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Abstract In this paper we apply the kineto-static mathematical models commonly
used for robotic hands and for parallel manipulators to an example of hand-plus-
object (parallel manipulator) with three fingers (legs), each with two phalanges
(links). The obtained analytical matrix expressions that define the velocity and static
equations in both frameworks are shown to be equivalent. This equivalence clari-
fies the role of the grasp matrix versus the parallel manipulator Jacobian. Potential
knowledge transfer between both fields is discussed in the last section.
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1 Introduction

A hand manipulating an object held in the fingertips has the same kinematic struc-
ture as a parallel manipulator where the platform is the object and the legs are the
fingers. Despite this fact has been acknowledged by many authors [10, 6], few works
discuss connections between the mathematical frameworks of both systems [4]. A
hand-plus-object system is a highly redundant hybrid parallel manipulator, where
the only passive joints are the contact attachments. However, the hand-plus-object
system has to hold an extra condition: the fingertip force hasto be directed towards
the object and inside the friction cone [12]. This conditiondoes not modify the
kineto-static mathematical model, because it is treated asa constraint when solving
the static equations.

This paper reviews the mathematical frameworks involved for modeling the
hand-plus-object system of a hand with three fingers and two phalanges per fin-
ger, and its kinematically equivalent parallel manipulator. As expected, we show
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how the derived static equations match. We believe that our comparison helps to
clarify the role of the grasp matrix versus the role of the parallel manipulator Jaco-
bian matrix. As far as the authors know, there has not been anypublication proving
that both frameworks are analytically equivalent. The results obtained in this paper
are for a particular example. A general complete proof of such equivalence is left as
future work.

Section 2 introduces the studied example and its notation. Section 2.1 details the
steps to obtain the matrices for hands and Section 2.2 for parallel robots. The ob-
tained matrices are compared in Section 2.3. Finally, Section 3 discusses advantages
of the proven equivalence, and proposes future work based ontransfer of knowledge
between both fields.

2 The 3-UR hand and its equivalent parallel manipulator

This paper analyzes the three-fingered hand depicted in Fig.1. Its architecture is
similar to other robotic hands such as the Barrett hand [16] or the JPL hand [13].
The hand consists of three equal fingers with two phalanges each and three rota-
tional joints each (2 in finger flexion, and one base rotation). For each fingeri,
zi1 = (0,0,1)T andzi2 = zi3 = (sin(θi1) ,−cos(θi1) ,0)

T are the axis of rotation of
the first, second and third joints, respectively, with rotation anglesθi1, θi2 andθi3,
respectively (see Fig. 1).

To complete the hand-plus-object system, we need to define the contact model.
The two most common contact models are called hard and soft fingers. The first one
assumes a point contact with friction with a small contact patch. Kinematically, it
is equivalent to a spherical joint. The second model assumesa larger contact patch
and thus, the finger can also transmit a moment about the contact normal. This
is equivalent to a universal joint. Therefore, the system hand-plus-object using the
hard-finger (soft-finger) model is kinematically equivalent to a 3-URS (3-URU) par-
allel manipulator (where U stands for universal joint, R revolute, and S spherical).
In this work, we use the hard-finger model. Then, the mobilityof the manipulator,
computed using the Grübler-Kutzbach criterion, is 6, that means the object (plat-
form) can be moved in 6 degrees of freedom (DoF). Other more complex models,
such as the rolling contact, are left as future work [15].

