Framework comparison between a multifingered
hand and a parallel manipulator
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Abstract In this paper we apply the kineto-static mathematical neodemmonly
used for robotic hands and for parallel manipulators to eangte of hand-plus-
object (parallel manipulator) with three fingers (legs)creavith two phalanges
(links). The obtained analytical matrix expressions tledirg the velocity and static
equations in both frameworks are shown to be equivalens &quivalence clari-
fies the role of the grasp matrix versus the parallel manipuléacobian. Potential
knowledge transfer between both fields is discussed in Hteségction.
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1 Introduction

A hand manipulating an object held in the fingertips has timeskinematic struc-
ture as a parallel manipulator where the platform is the alged the legs are the
fingers. Despite this fact has been acknowledged by mangaftto, 6], few works
discuss connections between the mathematical framewétbstio systems [4]. A
hand-plus-object system is a highly redundant hybrid paredanipulator, where
the only passive joints are the contact attachments. Hawthe hand-plus-object
system has to hold an extra condition: the fingertip forcetb&® directed towards
the object and inside the friction cone [12]. This conditidmes not modify the
kineto-static mathematical model, because it is treatedamstraint when solving
the static equations.

This paper reviews the mathematical frameworks involvednfimdeling the
hand-plus-object system of a hand with three fingers and twadapges per fin-
ger, and its kinematically equivalent parallel manipulates expected, we show
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how the derived static equations match. We believe that omparison helps to
clarify the role of the grasp matrix versus the role of theafial manipulator Jaco-
bian matrix. As far as the authors know, there has not beepalplcation proving
that both frameworks are analytically equivalent. The itesabtained in this paper
are for a particular example. A general complete proof ohguivalence is left as
future work.

Section 2 introduces the studied example and its notatiectich 2.1 details the
steps to obtain the matrices for hands and Section 2.2 fadlplarobots. The ob-
tained matrices are compared in Section 2.3. Finally, 8e&idiscusses advantages
of the proven equivalence, and proposes future work basediwsfer of knowledge
between both fields.

2 The 3-UR hand and its equivalent parallel manipulator

This paper analyzes the three-fingered hand depicted inlFigs architecture is
similar to other robotic hands such as the Barrett hand [t&he JPL hand [13].
The hand consists of three equal fingers with two phalangels @ad three rota-
tional joints each (2 in finger flexion, and one base rotati®wy each finger,
zin = (0,0,1)" andz, =z = (sin(81) ,—cos(B1) ,0)" are the axis of rotation of
the first, second and third joints, respectively, with riatatanglest 1, 6, and 63,
respectively (see Fig. 1).

To complete the hand-plus-object system, we need to defenedhtact model.
The two most common contact models are called hard and sgérBnThe first one
assumes a point contact with friction with a small contadtipaKinematically, it
is equivalent to a spherical joint. The second model assantagjer contact patch
and thus, the finger can also transmit a moment about the ctombamal. This
is equivalent to a universal joint. Therefore, the systemdhalus-object using the
hard-finger (soft-finger) model is kinematically equivalemna 3-URS (3-URU) par-
allel manipulator (where U stands for universal joint, Ralete, and S spherical).
In this work, we use the hard-finger model. Then, the mobditthe manipulator,
computed using the @bler-Kutzbach criterion, is 6, that means the object {plat
form) can be moved in 6 degrees of freedom (DoF). Other momgptex models,
such as the rolling contact, are left as future work [15].

Hands need to actuate all the joints to keep the fingers rididnathey work
without contact, and thus, the resulting manipulator walvé the 9 finger joints

O = (611, 612, 613, 821, 622, B3, 631, B30, B33) 1)

actuated. The rest of the joints are left free to move (pagsihey are defined con-
sidering the spherical joints as the intersection of thes®lute joints. We define
their axis of rotation agis = (1,0,0), zj5 = (0,1,0) andzes = (0,0,1), with angles
64, 65 and 6, respectively. Then, we can state that the manipulatortrag de-
grees ofactuation redundancy (9 actuated joints versus 6 DoF of mobility). As the
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Fig. 1 A three-fingered hand with its corresponding notation. Theerepoints of the palm joints
are equally distributed around a circumference of radjjsind the contact points on the object
around a circumference of radiug. By geometric construction, the coordinates of the fingertip
can be described using the magnitudes- lisin(62) + disin(62+ 63) andm = licos(62) +
dicos(62+ 6;3) , wherel; andd; are the lengths of the proximal and distal links of ttrefinger,
respectively.

output twist that defines the velocity and angular velocftthe object(platform) is
also 6 dimensional, we can say that the manipulator doesavetimematic redun-
dancy [19].

