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Abstract— This work studies in detail how the judicial application of compliance in 

parallel manipulators can produce manipulators that require significantly lower actuator 

effort within a range of desired operating conditions. We propose a framework that uses 

the Jacobian matrices of redundant parallel manipulators to consider the influence of 

compliance both in parallel with the actuated joints as well as the passive joints, greatly 

simplifying previous approaches. We also propose a simple optimization procedure to 

maximize the motor force reduction for desired regions of the workspace and range of 

external forces. We then apply the method to a Stewart-Gough platform and to a 3-URS 

manipulator. Our results show that parallel manipulators with tasks that involve a 

preferred external force direction, as for instance, big weights in the platform, can see 

large reductions in actuator effort through the judicial use of compliant joints without 

significantly losing rigidity. 

 

Index Terms— Compliant joints, redundant parallel manipulators, static analysis. 

 

 

1. Introduction 

HE use of compliant joints in robotics has become popular in 

the last few decades for several different reasons. Springs in 

series with actuators has been widely studied and 

implemented, most notably through Series Elastic Actuators [1]. 

This arrangement can allow for the more reliable implementation 

of force control, increase the adaptability of the mechanism to 

external contacts, and in the case of transmissions with low back-

drivability, can allow a contact force to be applied at the output 

without power applied to the actuator. Compliance in parallel 

systems can be used to allow the underconstrained degrees of 

freedom in an underactuated mechanism to reconfigure in 

presence of an external contact [2, 3].  
We focus our attention on compliant joints used in parallel 

manipulators. Recently, several authors have studied how to model 
the stiffness matrix of parallel manipulators that use passive 
compliant joints and/or springs in series with the actuators [4-7]. In 
this kind of compliant manipulators, the forward kinematics have 
to be solved simultaneously with the static analysis [8], as each 
configuration will depend on the external applied force.  

In this paper, we study the effect of passive compliant joints 
(such as flexure-based or spring-loaded joints) and springs in 
parallel with the actuators to reduce actuation force. Prior work has 
studied how to design parallel manipulators adding certain 
compliant elements that lead to a constant potential energy at any 
configuration, when no external force is applied (only gravity) [9-
11]. In such gravity compensated manipulators, the actuation force 
is greatly reduced, resulting in significant improvement of the 
control and energy efficiency. However, there is not a general 
methodology to design such manipulators. Their challenging 
design process consists in expressing the potential energy as a 
function of a minimal set of coordinates. The condition for static 
balance is then obtained by imposing some coefficients depending 
on design parameters to be zero [9], but a feasible solution is not 
always possible and requires a complex ad-hoc initial design. For 

instance, [9] shows a statically balanced 6 degrees of freedom 
manipulator using legs formed by compliant parallelogram 
mechanisms. 

In this paper, we show how the springs in parallel with the 
actuated and passive joints can significantly reduce the force 
exerted by the motors in the presence of certain external forces 
without requiring such complex design process. Some of the big 
advantages of parallel manipulators over their serial counterparts 
are their high stiffness, accuracy and, their ability to support much 
higher loads. One of the major drawbacks is their small workspace, 
which are even more reduced when considering singularities [12] 
and the limits of the forces the motors can exert [13, 14]. In this 
context, parallel platforms can greatly benefit from the use of 
springs in parallel with the actuators to help to reduce the required 
motor forces, enhancing the size of the usable workspace and 
reducing the size of the actuators. 

Note that such manipulators will not be compliant. Indeed, the 
rigidity of the manipulator that uses compliance in the passive 
joints or compliance in parallel with the motors is not greatly 
modified, because the stiffness of the motors is usually several 
orders of magnitude bigger than the stiffness of the springs. 
Therefore, such passive compliance was usually ignored for the 
compliant analysis. However, in [15] they shown how taking the 
passive compliance into account can increase the accuracy of the 
model.  

