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Abstract— A pentapod is usually defined as a 5-degree-of-
freedom fully-parallel manipulator with an axial spindle as
moving platform. This kind of manipulators have revealed as an
interesting alternative to serial robots handling axisymmetric
tools. Their particular geometry permits that, in one tool axis,
inclination angles of up to 90 degrees are possible thus over-
coming the orientation limits of the classical Stewart platform.

This paper presents a solution to the problem of finding those
changes in the location of the leg attachments of a pentapod
that leave its singularity locus invariant. Although the solution
to this problem does not provide a fully characterization of the
singularities, it provides a lot of insight into its nature. It is
shown, for example, that there are four different architectures
for a pentapod with a completely different behavior from the
point of view of their singularities.

The kinematics of pentaponds with coplanar attachments at
the fixed base has previously been studied as rigid subassemblies
of a Stewart platforms. In this paper, we treat the general case
in which the base attachments are arbitrarily located in 3D
space.

Index Terms— Pentapod, fully-parallel robots, singularities,
singularity-invariant transformations.

I. INTRODUCTION

The Stewart platform consists of a base and a moving plat-
form connected by six UPS (Universal-Prismatic-Spheyical
legs, where the underline indicates that the prismatict join
is actuated. Thus, it is usually referenced to as a 6-UPS,
or equivalently as a 6-SPU, parallel mechanism [7]. If one
of these legs is eliminated to obtain a 5-DoF parallel robot,
the resulting platform is clearly uncontrollable. For exde)
if the universal joints are properly aligned, the moving:ig 1. A 5-axis miling machine, based on a pentapod, develdpe
platform can freely rotate around the axis defined by theseetrom Mechatronische Maschinen GmbH (reproduced with o).
five aligned universal joints. Nevertheless, observe that i
this particular case the uncontrolled motion is irrelevant
in some applications. Indeed, there are important incalstri
tasks requiring a too' to be perpendicu'ar to a 3D free_from There are some Val’ia'[ionS on the baSiC described pentapod
surface along a given trajectory without caring about itéhat consists in substituting the universal joints by two
axial orientation. They include, for example, 5-axis mifi consecutive revolute joints. The axes of the last revolute
|aser-engraving, spray_based painting, and Water-jengt jOintS remain collinear with the axis of the tool while the
In this context, the study of the kinematics properties of 5axis of the other revolute joint axis no longer intersect
SPU parallel robots with collinear universal joints becemeWith the tool axis. This is the joint arrangement used by
highly relevant for many applications [9]. Kong and Gosseli Metrom in its Pentapod machine (Fig. 1). This arrangement
refer to this particular arrangement of five legs as a lineSimplifies the construction of the resulting pentapod bsit it
body Component as it can a|WayS be considered as a ridﬂ-ﬁematic anaIySiS is far from trivial. Actually, the salors

subassembly in a standard Stewart platform [4]. We willrefelo its direct kinematics are given by the roots of a system
to it simply as apentapod. of 5 polynomials of degree 4 together with a quadratic

normalizing condition. Therefore, the number of solutions
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modified design.

In this paper, we concentrate ourselves in the analysis
of the singularities of the basic design which, despite its
practical interest, has received little attention in thestpa
Indeed, most of the related previous works deal with the
case in which the spherical joints are coplanar. For example
Zhang and Song solved the forward kinematics problem for
the coplanar case showing that it can have up to 8 assembly
modes [11]. Husty and Karger studied the conditions for a
pentapod with coplanar spherical joints to be architetliura
singular [3]. More recently, Borras and Thomas analyzed the
role of cross-ratios between the location of the leg attach-
ments in the characterization of architectural singuksijt
and in singularity-invariant architectural changes, &tsdhe
coplanar case [2].

The characterization of the singularities of spatial gafal
mechanisms is, in general, a difficult task. To obtain this
characterization, we will follow an indirect approach: wil w
find those changes in the location of the leg attachments of
a pentapod that leave its singularity locus invariant.