The position and orientation of the object (platform) witspect to the palm
(base) reference frame are given by a position vartoiR® located at the center of
mass of the platform (object) and a rotation maRix SO(3). If & and¢; are the
local coordinates of the palm (base) and object (platfottachments in their local
reference frames, their coordinates with respect to the lhse) fixed reference
frame area; = g andc; = p + R¢;. Assuming contact, the coordinates of the contact
points must be the same as the coordinates of the fingertipshwan be obtained
by geometric construction as

¢ =a+ni(0,0,1)" +m(cos(B1), sin(61), 0)",

(wheren; andm are defined in Fig. 1-(right)). The loop equations are olgigin
equating the two obtained coordinates of the contact pgjnolving them for©
or for {p,R} gives the the inverse and forward kinematic solutions,aetygely.

The next two sections describe how to obtain the velocityaggaos using the
grasping framework [12] and the parallel manipulators feamrks [9, 17]. The
equations are listed in Table 1, for the described hand ¢fdsimn of the table) and
the equivalent parallel manipulator (second column of &tdef).

The velocity of the object (platform) is described usingescitheory in both
frameworks. We define a screw as=%u,q x u) for a given vectou and a position
vectorg. Two screws are reciprocal when its reciprocal productiie,aee.,

(Uz,01 x Ug) o (Uz,g2 X Uz) = (g1 X Ug,U1) - (U2,02 X U2) =0,
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where- stands for the usual dot product andhe reciprocal product [3, 18]. The
twist T = (v, Q) defines the linear and angular velocity of the object (ptatfo

2.1 The grasp matrix and the hand Jacobian

The total grasp and hand Jacobian matrices are definedragaiddgether the ma-
trices of each finger as shown in Table 1-row f. To define eaaefimatrix, first
we need to define a set of reference fran{€} = {c,R;}, located at each of the
contact points and with rotation mati¥ = (n; ti o), with n; normal to the plane
tangent to the object at the contact point, and directed ribwee object. The re-
maining two vectors are chosen orthonormal to the first oabl€T1-row a). For our
case, we define these vectors as

p-¢
Ni =(Nix, Niy, Niz) = . L,
o
t =, ——2—,0), ©)
! \/n%<+ni2y \/n%<+ni2y

0 =Nn; X {;

The grasp matrix for the fingeéiis a change of coordinates of the twist of the object
T, from the fixed reference frame {€;}. Let T ; be the twist at the fingertipwith
respect to the referende;}. Then, T = G/ T whereG| = HiRiP; (see explicit
expression in Table 1-row d). The matiix translates the twist from to ¢;. The
matrix R; rotates the twist to matcfCi} andH; is the contact model matrix, that
sets to zero the three coordinates corresponding to thdaanglocity (see [12] for
detailed definition of this matrix).

The hand Jacobian matrdy is defined by the joint twists, whose expressions
for each finger are

$i1=((& —c) xz1,21)"
$i2 =((a — i) x zi2,Zi2)" 3)
$iz =((bi — ) x Zi3,23) -

Note that the angular components are computed about theraefnthe reference
{Ci}. Then, thdth fingertip twist is expressed ds; = Ju;©, wherely; is detailed
in Table 1-row e. As before, the mati; is used to write the twist with respect to
{Ci} andH; to select only the transmitted components.

Finally, rows b and ¢ show the velocity and the static eqriililm equations using
the complete matrices.
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2.2 The Jacobian matrix of the parallel manipulator

Here we follow the steps proposed in [9] or Chapter 5.6 in f@dbtain the Jacobian
matrix for the parallel manipulator shown in Table 1, rowegeand column.

Let T be the twist of the platform, as in the previous section. Fle®tem in [9]
states that it can be written as the sum of the joint twistsachdeg, that is,

Table 1 Summary of static and velocity equatiomrsand © are the vector of joint torques and
velocities, respectivelyjtV andT are the external wrench and twist acting on the object(plaifo
A¢ is a 1x 9 vector containing the three fingertip forces, afdepresents the friction cone.

Grasping Parallel manipulators

a
b G'T=J40 JpT =300
c JL/\f:T
—GA; =W W=-J7J5"r
At e F

d| Gf=H, (Fg F\?i) ((q|—3p)x '2)

wherev* is the cross-product matrix

z, (¢ xzi2)"
Jpi = ((Q—bi)T (i X(Q—bi))T)
(G—a)" (Gx(c—a)"

7 -m 0 0
Ini = HiRi($1%2%) Joi=| O ldSn(gs) 0O
with $; defined in (3) 0 0 —1idiSin(83)
with my defined in Fig. 1

f GI Jy1 0 O N Jo1 0 O
G'=|G) |,du=| 0 20 o= |,dJo=[ 0 Jo2 O
G;I; 0 0 Jus Jp3 0 0 Jo3




6 Jllia Borras and Aaron M. Dollar
6 .
Tzzaj$ij,f0ri:l,2,3. 4)
=1

Here, the joint twists angular components are computedtabewenter of the base
fixed reference frame, namely; $= (r x zj,zj), for j =1,...,6, wherer takes the
value of the corresponding joint center. The first threetjbinsts are equivalent to
the twists defined in (3). The remaining three correspontegassive joints.