Our work is not focused on stiffness analysis of manipulators 
[4-7, 16-19], but on the analysis of how compliance in parallel with 
the joints modifies the load on the motors. Other works have shown 
that springs can reduce the energy consumption by minimizing the 
sum of the actuation torques through motion trajectories for serial 
manipulators [20] or walking [21] and running robots [22]. We 
show that springs are also useful for reducing actuation torque for 
parallel mechanisms. 

Our framework takes into account compliance in the passive 

joints and compliance in the actuated ones in parallel with the 

motors. We consider any joint with compliance as an active joint, 

for the purpose of computing the Jacobian matrix. In other words, 

T 
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Fig. 1 Classification of joints with and without compliance. In the 

parallel robot literature, any non-actuated joint is called passive, 

but as the passive compliant joint exerts a torque, we have to 

consider it as active for the static analysis. 

our approach considers the parallel manipulator as redundant and 

uses screw theory to obtain the Jacobian matrix of the redundant 

manipulator that defines the transmission relationship between 

torques and external wrenches on the platform [23]. Using an 

appropriate definition of the torque for each type of joint, we can 

quantify the reduction or increase of torque that the motors have to 

exert to overcome a given external applied wrench thanks to the 

springs located both in actuated and passive joints.  

With a different definition of the compliant actuated joints, our 

framework is equivalent to the one proposed in [6]. However, the 

use of a single redundant Jacobian matrix greatly simplifies the 

static equilibrium equations. 

Our preliminary work on this topic [24] showed that significant 

torque reduction can be obtained with springs only in the passive 

joints for particular poses. Here, we generalize the results to take 

into account all the workspace and we propose a simple 

optimization procedure to minimize the total torque exerted by all 

the motors through all the workspace for a range of forces. As a 

result, we will see how the manipulator can reduce the required 

torque up to 84% for an important percentage of the workspace 

under the effect of certain range of forces, and also significantly 

increase of the usable workspace due to motor force limits.  

We begin this paper by defining the type of compliant joints we 

will consider, and a review of the mathematical framework to 

study the static analysis of redundant parallel manipulators. In 

section 3 we define the relationship between motor force and the 

compliant force, followed by the introduction of the proposed 

optimization method to design and measure the influence of the 

springs. Sections 4 and 5 apply the proposed method to two 

example manipulators, a Stewart-Gough platform and a 3-URS 

manipulator, and section 6 discusses the obtained results and 

summarizes the conclusions and directions for future work. 

2. Parallel Platforms with compliant joints 

A. The joints of a compliant parallel manipulator 

By construction, any configuration of the joints in a parallel 

manipulator satisfies the constraint that the distances between the 

attachments of each leg at the platform are constant; i.e. kinematic 

constraints. To ensure they are satisfied, most manipulators leave 

some of the joints free to move (passive joints), so that the joints 

controlled by the motors (active joints) determine the pose of the 

platform, while the passive joint angles automatically adapt their 

value to hold the kinematic constraints.  

A passive joint does not produce force/torque reactions and 

thus, it does not appear in the static equations. On the contrary, a 

compliant passive joint exerts force and thus, is typically treated 

as an active joint [4]. We distinguish between 4 types of joints, 

depicted in Fig. 1. Passive joints are unactuated (free to move). 

Passive compliant joints are also unactuated, but have a spring that 

exerts torques in accordance to their configuration and spring 

stiffness constants. Actuated joints are controlled by a motor and, 

in static equilibrium, they exert torques reacting to an external 

force applied at the platform that is transmitted through the legs to 

the joints. Finally, compliant actuated joints have the motor and 

the spring in parallel, such that the resultant torque is the sum of 

torque resulting from the motor and the torque resulting from the 

spring. 

All the joints exerting torque are called active. Depending on 

the type of joint, the total force/torque they exert is  

 ̃               for actuated compliant, 

(1)  ̃             for passive compliant, and 

 ̃     for actuated joints, 

where    is the torque/force exerted by the motor. Previous 

approaches have computed the influence of the passive compliant 

joints by adding an extra term in the static equations that depend 

on the Jacobian matrix relating the passive and the active joints 

[6]. Here, we propose to consider compliant parallel manipulators 

as redundant manipulators to compute its Jacobian matrix. In the 

next section, we review the method of deriving the Jacobian 

matrix of parallel manipulators using screw theory. 