Even when there is no known solution to a given math-
ematical problem, it is always possible to try to find the
set of transformations to the problem that leave its sautioows are the Pliicker coordinates of the leg lines [6]:

Fig. 2. Notation associated with a pentapod.

invariant. Although this does not solve the problem itsilf, cr

provides a lot of insight into its nature. This way of thingin J=1| : | wherec, = ( b; — a; ) ' 1)

is at the root of the development of Group Theory and it is the . a; x (b; — a;)

one applied herein for the characterization of the singylar €6

loci of pentapods. Then, substituting the point coordinates in terms of the
The paper is organized as follows. The next sectiofitroduced notation,

presents a new formulation for the characterization of ihe s De + iU — T

gularities of a pentapod. Section Il presents a solutiotinéo Dy + 10 — Y

problem of changing the location of the attachments of one of D+ 1w — 2

the legs of the pentapod without altering its singularityus. ¢i = 2i(py + r1v) — yi(p> + riw) 2)

Section IV shows that there are four different architecure xi(pz + riw) — z;(pe + riw)

for a pentapod attending to the characteristics of the plessi Yi(pz + mu) — zi(py + 1iv)

locations for the base attachment of the new leg in thqur i=1,....5

singularity-invariant leg substitutions. Section V pretse
three examples corresponding to three different architest
Finally, Section VIl summarizes the main contributions.

It is also well-known that when a Stewart platform
contains rigid components, the determinant of its Jacobian
factors into several terms. For the analyzed Stewart phatfo
the Jacobian determinant factors as follows:

[l. THE SINGULARITIES OF A PENTAPOD det(J) = Fi(cy,...c5) Fa(cg) ©)

Let us consider a Stewart platform containing a pentapo#¢here the factorz(cq) depends only on geometric param-
that is, a Stewart platform with five collinear attachmentgters of the sixth leg and platform pose parameters, so the
on its moving platform. LetA denote the line to which factorfi(cy, ...cs) accounts for the singularities of the penta-
these collinear attachments are incident. According to Zig Pod embedded in the considered platform. It can be checked,
the pose ofA is defined by a position vector of a pointUsing a computer algebra system, tfat(cy,...c;) —the
init, p = (ps,py,p-), and a unit vectori = (u,v,w), singularity polynomial of the pentapod— can be expressed
pointing in its direction. Finally, let leg have base and as the determinant of the following matrix:

platform attachments with coordinates, in the base reteren 1 w v w p:  py D
frame, a;, = ((L’i,yi,Zi)T and b1 =p+ T'ii, 7 = ]., ceey 5, 0 Dz Dy D= 0 0 0
respectively. In what follows, the base reference frame is 0O 0 0 0 wu v w
chosen, without loss of generality, such that = y; = S=|ry a9 Y2 2z Toxs ToYo Toz2 |. (4)
21 =711 =0. Ts T3 Y3 Z3 T3T3 T3Ys 7323

It is well-known that the singularities of a Stewart platfor T4 Ty Y4 24 T4T4  TaYs T4Z4

are given by the determinant of the Jacobian matrix whose s Ts Ys 25 TsTs TsYs T'525



This is a very convenient representation of the singukiti Pss7 # 0, P is rank defective if, and only if,
of a pentapod because the first three rows depend only on
its pose and the remaining four, on the coordinates of the
attachments.

Let S denote thel x 7 matrix formed by the last four rows
of S. Since the coefficients of the singularity polynomial of
the pentapod are thé x 4 minors of this matrix, we can

o X2 Y2 22 T2T2
rs T3 Y3 23 T3T3
Ps7=|ra T4 Ys 24 7T4w4| =0
s s Ys 25 T5T5
roxr Yy =z rT

