows the images and “wrinkledness” maps used

to decide the grasping point, and a photo of the robotic arm

holding the towel for those tests that were successful. In

each successive test the towel was positioned in increasingly

difficult configurations.

V. NEXT BEST VIEW AND TRACKING

Recently we have presented a work on next view selection

for plants [20]. The algorithm first selects some candidate

Fig. 7: Frames of a leaf tracking experiment. The set of

connected reference systems represent the current position

of the robot. The 3D points of the tracked leaf are colored

with the depth and an additional reference system is attached

to the leaf with Z coordinate (blue) normal to the leaf surface.

plant leaves from a initial image, then extracts some geo-

metrical characteristics and use them to move a combined

ToF+color camera sensor with a robotic arm to obtain

new and more detailed views of the selected leaves. Our

approach uses a combination of depth and color information

to perform image segmentation and robot guidance, and use

some characteristics of the point cloud to extract the contours

to segment the depth image [21].

We are now interested not only in the first general image

and the last detailed image, but also in the sequence of

images acquired while the robot is moving. This allows

to perform a guided segmentation of the leaf in the final

position, as well as continuously updating the 3D model of

the plant using an uncertainty reduction algorithm [4].

In contrast to our previous work, we present here some

results using a Kinect camera (Fig. 7). The experimental

setup is shown in Figure 1a, where the camera is mounted

on the end-effector of a WAM robot arm. Here we show

the tracking using 3D information, so a leaf is manually

selected and the robot arm is moved trying to keep the leaf

into the image area. The real-time tracking uses a geometrical

model of the leaf [22] and the central position and the normal

orientation are extracted. In Fig. 7 the leaf points are colored

depending on the depth, and the reference system is attached

to the computed leaf central point with the Z component (in

blue) normal to the surface at the center point2.

As explained before, using a Kinect camera it is not

2The complete video can be accessed at
http://www.iri.upc.edu/people/galenya/pub/LeafTracking.avi



possible to approach the leaf in the same manner as we did

with the ToF+color combination, this being the reason why

approaching motions are quite restricted.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented some recent work of our

group towards perception and manipulation of deformable

objects.

We are convinced that in these scenarios having depth

information of the scene is crucial to produce robust and

repetitive algorithms. Apart from the classical stereo and

range finders sensors, we have extensive experience with the

two different camera technologies that we have presented:

ToF cameras and SL cameras. Although ToF cameras have

lower resolution, they can provide depth images at short

distances of up to 20cm. This capability makes them very

valuable in contexts where fine details on the objects are

crucial.

Two different areas of application have been presented.

The first one is manipulation of textiles. We have presented

some preliminary work towards finding a good measure of

“graspability” for cloth objects lying on a flat surface. This

is an important aspect for making robots fully autonomous in

unprepared environments; in contrast, related literature so far

relied on simple heuristics that worked in controlled settings.

One important limitation of this approach is that concave

areas of the image get a high activation level while not

being good grasping points. Yet, it is possible to compute a

concavity measure and use it to re-weight the “wrinkledness”

map.

As next step, we think that better grasping points could be

found by combining information like point height, total 3D

volume, normal orientation or the aforementioned concavity

measure with the entropy-based measure proposed in this

paper.

The second area of application is plant monitoring. Food

industry is very important for society, and current efforts in

automation are devoted to monitoring and performing actions

on individual plants belonging to large plantations. Our leaf

tracking example has been developed using a Kinect camera,

yielding a very robust performance under varying conditions,

since the precision requirements were relatively low. On the

contrary, in the past we have also used a ToF camera under

a next-best-view approach to find suitable leaves from which

to take probes. Since this requires getting very close to the

plant and finding suitable probing points with high precision,

a ToF camera was more appropriate, although it required

considerable parameter tuning.

Plants evolve with time, change their shape and their

topology. We are exploring now how to create complete

models of a plant, and how these models should be updated

with time. An important aspect of the modeling process is

to create models containing enough information to allow

robotized interaction with the plant, for example cutting some

leaves or taking probes for posterior analysis.
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