B. The Jacobian matrix of redundant parallel manipulators 

Consider a parallel manipulator in   . Its platform can be 

moved in a maximum of 6 degrees of freedom (DOF), 3 for 

position and 3 for orientations, defined in a vector       . 

Depending on the number of legs, links, and joints, we can 

compute the mobility of the manipulator,  , using the Grübler–

Kutzbach criterion. If    , the manipulator is called lower 

mobility [25], that is, the workspace of the manipulator consists of 

a   dimensional subspace of the 6-dimensional task space. If the 

mobility is higher than 6, the manipulator workspace is still 6 

dimensional, but it has kinematic redundancy [26]. 

For simplicity, we consider only 1 DOF joints. In other words, 

a universal (spherical) joint is considered as two (three) rotational 

joints with intersecting axes. We assume that the manipulator has 

full mobility (    ). Then, if the manipulator has   equal legs, 

each leg has to have 6 joints to allow the full mobility of the 

platform. Therefore, the total number of joints is     . Let 

              
  (2) 

be the vector of all the joint angles. Only n of them are 

independent and determine the position of the platform. Let    be 

the number of joints actuated by a motor. If     , the 

manipulator is called fully actuated. If     , the manipulator is 

said to be redundantly actuated. Note that the number of actuated 

joints must be at least the same as the mobility, otherwise, the 

manipulator would have uncontrolled free DOFs. 

The twist acting on the platform        , composed of 

linear velocity and angular velocity, can be written as linear 

combination of the twists defined by each of the joints of the legs 

[27, 28]. Mathematically, that is 



3 

 

 
Fig. 2 Simple example of the combination of actuation torque 

exerted by the motor   , compliant torque exerted by the spring   , 

and reaction torque to the external force   . 

  ∑ ̇      

 

   

         (3) 

where     corresponds to the screw associated to the  th joint of 

the  th leg and  ̇   is the velocity of the  th joint on the  th leg. For 

a rotational joint located at   with an axis of rotation along  , its 

associated screw is        . For a prismatic joint along  , its 

associated screw is (0, z). 

In each leg, let   of the joints be active (that is, either 

compliant or actuated), while the rest       are free to move. To 

eliminate the passive variables from equation (3), we compute the 

system of screws that are reciprocal to the passive joint screws. 

Two screws            and            are reciprocal when 

its reciprocal product is zero, that is,  

                 = 0. (4) 

There are           screws reciprocal to the passive 
joints [29, 30]. Let     , for        , be the system of screws 
reciprocal to the passive joint screws. If we apply the reciprocal 
product at both sides of the equations in (3), we can rewrite the 
system as  

   
     (

 ̇  

 
 ̇  

) (5) 

where  

   
 (

    
 

 
    

 
) (6) 

and 

    (

                 

   
                 

) (7) 

Writing the   equations in a single matrix system form, we get 

      (
 ̇  

 
 ̇  

) (8) 

where  

   (
   

 
   

) (9) 

is a      matrix and 

   (
     
   
     

). (10) 

is      . Then, the Jacobian matrix of the parallel manipulator is 

usually defined as     
    , and the relationship between the 

platform twist and the joint velocities as 

    ̇. (11) 

 

A wrench acting the platform is composed by a force and a 

moment        . The above equation is used with the 

principle of virtual work to obtain the static equilibrium equations 

[27]. As a result, the relationship between the torques exerted by 

the joints and the transmitted wrench on the platform, is 

      , (12) 

where    is the transposed of the matrix in equation (11), and it 

has dimensions     . The system is then in static equilibrium 

when the external applied wrenches   statisfies 

      . (13) 

3. Measuring the influence of compliance  

A. Motor force and compliance 

This work studies in detail how springs in parallel with the 

motors can affect the performance of the manipulator and the 

required motor output. 

