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ABSTRACT

Structured learning provides a powerful framework for

empirical risk minimization on the predictions of structured

models. It allows end-to-end learning of model parameters

to minimize an application specific loss function. This frame-

work is particularly well suited for discrete optimization mod-

els that are used for neuron reconstruction from anisotropic

electron microscopy (EM) volumes. However, current meth-

ods are still learning unary potentials by training a classifier

that is agnostic about the model it is used in. We believe the

reason for that lies in the difficulties of (1) finding a represen-

tative training sample, and (2) designing an application spe-

cific loss function that captures the quality of a proposed solu-

tion. In this paper, we show how to find a representative train-

ing sample from human generated ground truth, and propose

a loss function that is suitable to minimize topological errors

in the reconstruction. We compare different training meth-

ods on two challenging EM-datasets. Our structured learning

approach shows consistently higher reconstruction accuracy

than other current learning methods.

1. INTRODUCTION

The reconstruction of neurons from volumes of electron mi-

croscopy (EM) images is an important step in gaining new

insights into the function of nervous systems. However, at

present these findings are the result of slow and tedious man-

ual reconstruction work, and further insights are hindered by

this bottleneck. Consequently, the (semi-)automatization of

the reconstruction is of great importance and became an ac-

tive field of research over the last decade.

Given the challenging nature of EM images, current mod-

els need sensible cost functions to be robust to noise and miss-

ing data. Using machine learning methods, these costs can

be learned from human annotated training data. Given that

the provision of ground truth is tedious, and consequently the

available datasets are small, it is necessary to find machine

learning methods that generalize well without overfitting.

In this paper, we present a structured learning framework

to train assignment models [1, 2] for anisotropic neuron re-

construction. Our contributions are: (1) We show how to gen-

erate a training sample suitable for structured learning from

human annotated ground truth. (2) We introduce a loss for

structured learning, which minimizes topological errors dur-

ing learning. (3) We show how our learning framework can

be used to train on skeleton (i.e., non-volumetric) annotations,

which are in practice much faster to obtain.

Related Work. Assignment models constitute the cur-

rent state of the art for the reconstruction of neurons from

anisotropic volumes, as obtained by serial section EM [1, 2].

These models enumerate and price possible assignments of

candidate segments across sections of EM stacks (see Fig-

ure 1 for an overview and Section 2 for details). A final

segmentation is found by selecting a cost minimal and con-

sistent subset of all assignments.

Learning these models consists of finding suitable assign-

ment costs. Currently, these costs are set by hand [3, 2, 4],

learned from a random forest classifier based on positive and

negative assignment examples [1, 5], or found via grid-search

on linear weights for a small number of features [6]. Except

for grid-search, which does not scale to larger sets of parame-

ters, none of the currently used training methods implements

real end-to-end learning. In this paper, we show how to over-

come these limitations by performing structured learning on

a sensible loss function.

2. LEARNING OF ASSIGNMENT MODELS

Assignment models for anisotropic neuron reconstruction in-

troduce n binary indicator variables z ∈ {0, 1}n to represent

all possible assignments of 2D neuron candidates across all

pairs of sections of a volume [1, 2]. Linear constraints are

formulated on the binary assignment indicators to ensure that

a solution is consistent, i.e., no pair of overlapping candidates

is selected.

Consequently, the set of consistent solutions Z to an

assignment problem is characterized by linear constraints

(A,b):
Z = {z ∈ {0, 1}n|Az � b}, (1)

where we write a � b to say that a is element-wise less than

or equal to b. Given a cost vector c for the assignment vari-

ables, the optimal assignment is the solution to the integer
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Fig. 1: Assignment model for anisotropic neuron reconstruction. From a stack of raw images (a), a pixel classifier is used

to predict membrane locations (b). 2D neuron candidates are extracted for each section (c), and possible assignments are

enumerated between candidates of adjacent sections (d). In the model, each assignment (green nodes) is represented by a

binary variable zi and has an associated cost ci for selecting it. Learning of an assignment model consists of learning these

costs from annotated ground truth. Note that for the purpose of illustration, only a few candidates and possible assignments are

shown.

linear program minz∈Z 〈c, z〉 . Without loss of generality,

we assume that the cost ci for selecting an assignment zi is a

weighted sum of features φi extracted for this assignment:

c = Φ ·w = [φ1,φ2, . . . ,φn]
T
·w. (2)

Using the structured learning framework [7], we find the

optimal w given annotated training data (φ, z′). More specif-

ically, we use the margin rescaling variant to find the weights

w∗ as the minimizer of

L(w) = λ|w|2+max
z∈Z

[〈Φw, z′〉 − 〈Φw, z〉]+∆(z′, z), (3)

where λ is the regularizer weight and ∆(z′, z) is an appli-

cation specific loss function. In order for this method to be

successful, two problems need to be solved: (1) a representa-

tive training sample z′ has to be found, and (2) a sensible loss

function ∆(z′, z) has to be designed.