conclude this section with the following two observations: , ,
2 T2 Y2 2 T2Y2
1) If S is rank defective, the pentapod will always be 3 T3 Y3 23 T3Y3
singular irrespective of its leg lengths. In other words, Psz=|ra x4 ya 24 7T4ys| =0 (6)
it will be architecturally singular [5]. rs Ts Ys 25 T5Ys
2) If one of the four rows of is substituted by another rox Yy z 1Y
row linearly dependent on these four row vectors, the
resulting matrix will have the saméx 4 minors up to T2 T2 Y2 Z2 T222
a constant multiple. This observation will allow us, in r3 T3 Y3 z3 T323
the next section, to obtain leg substitutions that leave Psg=|ra x4 ya 24 1424 =0
the pentapod singularities invariant. s Ts5 Y5 Z5 T525
r T Yy =z rz
[1l. SINGULARITY-INVARIANT LEG SUBSTITUTIONS Since this system is linear im, y, and z, it can be
rewritten, after cofactor expansion, in matrix form as:
We are interested in substituting lédpy another leg with Pogr — Psgrr —Psr Pyt T Pigrr
base and platform attachment coordinates (z,vy, 2)” and ( Pos7 —Pssyr — Psgrr Pasy )(y) = <P1577"> ,
b = p” +ri”, respectively. Next, we deduce the conditions Pase —Psse Pase — Pserr/\z Prser

that (x,y, z, ) must satisfy to leave the singularities of the h luti ing C s rule. vields:
pentapod unaltered. To this end, consider the matrix whose solution, using Lrammers rule, yields.

_ A ) f()
{””‘ ORI } ®)

o X2 Y2 22 T2 T2Y2 T222

s Ts Y3 Es o Ta¥s TsUs o TaEs wheref(r), fi(r), f2(r) and f5(r) are cubic polynomials in

P= 5 : ! 0 :
:4 i“ s 24 :4? :42/4 :424 ® Thus, it can be concluded that all singularity-invariaeg |
5 %5 Y5 S TsTs Tols 5% substitutions will be defined by a correspondence between
rox Yy z rT Yy rz

points onA and points on a cubic space curve attached to

and take(z,y,z,r) such thatP is rank defective. Then, the base.

we can substitute any row il by (r,z,y, z, 7z, ry, rz) SO IV. DEGENERATECASES
that all the4 x 4 minors of the resulting matrix will be
equal to those of up to a constant multiple. Hence, the
corresponding singularity polynomial wiI_I be also the sam e solutions given by (8) are undefined becayi&e) — 0.
up to a constant factor. I_n other yvords, if any of the legs o this case, two situations arise:

the analyzed pentapod is substituted by another leg whose . . .
attachments coordinates are defined by a set of values forl) System (7) is consistent. One of the equations can be

(z,y, z,r) that makeP rank defective, the singularity locus discarded and, for a given value of infinitely many
of the pentapod will remain unchanged. solutions can be found fafz, y, z) which correspond

. o . to points of a line (as they correspond to the intersec-
If Gaussian Elimination is applied aR?, the last row of P ( y P

the resulting matrix is: tion of two planes).
9 ' 2) System (7) is inconsistent. It represents a system of

1 three parallel planes.
P (00 000 Py Py Ps), If the determinant of the linear system (7) is null, the
system is consistent if, and only if; (r) = 0, f2(r) =0, or
where P;; is the determinant of the matrix obtained frdn  f3(r) = 0. Let us suppose that, is a real root off(r) = 0
after removing the columnsandj, and P, the determinant that makes the system consistent. Then, if one of the piatfor
of the matrix formed by the first four rows dP after attachments of the new leg is placedkat = p + roi, the

removing the columns, j and k. Then, assuming that corresponding base attachment can be placed at any point on
the corresponding line in the base. This situation is istere

. S _ _ ing to build reconfigurable robots where the attachments can
Gaussian Elimination uses elementary row operations to eedugiven b d d id followi h . lari
matrix into a rank-equivalent one, with an upper triangulaage. Then, € re_'arrar_]ge on _aCtuate guiaes 0 owing the S'ngu. arity
rank deficiency occurs when all the elements of the last rowzere. invariant lines. This allows the manipulator to reconfigure

In this section, we analyze the case in which the determi-
nant of the linear system (7) is nullg, the case in which



itself for different tasks, increasing its useful workspand
maintaining the singularities always at the same location.