In Fig. 2 we show two links connected by an actuated revolute 

joint with a torsional spring in parallel. If no external force is 

applied, the motor will need to overcome only the torque exerted 

by the spring. In other words, in a static equilibrium configuration, 

if             is the spring torque, where   is the stiffness 

constant and    is resting configuration, the motor exerts a torque 

       to maintain the link at angle  . An external force   

applied on the tip transmits a torque on the joint of magnitude 

            , such that the  torque the motor needs to exert 

to achieve static equilibrium is            . 

In this very simple case, it is obvious that the motor will reduce 

the exerted torque when the signs of the motor and spring torques 

are opposite, and there is always a configuration for which it can 

be reduced to 0.  

For a parallel manipulator with several links and joints, we 

represent all the torques exerted by the springs in a vector 

   (          )
 

, where    is the spring stiffness constant of 

the spring in the joint   and    its resting configuration (linear or 

torsional depending on the type of joint). Similarly, we write the 

forces/torques exerted by the motors in a vector        
 . The 

vector of forces/torques transmitted by an external wrench 

         is given by the relationship in equation (12), 

      . The relationship between the vector of all the joint 

forces/torques is, analogously as the previous case,         
   . To avoid inverting the Jacobian matrix, we can multiply at 

both sides of the equality by   , leading to 

             . (14) 

This expression is equivalent to substituting the values of the 

torques given in (1) into the expression in (13). Note that, if the 

joint   is actuated without compliance, the corresponding   
component in the vector    is zero. Similarly, if the joint   is 

passive compliant, the corresponding position   in the vector    is 

zero. We believe that this equation is simpler than the model 

introduced in [6], and they are equivalent. 
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Also, for a fully-actuated manipulator, the number of motors is 

6 and thus, there are only 6 non-zero elements in the vector   . 

Let   
  be the motor torques vector without the zero components. 

Then, we can rewrite the system as 

              . (15) 

where    is a     matrix obtained from   eliminating the 

columns corresponding to 0 torque. This system states a one-to-

one correspondence between external applied wrench and motor 

forces/torques. 

Given an external wrench, in each configuration we can solve 

the system for   . Let us call a solution of the system    (  

stands for compliance). Then,    gives us the torques exerted by 

the motors for a mechanism including springs. We call     the 

solution of the same system with    set to zero. Then,     are the 

torques done by the motor for a mechanism without compliant 

joints. Thus, comparing the values     and    we can quantify the 

decrease or increase of the torque done by the motors in a given 

configuration and for a given force. 

Singular poses are defined by those configurations where 

        =0. Near such configurations, the values of the actuation 

torques can be very high even with small external applied forces. 

Therefore, in practice, the borders of the static workspace (or 

reachable workspace) are defined by those configurations that 

reach the limit on the torques that the motors can exert [13]. Thus, 

with equation (15) we have shown that adding springs in parallel 

with the joints can change those limits. 

We will show how to design the spring parameters to maximize 

the number of configurations where the springs help to reduce the 

torque exerted by the motors, increasing then the efficiency of the 

manipulator. We will also show how can we quantify and 

visualize the configurations where the torque is reduced and for 

which range of forces. 

B. Measuring compliance influence  

In a configuration  , we define the overall force/torque exerted 

by the motors as the sum of the squares of all the force/torques 

exerted by the motors for both the mechanism with springs or 

without, 

       
   , 

         
       

(16) 

The square of the torque is a positive magnitude proportional to 

the electrical power consumption of the motor. The total overall 

torque is obtained summing      for all the configurations in the 

workspace,  

     ∑     

    

       ∑      

    

  (17) 

To optimize the reduction of the overall torque for a given 
applied force, we first discretize the workspace of the manipulator. 
We set as parameters the stiffness constants of the springs and their 

resting positions        , for        . At each configuration, 

we solve the system in equation (15). As it is a linear system, the 
system can be solved analytically, and then used to compute     . 
In each configuration,      is a polynomial expression of the 
parameters         that is always positive. The sum of all the 

polynomials             for all the configurations of the 

workspace gives            , which is also an always positive 

polynomial and can be minimized.  
If several forces are considered, for example a discretization of 

a cone of forces, we can repeat the computation of the sum of all 

the            in each configuration of the workspace for each of 

the forces in the cone. The minimization of the resulting sum gives 
the spring parameters that better reduce the overall actuation torque 
for the forces inside the cone.  