Hands need to actuate all the joints to keep the fingers rigid when they work
without contact, and thus, the resulting manipulator will have the 9 finger joints

Θ = (θ11,θ12,θ13,θ21,θ22,θ23,θ31,θ32,θ33) (1)

actuated. The rest of the joints are left free to move (passive). They are defined con-
sidering the spherical joints as the intersection of three revolute joints. We define
their axis of rotation aszi4 = (1,0,0), zi5 = (0,1,0) andzi6 = (0,0,1), with angles
θi4, θi5 andθi6, respectively. Then, we can state that the manipulator has three de-
grees ofactuation redundancy (9 actuated joints versus 6 DoF of mobility). As the
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Fig. 1 A three-fingered hand with its corresponding notation. The center points of the palm joints
are equally distributed around a circumference of radiusrp, and the contact points on the object
around a circumference of radiusro. By geometric construction, the coordinates of the fingertip
can be described using the magnitudesni = lisin(θi2) + disin(θi2+θi3) andmi = licos(θi2) +
dicos(θi2+θ i3) , whereli anddi are the lengths of the proximal and distal links of theith finger,
respectively.

output twist that defines the velocity and angular velocity of the object(platform) is
also 6 dimensional, we can say that the manipulator does not havekinematic redun-
dancy [19].

The position and orientation of the object (platform) with respect to the palm
(base) reference frame are given by a position vectorp ∈R

3 located at the center of
mass of the platform (object) and a rotation matrixR ∈ SO(3). If ãi andc̃i are the
local coordinates of the palm (base) and object (platform) attachments in their local
reference frames, their coordinates with respect to the palm (base) fixed reference
frame areai = ãi andci = p+Rc̃i. Assuming contact, the coordinates of the contact
points must be the same as the coordinates of the fingertips, which can be obtained
by geometric construction as

ci = ai +ni(0,0,1)
T +mi(cos(θi1) , sin(θi1) , 0)T

,

(whereni and mi are defined in Fig. 1-(right)). The loop equations are obtained
equating the two obtained coordinates of the contact pointsci. Solving them forΘ
or for {p,R} gives the the inverse and forward kinematic solutions, respectively.

The next two sections describe how to obtain the velocity equations using the
grasping framework [12] and the parallel manipulators frameworks [9, 17]. The
equations are listed in Table 1, for the described hand (firstcolumn of the table) and
the equivalent parallel manipulator (second column of the table).

The velocity of the object (platform) is described using screw theory in both
frameworks. We define a screw as $= (u,q×u) for a given vectoru and a position
vectorq. Two screws are reciprocal when its reciprocal product is zero, i.e.,

(u1,q1×u1)◦ (u2,q2×u2) = (q1×u1,u1) · (u2,q2×u2) = 0,
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where· stands for the usual dot product and◦ the reciprocal product [3, 18]. The
twist T = (v,Ω) defines the linear and angular velocity of the object (platform).

2.1 The grasp matrix and the hand Jacobian

The total grasp and hand Jacobian matrices are defined stacking together the ma-
trices of each finger as shown in Table 1-row f. To define each finger matrix, first
we need to define a set of reference frames,{Ci} = {ci,Ri}, located at each of the
contact points and with rotation matrixRi = (ni ti oi), with ni normal to the plane
tangent to the object at the contact point, and directed toward the object. The re-
maining two vectors are chosen orthonormal to the first one (Table 1-row a). For our
case, we define these vectors as

ni =(nix,niy,niz) =
p−ci

ro
,

ti =(
niy√

n2
ix+n2

iy

,− nix√
n2

ix+n2
iy

,0),

oi =ni × ti

(2)

The grasp matrix for the fingeri is a change of coordinates of the twist of the object
T, from the fixed reference frame to{Ci}. Let T f i be the twist at the fingertipi with
respect to the reference{Ci}. Then,T f i = GT

i T whereGT
i = HiRiPi (see explicit

expression in Table 1-row d). The matrixPi translates the twist fromp to ci. The
matrix Ri rotates the twist to match{Ci} andHi is the contact model matrix, that
sets to zero the three coordinates corresponding to the angular velocity (see [12] for
detailed definition of this matrix).

The hand Jacobian matrixJH is defined by the joint twists, whose expressions
for each fingeri are

$i1 =((ai −ci)×zi1,zi1)
T

$i2 =((ai −ci)×zi2,zi2)
T

$i3 =((bi −ci)×zi3,zi3)
T
.