The passive joint twists; for j = 4,5,6, can be eliminated from the system (4)
computing their reciprocal screws, named &g, for k = 1,2,3. It is important to
note that any set of three linearly independent screws gfirtloe contact point are
reciprocal to the spherical joint systeffia, $is, $is} [3, 18]. After multiplying the
reciprocal system at both sides of each equation in (4), wea®arite the system
asJpT = JoO, where the rows of the matri¥, are the reciprocal screws and the
matrix Jo only depends on the active joint anglés, = ("$ik o $j), for j =1,...,3
andk=1,...,3. That is, it is formed by all the products of the reciprocaiesvs
with the actuated joint screws.

The most convenient choice of the reciprocal screws is tméefach one to
be reciprocal to all the passive joint twists plus two of tlotive. This leads to
a diagonal matrixlo; (Table 1-row e). The explicit expressions of the reciprocal
screws for each legare the rows of the matridy in Table 1-row d.

We can obtain th&h fingertip wrench, written with respect to the fixed refexen
frame, by multiplying each set of three cqumnsJ'tﬂJgT by the corresponding
three joint torqueg. When the matrixlg is not square, we can use the pseudo-
inverse.

2.3 Comparison of frameworks

We computed all the equations using Wolfram Mathematica® cdh see that the
matrices in the rows d, e and f between the two columns of Tahte obviously dif-
ferent. However, the analytical expression of the prodﬂlgls]p annglGT are the
same, except for the angular components. In the graspingeftark, the angular ve-
locities (moments) components of the twists (wrenchestangputed with respect
to the center of the object (platform), while in the paraitednipulators framework
they are computed with respect to the fixed reference frameecelhus, we can
say that they are equivalediy'Jp = J;'GT.

In section 2.2 we state that the reciprocal screws can bespharbitrarily, pro-
vided that they are independent and through the contact goifihen, let us define
them using the vectors of the fingertip frame (see equatipard figure in Table
1, row a, column 1). In other words, we usgt; ando; to define the screws in the
matrixJpi. Then, all the matrices in both frameworks coincide, thaliis= Jo and
Jp = G', where the second equivalence is not analytically idehtinly because
the moments and angular velocities are computed with réspedferent centers.
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Note that the particular choice of the reciprocal screw$shidpe the final form
of the matrices in Table 1. Analogously, in the grasping gamrk, this choice is
made when defining the vectors of the rotation matrix of tfieresmce frame$C; }.

In the grasping context, the choice of the vectfmst;, 0} is convenient to ob-
tain the expression of the fingertip forcés directly projected to the axes of the
friction cones. This facilitates the evaluation of the tioo cone conditions. In the
parallel manipulator context, the choice is done so thatrdiselting matrixJg is
as diagonal as possible. This allows the interpretatiomefrows of the complete
Jacobiarﬂg)lJp in terms of line Plicker coordinates [7]. This is useful to find geo-
metrical interpretation of singularities. Recently, infl2ey have used this technique
to hand fingers, and the reciprocal system is chosen totteilihe single value de-
composition of the resulting finger Jacobian matrix.

We can also observe that the steps shown in Sections 2.1 arch2.be gen-
eralized to any type of hand (manipulator), but the resgltimatrices will be tall,
wide or square depending on the relationship between thédlitgotihe number of
actuated and passive joints and the dimension of the outjistt[tL9]. It remains to
proof that the results are always equivalent.

3 Discussion and future work

The grasping literature commonly uses the manipulabititieik to state the quality
of the grasp, and it is either based only on the hand Jacob&rmf on the multipli-
cation of both matrice?.,,quT [14]. While this can detect singularities, the literature
of parallel robots has extensively studied and classifiethtin much more detail
[19, 5, 20].

Among parallel robot designers, it is well known that a sndagign has to take
into account the singularities inside the workspace [8A]far as the authors know,
this is not done when designing hands. In part, this may bausecthe actuation
redundancy reduces the dimensionality of the singulavity$. However, simplified
hands that use underactuated fingers can reduce the degreteation redundancy
down to O or even lower. In particular, we are studying howaradtuation with
pulling cables can be modeled with similar Jacobian magnigbere these kind of
singularities need to be taken into account. This type ofikare becoming very
popular not only for effective grasps, but also to performtdmus manipulation
[11]. For these hands, singularities may be an issue thaaresers will have to
take into account in the process of hand design.

We believe that the study of convenient choices of the recglrsystem can
lead to useful tools to design hands with increased workespdgor instance, it can
be useful to compute an analytical expression of the hypdase of singularities
using only task space variables. Analyzing such surfacéeboto plot independent
components inside a workspace, that cannot be crossedutvitasing control.

This work has shown how the grasp matrix plays the same ralleea3acobian
of reciprocal screws for the analyzed example. Such ecrieal allows for transfer
of knowledge from parallel manipulators to robotic handstelBding this work to
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more general cases is part of a future work that will help fty funderstand the
parallelisms between these two types of manipulators.
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