2.1. Training Sample z′

Even apart from the difficulties in obtaining unambiguous

human generated ground truth for the neuron reconstruction

problem in the first place, the provision of z′ is not trivial:

We have to find a member of Z , i.e., the set of all possible

reconstructions using the found 2D neuron candidates, that is

as close as possible to the human annotated ground truth. We

have to note that the extracted 2D neuron candidates can be

imperfect and thus there might not be a z ∈ Z that corre-

sponds to the human annotated ground truth. Consequently,

we have to accept that the training sample z′ will only repre-

sent a best-effort reconstruction and not the ground truth.

In order to find this best-effort reconstruction in a princi-

pled way, we assign a local ground truth matching score gi to

each assignment. Let Ω = [1,W ]× [1, H]× [1, D] be the set

of all discrete pixel locations in a stack of size W ×H ×D.

We assume a ground truth labeling x : Ω 7→ K that assigns

a unique label k ∈ K to each ground truth segment in the

volume. Let u(i) and v(i) denote the section indices that are

linked by assignment zi. We denote by Ai ⊂ Ω the set of pix-

els of section u(i) and v(i) that are merged by the assignment

zi. Similarly, let Gk
i ⊂ Ω denote the set of pixels that are

labelled to belong to the same region k in the ground truth,

limited to the sections u(i) and v(i). For each pair of assign-

ment i and ground truth label k, we compute a similarity gki
that rewards overlap between the sets Ai and Gk

i and punishes

set differences:

gki = |Gk
i ∩Ai|

︸ ︷︷ ︸

overlap

− |Gk
i \Ai|+ |Ai \G

k
i |

︸ ︷︷ ︸

set difference

. (4)

The final matching score gi of an assignment zi is the maxi-

mal similarity with any ground truth label:

gi = max
k∈K

gki . (5)

To find the training sample z′, we solve an inference prob-

lem where we replace the costs in (2) with the negative match-

ing score.

z′ = argmin
z∈Z

< −g, z > . (6)

This way, assignments are chosen linking candidates with the

largest overlap with the same ground truth region.

2.2. Loss ∆(z′, z)

Ideally, we would use the error measure that we use to eval-

uate the results of our automatic reconstruction as ∆(z′, z).
However, we have to make sure that the maximization in (3)

is still tractable.

We propose to minimize the Tolerant Edit Distance

(TED) [8] during training. The TED measures the minimal

weighted sum of split and merge errors between two label-

ings x and y, but ignores small tolerable errors explainable

by boundary shifts up to a threshold distance θ:

TED(x, y) = min
y′∈Yθ(y)

α s(x, y′) + βm(x, y′), (7)



where Yθ(y) is the set of all relabelings of y obtained by shift-

ing boundaries by at most θ units, and s(x, y) and m(x, y)
measure the number of splits and merges between x and y,

respectively. By providing different weights α and β, we can

prioritize errors during training. In fact, if the weights corre-

spond to the average time needed to fix a split or merge error,

we are minimizing the time-to-fix (TTF) during training.

For the computation of the TED of a solution z, we have

to transform it into a labeling yz : Ω 7→ Kz, which assigns a

unique label to each found neuron in the volume Ω. However,

since the relation between a solution z and its labeling yz is

not trivial, there is no straightforward way to incorporate the

TED into our learning objective (3). Therefore, we propose to

use a first-order approximation, that we refer to as structured

learning with TED (SL-TED), where we set

∆(z′, z) = 〈l, z〉+ c ≈ TED(yz′ , yz). (8)

Here, the assignment losses li in l represent a reward (if nega-

tive) or punishment (if positive) of using assignment i. Since

this approximation is linear in z, the structure of the max-

imization in (3) is very similar to the assignment inference

problem, making it tractable in practice. To determine the

loss li, we measure the TED between the best-effort labeling

yz′ and the labeling y
z̄(i) obtained by inverting decision zi in

z′:

li = (1− 2z′i) TED(yz′ , y
z̄(i)) and c =

∑

i:z′

i
=1

−li, (9)

where the factor (1 − 2z′i) ensures that we get a reward for

selecting an assignment that is part of the best-effort. This

way, we punish not selecting the corresponding zi. Since the

constraints (1) might not allow inverting single variables in

isolation, we identify a minimal group of variables that have

to be inverted as well to obtain a consistent solution: for each

assignment i, we find a reconstruction z̄(i) ∈ Z that has zi
inverted and minimizes the Hamming distance to z′:

z̄(i) = argmin
z∈Z:

zi=1−z′

i

∑

j

|zj − z′j |. (10)

3. RESULTS

We use two publicly available datasets for our experiments,

which we refer to as DROSOPHILA [9], which consists of two

stacks of 20 EM sections with 4×4×40nm resolution (1024×
1024× 20 pixels), and MOUSE CORTEX [10], which consists

of two stacks of 100 EM sections with 6×6×30nm resolution

(1024× 1024× 100 pixels).