(3)

Note that the angular components are computed about the center of the reference
{Ci}. Then, theith fingertip twist is expressed asT f i = JHiΘ̇ , whereJHi is detailed
in Table 1-row e. As before, the matrixRi is used to write the twist with respect to
{Ci} andHi to select only the transmitted components.

Finally, rows b and c show the velocity and the static equilibrium equations using
the complete matrices.
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2.2 The Jacobian matrix of the parallel manipulator

Here we follow the steps proposed in [9] or Chapter 5.6 in [17]to obtain the Jacobian
matrix for the parallel manipulator shown in Table 1, row a, second column.

Let T be the twist of the platform, as in the previous section. The theorem in [9]
states that it can be written as the sum of the joint twists of each leg, that is,

Table 1 Summary of static and velocity equations.τ andΘ̇ are the vector of joint torques and
velocities, respectively.W andT are the external wrench and twist acting on the object(platform).
λ f is a 1×9 vector containing the three fingertip forces, andF represents the friction cone.

Grasping Parallel manipulators

a

ni

ti

oiRi = (ni ti oi)

bi

ai

ci

zi2

b GT T = JHΘ̇ JpT = JΘΘ̇

c
JT

H λ f = τ
−Gλ f = W

λ f ∈ F

W =−JT
p J−T

Θ τ

d GT
i = Hi

(
Ri 0
0 Ri

)(
I3 0

(ci −p)× I3

)

wherev× is the cross-product matrix
Jpi =




zT
i2 (ci ×zi2)

T

(ci −bi)
T (ci × (ci −bi))

T

(ci −ai)
T (ci × (ci −ai))

T




e
JHi = HiRi($i1$i2$i3)
with $i j defined in (3)

JΘ i =




−mi 0 0
0 lidiSin(θi3) 0
0 0 −lidiSin(θi3)




with mi defined in Fig. 1

f
GT =




GT
1

GT
2

GT
3


, JH =




JH1 0 0
0 JH2 0
0 0 JH3


 Jp =




Jp1
Jp2
Jp3


, JΘ =




JΘ1 0 0
0 JΘ2 0
0 0 JΘ3
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T =
6

∑
j=1

θ̇i j$i j, for i = 1,2,3. (4)

Here, the joint twists angular components are computed about the center of the base
fixed reference frame, namely, $i j = (r ×zi j,zi j), for j = 1, . . . ,6, wherer takes the
value of the corresponding joint center. The first three joint twists are equivalent to
the twists defined in (3). The remaining three correspond to the passive joints.

The passive joint twists $i j, for j = 4,5,6, can be eliminated from the system (4)
computing their reciprocal screws, named asr$ik, for k = 1,2,3. It is important to
note that any set of three linearly independent screws through the contact point are
reciprocal to the spherical joint system{$i4,$i5,$i6} [3, 18]. After multiplying the
reciprocal system at both sides of each equation in (4), we can rewrite the system
asJpT = JΘΘ̇ , where the rows of the matrixJp are the reciprocal screws and the
matrix JΘ only depends on the active joint angles,JΘ = (r$ik ◦$i j), for j = 1, . . . ,3
andk = 1, . . . ,3. That is, it is formed by all the products of the reciprocal screws
with the actuated joint screws.

The most convenient choice of the reciprocal screws is to define each one to
be reciprocal to all the passive joint twists plus two of the active. This leads to
a diagonal matrixJΘ i (Table 1-row e). The explicit expressions of the reciprocal
screws for each legi are the rows of the matrixJpi in Table 1-row d.

We can obtain theith fingertip wrench, written with respect to the fixed reference
frame, by multiplying each set of three columns inJp

T J−T
Θ by the corresponding

three joint torquesτ. When the matrixJΘ is not square, we can use the pseudo-
inverse.