We used Wolfram Mathematica 9 for the simulations running 
under Windows 64bit, 16GB Ram. As a preliminary computation, 
we need to compute the workspace, which requires solving the 
inverse kinematics for each tested configuration, and thus, 
depending on the architecture it can be simpler or more expensive. 

Given the workspace, deducing the expression of             

takes about 0.054sec per configuration. Therefore, the computation 
time depends on the discretization of the workspace. Once the 

expression of             is obtained, we use the Mathematica 

NMinimize() procedure to obtain the minimum of the functions for 
a given set of constraints. 

It is important to realize that, by definition, the springs cannot 

reduce the overall torque for all the possible applied forces. But in 

general, a parallel manipulator will be operating in a specific 

region of the workspace and subjected to a subset of all possible 

forces specified for the required task and gravity. As an example, 

a flight simulator will have to primarily overcome a vertical force 

in the direction of gravity. 

We measure the increase or decrease of exerted motor forces in 

a configuration by computing the percentage 
          

     
     

(18) 

As a measure of the net improvement through all the workspace, 

we define the net percentage of increase/decrease as 
          

     
      

(19) 

The overall torque gives an idea of the electrical power 

consumption, but the limits of the workspace are usually limited 

by the maximum exerted motor force/torque. For this reason, we 

define an additional metric of motor force/torque as the maximum 

exerted in a configuration   as  

             
              , 

(20) 

and the total maximum motor force/torque across the workspace 

as 

     ∑     

    

  (21) 

Then, similarly as before, the percentage of increase or decrease 

of maximum motor torque in a configuration is defined as 
          

     
     

(22) 

and the net increase as 
          

    
      

(23) 

Note that the maximum torque is not a continuous function, and 

therefore, it cannot be minimized as done with the overall torque. 

Instead, we use the maximum motor torque as a measure to 

evaluate the results obtained minimizing the overall torque. 

We use these performance measures in the next section to 

compute the optimal parameters for the springs of two examples 

of parallel manipulators. 

4. Example application I: the Stewart-gough platform 

Consider the Stewart-Gough platform in Fig. 3-top. In [31] it 
was shown how this design is kinematically equivalent to the well-
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Fig. 3 Stewart-Gough platform equivalent to the octahedral design 

(top) and its corresponding notation (bottom). See Table I for 

coordinates of vectors    and   . 

TABLE I  

Joint axes coordinates for the Stewart-Gough platform 

Leg   First axis Second axis 

                        
  

                        
  

                        
  

 

 
(a) (b)       

Fig. 4 Workspace discretization. (a) Position workspace. The points 

represent a third of the workspace, with darker color when more 

orientations are achievable. Points inside the sphere are considered 

part of the central workspace.  (b) Orientation workspace for the 

shown position. Each dot represents an orientation of the vector  , 

that is perpendicular to the platform. The red arrows show an 

additional rotation around  . All orientations of   inside the cone 

showed are considered part of the central workspace.  

known octahedral design [32], having the same forward kinematic 
solution and the same singularities. 

The base and platform attachments in their local reference are 

named    and   , respectively. The position and orientation of the 

platform are given by a position vector      and a rotation 

matrix        . Then, the coordinates of the attachments with 

respect to the fixed reference frame located at the center of the 

base are       and 

           (24) 
The proposed design has the attachments in the base and in the 

platform aligned in a way that we can write  
                      , and  
                     , 

(25) 

for         and indexes computed modulus 6, where   

represents the distance between the aligned attachments (see Fig. 

3). 
In each leg  , the first and second joints are the two DOFs that 

compose the universal joint, with axes    and   , and angles     

and    , respectively, and the third joint corresponds to the 
prismatic joint following the direction of the unit vector    
           (Fig. 3-bottom). The forth, fifth and sixth joints of 
each leg are composed of three intersecting rotational joints 
forming the platform spherical attachments (see Fig. 3 and Table I 
for detailed description of the axes). 