We split the parts for which ground truth was available

into two stacks of equal size (2×10 sections for DROSOPHILA

and 2 × 50 sections for MOUSE CORTEX). For each dataset,

we trained all methods on a sample z′ (see Section 2.1) ex-

tracted from the first stack and report the results on the second

stack.

We trained and evaluated the assignment model im-

plemented in SOPNET [1], using membrane predictions

from [11], and 2D neuron candidates extracted from com-

ponent trees [1]. We used the default features implemented in

SOPNET for Φ.

Comparison of Learning Methods. We compare the struc-

tured learning method proposed in Section 2 to random

forests (RF) as proposed in [1, 12], support vector machines

(SVM), and overlap. RF and SVM learn to score each assign-

ment, based on positive and negative examples provided by z′

(see Section 2.1). As a baseline, overlap uses the number of

overlapping pixels of an assignment across sections as score.

Since these methods need a prior for the selection of assign-

ments, we trained RF and SVM on a subset of the training

data (5 sections for DROSOPHILA, 40 sections for MOUSE

CORTEX) and used the rest to validate a prior for RF, SVM,

and overlap with a grid-search on the Hamming distance to

z′.

To study the performance of the structured learning

method, we compare our loss SL-TED (see Section 2.2)

against a baseline, SL-Ham, which uses the Hamming dis-

tance of z to z′ for ∆(z′, z). For the computation of SL-

TED, we evaluated the TED allowing boundary shifts up to

θ = 100nm, with weights α = 1 and β = 2 to account

for the fact that merges lose geometric information and thus

usually take more time to repair than splits.

Results are shown in Table 1. We report errors for several

commonly used measures for neuron reconstruction: Rand

Index (RI), Variation of Information (VOI), Anisotropic Edit

Distance [1] (AED, note that we refer to the inter FP/FN as

FS/FM), and TED. The TED counts topological errors that

are not considered boundary shifts as false splits (FS) and

false merges (FM). Splits of the ground truth background la-

bel are false positives (FP) and merges involving the recon-

struction background label false negatives (FN). For the time-

to-fix (TTF) estimate, we again set the time needed for fixing

a split to α = 1 and for fixing a merge to β = 2. The struc-

tured learning methods are in general superior to overlap, RF,

and SVM, with the best results being obtained by training on

SL-TED. Training on the TED-approximation SL-TED does

indeed minimize the TTF. Furthermore, RI, VOI, and AED

are minimized. Our results also reveal interesting differences

between error measures: Although the best solutions in terms

of TED have also best RI, VOI, and AED, we see a discrep-

ancy in the mid-field: on DROSOPHILA, SVM scores much

better than RF in terms of VOI and slightly better in terms of

RI. However, TED on a clearly defined criterion shows that

the numbers are misleading and in fact RF has less errors in

total and shorter TTF.

Learning from Skeletons. We show on MOUSE CORTEX

that our method to find a training sample z′ allows us to train

on skeleton annotations as well. Skeleton annotations are not

volumetric, i.e., instead of labeling every pixel, only the cen-



MOUSE CORTEX DATASET [10]

VOI AED TED

method Rand split merge total FP FN FS FM total FP FN FS FM TTF

overlap 0.9939 0.668 0.192 0.860 1,553 2,404 3,114 1,666 8,737 155 179 678 57 1,305
RF 0.9936 0.375 0.291 0.666 1,048 2,546 3,014 1,451 8,059 23 151 273 68 734

SVM 0.9572 0.507 1.434 1.940 2,998 3,761 5,155 4,587 16,501 4 147 129 167 761
SL-Ham 0.9933 0.348 0.309 0.657 895 2,258 2,735 1,333 7,221 23 138 243 82 706
SL-TED 0.9948 0.331 0.275 0.606 838 2,297 2,752 1,268 7,155 18 135 229 82 681

DROSOPHILA DATASET [9]

VOI AED TED

method Rand split merge total FP FN FS FM total FP FN FS FM TTF

overlap 0.9906 0.309 0.340 0.648 179 517 648 254 1,598 13 58 201 99 528
RF 0.9864 0.934 0.518 1.452 181 585 556 252 1,574 1 175 108 35 529

SVM 0.9890 0.804 0.230 1.034 366 357 593 537 1,853 10 86 224 84 574
SL-Ham 0.9959 0.309 0.080 0.389 241 234 375 250 1,100 14 63 227 47 461
SL-TED 0.9960 0.299 0.087 0.386 224 249 382 239 1,094 15 63 215 50 456

Table 1: Comparison of reconstruction results of different learning methods on two anisotropic EM datasets.