2.3 Comparison of frameworks

We computed all the equations using Wolfram Mathematica 9. We can see that the
matrices in the rows d, e and f between the two columns of Table1 are obviously dif-
ferent. However, the analytical expression of the productsJ−1

Θ Jp andJ−1
H GT are the

same, except for the angular components. In the grasping framework, the angular ve-
locities (moments) components of the twists (wrenches) arecomputed with respect
to the center of the object (platform), while in the parallelmanipulators framework
they are computed with respect to the fixed reference frame center. Thus, we can
say that they are equivalentJ−1

Θ Jp ≡ J−1
H GT .

In section 2.2 we state that the reciprocal screws can be chosen arbitrarily, pro-
vided that they are independent and through the contact point ci. Then, let us define
them using the vectors of the fingertip frame (see equation (2) and figure in Table
1, row a, column 1). In other words, we useni, ti andoi to define the screws in the
matrixJpi. Then, all the matrices in both frameworks coincide, that is, JH = JΘ and
Jp ≡ GT , where the second equivalence is not analytically identical only because
the moments and angular velocities are computed with respect to different centers.
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Note that the particular choice of the reciprocal screws will shape the final form
of the matrices in Table 1. Analogously, in the grasping framework, this choice is
made when defining the vectors of the rotation matrix of the reference frames{Ci}.

In the grasping context, the choice of the vectors{ni, ti,oi} is convenient to ob-
tain the expression of the fingertip forcesλ f directly projected to the axes of the
friction cones. This facilitates the evaluation of the friction cone conditions. In the
parallel manipulator context, the choice is done so that theresulting matrixJΘ is
as diagonal as possible. This allows the interpretation of the rows of the complete
JacobianJ−1

Θ Jp in terms of line Pl̈ucker coordinates [7]. This is useful to find geo-
metrical interpretation of singularities. Recently, in [2] they have used this technique
to hand fingers, and the reciprocal system is chosen to facilitate the single value de-
composition of the resulting finger Jacobian matrix.

We can also observe that the steps shown in Sections 2.1 and 2.2 can be gen-
eralized to any type of hand (manipulator), but the resulting matrices will be tall,
wide or square depending on the relationship between the mobility, the number of
actuated and passive joints and the dimension of the output twist [19]. It remains to
proof that the results are always equivalent.

3 Discussion and future work

The grasping literature commonly uses the manipulability index to state the quality
of the grasp, and it is either based only on the hand Jacobian [13] or on the multipli-
cation of both matricesJ−1

H GT [14]. While this can detect singularities, the literature
of parallel robots has extensively studied and classified them in much more detail
[19, 5, 20].

Among parallel robot designers, it is well known that a smartdesign has to take
into account the singularities inside the workspace [8, 1].As far as the authors know,
this is not done when designing hands. In part, this may be because the actuation
redundancy reduces the dimensionality of the singularity locus. However, simplified
hands that use underactuated fingers can reduce the degree ofactuation redundancy
down to 0 or even lower. In particular, we are studying how underactuation with
pulling cables can be modeled with similar Jacobian matrices where these kind of
singularities need to be taken into account. This type of hands are becoming very
popular not only for effective grasps, but also to perform dexterous manipulation
[11]. For these hands, singularities may be an issue that researchers will have to
take into account in the process of hand design.

We believe that the study of convenient choices of the reciprocal system can
lead to useful tools to design hands with increased workspaces. For instance, it can
be useful to compute an analytical expression of the hyper-surface of singularities
using only task space variables. Analyzing such surface canhelp to plot independent
components inside a workspace, that cannot be crossed without loosing control.

This work has shown how the grasp matrix plays the same role asthe Jacobian
of reciprocal screws for the analyzed example. Such equivalence allows for transfer
of knowledge from parallel manipulators to robotic hands. Extending this work to
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more general cases is part of a future work that will help to fully understand the
parallelisms between these two types of manipulators.
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