A. Kinematic analysis and Jacobian matrix 

The forward and inverse kinematics can be obtained solving 
the system  

       
    

 , for        , (26) 

where    are the lengths of the legs.  

It is well known that the Jacobian matrix of the Stewart-Gough 

platform is formed by the line screws defined by the legs. 

However, in this example, we consider compliance in parallel to 

the actuated prismatic joints and also in the passive universal 

joints at the base. As a result, we need to compute the Jacobian 

matrix of the corresponding redundant manipulator.  

For each leg, we choose screws reciprocal to the 4th, 5th and 6th 

joints, and two additional joints. Then, for each leg  , the set of 

reciprocal screws are 

                        

                        

                . 

(27) 

We can build the 6 matrices     following equation (6) and the 
above definition of reciprocal screws. The corresponding matrix in 
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                                                      (a)                                                                                                          (b) 

Fig. 5 (a) Top: Histogram of the percentage of increase/decrease of the motor force for each configuration in the workspace. Bottom 

Representation of the position workspace, and a third of it. The colors represent the mean percentage of reduction for all the orientations 

achievable from each dot position. (b) Top: Comparison between histograms of the maximum torque values over the configurations of the 

workspace with and without compliant joints. Bottom: representation of the static workspace. Each dot color represents the median torque for 

all the possible orientations in the corresponding position of the dot. All points where the maximum force is bigger than 5 are discarded. 

equation (7) gives 

    (
      

     
   

). (28) 

where     stands for the 3th coordinate of the point   . Following 

the definitions in equations (9) and (10),    is a      matrix, 

and    has dimensions      . Therefore, the matrix    is a 

     matrix.  
Only 6 motors are used, located at the prismatic joints, 

therefore, equation (15) has the form 

     (
  
 
  

)    

(

 
 

 
          

          

         
 )

 
 

  (29) 

where    is the usual     Jacobian where each column   is the 

screw      defined in equation (27), and the vector of forces and 

torques done by the springs is defined as in (1). where    are the 

stiffness constants of the springs at the first, second and third 

joints of each leg respectively,    ,      , the resting angle of the 

torsional springs located in parallel with the axes of the universal 

joint, and    the resting length of the linear spring located in 

parallel with the prismatic joint.  

B. Results 

All the simulations are computed for a manipulator with base 
side    and platform side      . The offsets of the base and 
platform attachments correspond to        in equations (25). 

We discretize the workspace in position and orientations as 
follows. Consider the vector   orthogonal to the platform plane. 
We define the rotations of the platform as the cone of possible 
directions of the vector   that spans two dimensions of possible 
rotations (   and   ), where the maximum angle between two 

possible   vectors represents the opening angle of the cone [33]. 
The additional rotation around   represents the 3th dimension of 
rotations (  ) (Fig. 4). We consider a discretization of the 6-dim 
workspace of       configurations that include a range of 
directions of   inside of a cone with opening angle of      rad 
and    from      to    . The prismatic joint limits are    
       , and the universal joint limits are               .  

To optimize the spring parameters, we apply the method 
introduced in section 3.B, with optimization constraints  

                

 
  

 
    

 

 
  

 
  

 
    

 

 
  

          . 

For the optimization, we only consider configurations where 

the platform position vectors are inside the sphere shown in Fig. 
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Fig. 6 Percentages of reduction of the motor torque when changing 

the magnitude of the applied force. Each color corresponds to a 

different direction of applied force. Dashed (solid) lines are results of 

a manipulator using the compliant parameters in equation (30) 

(equation (31)). 
 

Fig. 7 Top: Each applied force is associated with a dot in a sphere. 

Bottom: The colors represent the percentage of the workspace with 

reduction (first column) or the net increase (second column) of the 

overall torque in the first row, or the maximum motor torque in the 

second row. 

4-left and the orientation inside the cone in Fig. 4–right. We 

denote the interior of the sphere and the orientations inside the 

cone as the central workspace, and focus efforts on the reduction 

of motor force in these workspace regions. With a single applied 

force of                  , the obtained optimum is 

                         
                        . 