TABLE |
THE 4 POSSIBLE ARCHITECTURES FOR A PENTAPOD

Number of consistenf Base attachment locus
real roots
0 1 cubic curve
1 1 line and 1 plane conid
2 3 non-concurrent lines
3 3 concurrent lines [/I/IJ’L

We can classify the possible architectures of a pentapod
depending on the number of real rootsfdf-) = 0 that lead
to a consistent linear system. Depending on this number, the
cubic curve obtained for the general case degenerates into /// -8—
a plane conic curve and a line, or a set of lines. Table | -~
summarizes the different possibilities.

-12—]
V. EXAMPLES
A. Generic Case: No Consistent Real Roots \
TABLE I
COORDINATES OF THE ATTACHMENTS a; = (&5, i, 2;) AND Fig. 3. In general, a singularity-invariant leg substiutiis defined by

a 1-1 correspondence between the points on the moving ptatémd the
points on a cubic attached to the base. Some candidates fpsabstitution
appear in gray.

b; = p + 7;i, FOR A PENTAPOD WITH GENERIC ARCHITECTURE

Ll @ [wlz[r]
I 0J]0JO0]JoO
2 6 [0 [10]1 _ .
31713 10 12 3 B. Degenerate Case: Three Consistent Real Roots
419 [16] 7[5
5] 3[16] 3 |7
TABLE Il
Consider the pentapod with the attachment coordinates jn =~ COORDINATES OF THE ATTACHMENTS a; = (2, yi, ) AND
table 1. Substltutlng them in (7), we get b; = p + r;1, FOR A PENTAPOD WITH DEGENERATE ARCHITECTURE
288r — 6612 6306 5676 T 188167 i
—3136 288 +3904 3520 y|=[ 16384r |, Lol [ vi [ 2 [ril
1076 —2306 288r — 1484/ \z —5504r 110 0 0 0
2[00 0 [2
: . 3 2 32 2 | 24
whose determinant i2654208(9r° — 1317% — r — 1365). S B e B B
The roots ard5.22, —0.33 + 3.144, and—0.33 — 3.144. The 510 2] 416

evaluation of system (9) far = 15.22 yields an inconsistent
linear system. As a consequence, the base attachment locus
for a leg substituting any of the legs of the analyzed perdapo  gnsjder the pentapod with the attachment coordinates in
that would leave its singularity locus invariant is a cubic. T5pje 111. Substituting them in (7), we get

Solving (9) using Crammer’s rule gives

127 (4912 — 2407 — 553)

T = , 2304 — 512r —128 128 z
9r? — 13172 — 7 — 1365 256 2688—512r 384 y| =0
y = 256r(=28r + 27 +21) (10) 256 384 2688—512r) \z
9r3 — 13172 — r — 1365’ (11)
_ —4r(—880r + 4557 + 43r?) whose determinant is-134217728(r — 5)(r — 6)(r — 4).
93 — 13172 —r — 1365 All the roots are real and make the system consistent. This

Fig. 3 shows the manipulator and the cubic curve define®ystem has the trivial solution =y = z = 0 for any value
by these equations. All legs in gray satisfy the correspor@f 7. In other words, any leg can be substituted, without
dence between and (z,y,z) through the above curve Modifying the singularities of the analyzed pentapod, by an
parameterization, so any of the original pentapod legs ean Bther with attachments located €, 0,0) in the base and
substituted by any of these legs in gray without modifyinginywhere in the moving platform.
the singularity locus of the analyzed pentapod. Now, consider one of the above roots, for example 4.



Fig. 4. Example of a pentapod with degenerate architectnrthid case the
cubic curve degenerates into three lines. The base attathicenbe moved
along these lines without modifying the singularity locustioé pentapod
(a). This permits coalescing two attachments in the movindgastat(b), or
two attachments in the base and the platform at the same time (c).