MOUSE CORTEX DATASET

TED

method FP FN FS FM TTF

volumetric ground truth 18 135 229 82 681

skeleton ground truth 17 114 188 152 737

Table 2: Reconstruction results on MOUSE CORTEX after

training on different ground truth types: volumetric uses the

original ground truth, skeleton a skeletonized version. We

show false splits and false merges (FS and FM), false posi-

tives and false negatives (FP and FN), and an estimated time-

to-fix (TTF), as reported by the TED measure.

terline of the neuron is provided as training data. In practice,

this saves a lot of manual labeling effort such that larger vol-

umes can be annotated. To simulate skeleton annotations and

compare them to the learning outcome of complete ground

truth, we skeletonized each ground truth label of the training

stack. For that, we shrunk each 2D connected component of

one label in each EM section to a single pixel at its center of

mass. Consequently, we adjusted the search for the training

sample z′ to not consider the set difference term in (4). The

results of training with SL-TED on the z′ obtained this way

are shown in Table 2. There is almost no loss in accuracy

compared to training from volumetric annotations.

Runtimes. The bottleneck of our method is the computation

of the coefficients li needed for the TED approximations SL-

TED, since for every binary variable in the z′ the TED has

to be evaluated. For MOUSE CORTEX and DROSOPHILA, z′

contained 277,874 and 20,890 variables, respectively. Com-

puting the coefficients took 64.3h for MOUSE CORTEX and

4.8h for DROSOPHILA on a 12 core Intel Xeon CPU with 3.47

GHz. By noting that the influence of a single variable flip is

usually local, the computation of the TED could be limited to

constant size subvolumes around the variable of interest, such

that the effort of computing the coefficients scales linearly

with the best-effort size. Structured learning with SL-TED

took 30m for DROSOPHILA and 1h45m for MOUSE CORTEX

on 10 cores of a Intel Xeon CPU with 2.6 GHz1.

4. DISCUSSION

We could show that structured learning improves the accuracy

of assignment models for anisotropic neuron reconstruction.

We believe that the key to this improvements is the consider-

ation of topological errors during training. Previous attempts

tried to minimize the classification error to a best-effort solu-

tion and did not take into account the severity of the devia-

tion from the best-effort in terms of split and merge errors in

the result. Training on a TED approximation overcomes this

problem.

We used a simple approximation of the TED measure,

which tolerates boundary shifts of up to 100nm. It is worth

noting that this is just an example of how to use a measure like

TED for training. Depending on the biological question, more

or less deviations from the ground truth can be permitted. For

example, boundary shifts could be tolerated to an extent that

locally depends on the diameter of the ground truth neuron.

1Using our own implementation of a bundle-method solver, available at

http://github.com/funkey/sbmrm.

http://github.com/funkey/sbmrm


5. REFERENCES

[1] Jan Funke, Bjoern Andres, Fred A. Hamprecht, Albert

Cardona, and Matthew Cook, “Efficient Automatic 3D-

Reconstruction of Branching Neurons from EM Data,”

in CVPR, 2012, pp. 1004–1011. 1, 3

[2] Verena Kaynig, Amelio Vazquez-Reina, Seymour

Knowles-Barley, Mike Roberts, Thouis R. Jones,

Narayanan Kasthuri, Eric Miller, Jeff Lichtman, and

Hanspeter Pfister, “Large-scale automatic reconstruc-

tion of neuronal processes from electron microscopy im-

ages,” IEEE Transactions on Medical Imaging, vol. 22,

no. 1, pp. 77–88, 2015. 1

[3] Hao Jiang Hao Jiang, S. Fels, and J.J. Little, “A Linear

Programming Approach for Multiple Object Tracking,”

in CVPR, 2007. 1

[4] Florian Jug, Tobias Pietzsch, Dagmar Kainmüller, Jan

Funke, Matthias Kaiser, Erik van Nimwegen, Carsten

Rother, and Eugene W. Myers, “Optimal Joint Segmen-

tation and Tracking of Escherichia Coli in the Mother

Machine,” in BAMBI, 2014. 1

[5] Amelio Vazquez-Reina, Daniel Huang, Michael Gel-

bart, Jeff˜W. Lichtman, Eric Miller, and Hanspeter Pfis-

ter, “Segmentation Fusion for Connectomics,” in ICCV,

2011. 1

[6] Bernhard X. Kausler, Martin Schiegg, Bjoern Andres,

Martin Lindner, Ullrich Köthe, Heike Leitte, Jochen
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