(30) 

Considering a collection of applied forces on the border of a 

cone with opening angle of      rad (shown as black arrows in 

Fig. 6), all of magnitude 10, the optimization gives 

                           
                           

(31) 

In Fig. 5-(a) we show the computation of the overall reduction of 

the actuation torque using the compliant parameters in (31). The 

net percentage of increase of the overall torque, computed using 

equation (19) for an applied force                   is -

84.08%. Fig. 5-(a) top shows the histogram of the percentages of 

increase in all configurations of the WS. At the bottom, each 

position dot is plotted with a color according to the mean value of 

percentage of increase for all the achievable orientations from the 

position.  Note that all the configurations of the workspace 

experience a reduction for this applied force. 

If we assume that the motors can exert half of the force applied 

at the platform (that is, 5N for an expected load of 10N), the static 

workspace is defined by those configurations that do not reach 

that limit. Without compliance, the static workspace is 71.9% of 

the kinematic workspace. Using compliance, it is 91.7% of the 

kinematic workspace. Fig. 5–(b) shows the distribution of the 

maximum torque over the workspace with and without 

compliance, and a representation of the position static workspace.  

Fig. 6 and Fig. 7 show how the increase of actuation force 

changes when different external forces are applied. Net increases 

and decreases are computed with respect the central workspace, 

that is, the amount of workspace inside the sphere and cone of 

orientations shown in Fig. 4. 
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Fig. 8 Notation for the 3-URS manipulator. 

In Fig. 6-top, we show a manipulator using the spring 

parameters in equation (31). Each arrow represents a direction of 

applied external force with magnitude 10N. The number next to 

the arrow represents the net percentage of increase of the 

maximum exerted torque over the central workspace, computed 

using equation (22). The colors follow the color code of the 

second bar (reds/oranges for positive increases, and yellows/blues 

for negative increases, i.e., decreases). In the spheres in Fig.6-

bottom, we only plot the tip dot of the arrows, and thus, each dot 

corresponds to an applied force with direction going from the 

center to the sphere to the dot, with magnitude 10N. In the first 

column of Fig. 6-bottom, each color represents the percentage of 

workspace where there is a reduction of the overall motor force 

(first row) or the maximum exerted motor force (second row). In 

the second column the colors represent the total percentage of 

increase of the overall torque using equation (19) (first row) and 

the percentage of increase of the maximum exerted motor force 

using equation (23) (second row). With this sphere representation, 

we can see what range of forces results in a net reduction of motor 

force. 

In Fig. 7, the top plot shows percentages of workspace where 
there is a decrease of the overall torque when the magnitude of the 
force changes. The middle plot shows the mean decrease in this 
region and the bottom plot the overall net decrease using equation 
(19) in the central workspace. In all the plots, the x axis represents 
the magnitude of the applied force, which direction is identified 
depending on the color, following the chart in the figure. Solid 
lines correspond to a manipulator optimized for a range of forces 
(parameters in equation (31)) while dashed lines are results for a 
manipulator optimized for a single force (parameters in equation 
(30)). The first manipulator gets bigger portions of workspace with 
reduction when the resultant applied force is not vertical.  

 

5. Example application II: the 3-URS platform 

Consider the manipulator in ig. 8-top. It is a 6 DoF manipulator 

with 3 equal legs consisting of 2 links and 3 rotational joints each. 

For each leg i,              is the axis of rotation of the first 

joint, with rotation angle    . The axis of rotation of the second 

joint is                             with a rotation angle    . 

Finally, the third axis is parallel to the previous one, with angle of 

rotation    . 

A. Kinematic analysis and Jacobian matrix 

As in the previous example, the coordinates of the attachments, 

with respect to the fixed reference frame located at the center of 

the base, are       and 

         ,          (32) 

Alternatively, the coordinates of the platform attachments can also 

be parameterized with respect to the angles of rotation of the joint 

angles as 

                                           (33) 

where 

                              
                            , 

(34) 

and    and    are the lengths of the links of the ith leg. We can 

obtain similar parameterization of the center points of the joints 

    [24]. 