The substitution of this value in (11) yields

20 —y+2=0
20 — by —32=0
20 +3y+5z2=0

which is a consistent linear system. That is, the three plane
equations intersect at the same line. Solving this system fo
x andy leads to a parametrization of such lingxz, y, z) |
x = —t,y = —t,z = t,t € R}. Proceeding in a similar
way for the other two roots, we obtain two more line
parameterizations. Summarizing, we have four solutios, set
namely:
sl ={(z,y,z,7)|r=4,2=—-t,y=—t,z=1t,t € R}
={(z,y,2z,7) | r=5x=t,y=—t,z=t,teR}
S3 ={(z,y,z,7) |r=6,z =0,y =1,z =t,t € R}
s4 ={(z,y,z,7r)|r=t,xa =0,y =0,2=0,t € R}

In Fig. 4-(a), the legs in gray have attachments whose
coordinates are in one of the above solution sets. The
legs with platform attachments coordinateg, b, and bs
correspond to solutions ik, s; and s3, respectively. The
solution sets, corresponds to legs with base attachment at
(0,0,0) and platform attachment anywhere in the moving
platform line.

Several equivalent manipulators, from the point of view of
their singularities, can be obtained by substituting oty 2.

For example, in Fig. 4-(b), this leg has been substituted by a
leg whose attachments coordinates are;inits attachments
areas = (4,4, —4) andb, = p+4i, thus making coincident
b, andbs. In Fig. 4-(c), leg2 has been substituted by a leg
whose attachments coordinates are4nin this case, the new
attachments have coordinates= (0,0,0) andby = p+4i

thus making coincident; with as, andbs with bs.

If actuated guides are placed on the lines defined by s1, s2,
and s3, the manipulator can reconfigure its base attachments
following singularity-invariant leg rearrangements. Jfin-
creases its usable workspace because, though singdlaritie
remain unchanged, its stiffness does change at each recon-
figuration, so that it can be optimized for each specific task
at different regions of the workspace.

C. Degenerate Case: One Consistent Real Root

TABLE IV
COORDINATES OF THE ATTACHMENTS a; = (:Ei,yi, zi) AND
b, =p+ Tii), FOR A PENTAPOD WITH DEGENERATE ARCHITECTURE

[l @ [ wyi [ 2 [7i]
1] 0 0 0 0
2 | —2 2v3 | -1 | 1
3] 9| 4/3 | 3] 3
4 =8 0 “11 5
5| 6] —2v3 | 0 7

Consider the pentapod with the attachment coordinates in
Table IV. Substituting them in (7), we get



Fig. 5. One consistent real root results in a base attachroeuns formed
by a line and a conic.

V3(—18r 4 70) 84 40v/3 x 24r/3
—144 18v/3(1 —r) 72 <y>:< 2167 ) )

20/3 24 /3(50 — 187) J\# —24r/3
(12)
The solution of the above system, obtained using Crammer’s
rule, is
_ —Ar(r+11)
© 3r2 — 14r + 35’
3r2 —14r + 35
_ Ar(r—T)
32— 14r + 35

which corresponds to a conic parameterized-.in
The determinant of system (12) is5832+/3(3r2 — 14r +
35)(r—3). The only real root i3: = 3. After evaluating (12)

for this real root, a consistent degenerate system is aain

whose solution is:

{rzS,xzt—G,yz—W,zzt}, (14)

which corresponds to a line parameterized.in

Although finding singularity-invariant leg substitutions
does not solve the problem of characterizing the singidarit
themselves, it provides a lot of insight into its geometric
nature. In this context, the obtained leg substitutionsadire
practical interest for two main reasons:

1) If the singularity locus of the pentapod at hand has
already been characterized, it could be interesting to
modify the location of its legs to optimize some other
characteristics without altering such locus.

2) If the singularity locus of the analyzed pentapod has
not been characterized yet, it could be of interest to
simplify its geometry by changing the leg attachment
locations, as it has been shown in the example pre-
sented in Section V-B, thus easing the task of obtaining
this characterization.

We have also shown that for any pentapod there is an
intrinsic correspondence between the points on the moving
platform line and the points on a cubic curve placed on the
fixed base. This characterization permits to study degémera
cases that present interesting practical applications.
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In summary, the locus of the base attachments consists of

a line and a conic (see Fig. 5).

VI. CONCLUSIONS

In this paper, we have introduced a new representation
of the singularity polynomial of a pentapod. This new
expression reveals to be very convenient because, among
other properties, it allows to easily define leg substingio
that keep singularities invariant.