The loop equations are the 9 equations obtained by equating the 

platform attachment coordinates computed with respect to the 

position and orientation of the platform   
  (equation (32)) with 

the same coordinates computed using the joint angles   
  (equation 

(33)).  

The manipulator has 3 legs with 2 links each, and a total of 6 

joints per leg (2 in the base universal joint, 1 in the rotational joint 

and 3 in the platform attachment spherical joint). The mobility of 

the platform is 6 (full mobility) and therefore, only 6 motors are 

needed to fully actuate the platform in all its degrees of freedom. 

We consider all joints compliant except the platform attachments, 

with only two motors per leg, located at the two base joints. 

The Jacobian matrix   can be computed using screw theory 

following the steps proposed section 2.B. In this case, the Jacobian 

matrices are: 

   
   

(

 
 

  

                         
  

 
 

            
 

  
  

            )

 
 

 ,  

and    (    )
 

 is a matrix where each row      is defined as 
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Fig. 9 Top: Histogram of the percentage of increase of the overall 

motor torque in each configuration of the workspace. Bottom: Each 

dot in the position workspace is colored depending on the mean 

reduction of the overall motor torque for all the orientations 

achievable from the dot position. From the left figure, (a) shows 

only a third to the figure, and (b) only the third and only 

configurations with reduction. 

 
Fig. 10 Top: Comparison between histograms of the maximum 

torque values over the configurations of the workspace with and 

without compliant joints. Bottom: A representation of the static 

workspace. Each dot color represents the median torque for all the 

possible orientations in the corresponding position of the dot. All 

points where the maximum torque is bigger than 10Nm are 

discarded. 
                

  

                      
  

                      
  

for        , where the vector                             

has been introduced before as the second joint axis of rotation and 

   are the center points of the third joints at each leg  . 
Note that the Jacobian matrix     

     is a     matrix and 
the static equilibrium equation in (14) has a vector of compliant 
torques 

   

(

 
 

 
 

           

          

          
 )

 
 

 (35) 

for        , where    are the 3 spring constants and    ,    and 

   the 5 parameters for the spring free lengths. We omit the sub-

index i for the spring parameters that are equal for each leg. The 

vector of motor torques contain only 6 non-zero elements, because 

      for        . Then, the static equilibrium system becomes 

square as in equation (15). 

B. Results 

For the simulations, we considered a manipulator with 

dimensions                   , and       , for 

       . Using the same discretization of the workspace as in the 

previous example, we solve the inverse kinematics in each 

configuration to get the corresponding angle joints. The spherical 

attachments are considered with a range of motion forming a cone 

with opening angle of 140 degrees. 

For the results in all the tables, we discard the configurations too 

close to a singularity, that is, where the determinant of the 

Jacobian matrix is smaller than     . 

Following similar steps to the previous example, we apply the 

optimization of the range of forces shown in black in Fig. 12 for 

forces of magnitude 10N. The results give 

                               

              
  

 
      

  

 
   

              

(36) 

If we instead perform the same optimization for forces of 

magnitude 2N (in the same directions), then the optimal 

parameters obtained are the same as before, except the spring 

constants are divided by 5 (proportional to the applied forces). 

Optimizing for a single force (0,0,-10,0,0,0) gives 

                        , 

              
  

 
      

  

 
  

               

(37) 

Fig. 9 shows the distribution of configurations for which there is 

reduction of overall torque when a force                   is 

applied, using equation (18). The color of each dot in the 

workspace represents the mean value of equation (18) for the 

configurations corresponding to all the possible orientations from 
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Fig. 11 Comparison of manipulators using the compliant 

parameters optimized for a range of forces of magnitude 10N 

(equation (36)) and for a range of forces of magnitude 2N. 

 
Fig. 12 Similarly to Fig. 7, each dot represents a direction of the 

external applied force, and its color the percentage of workspace 

with reduction (first column) and the net reduction (second 

column). Reductions of the overall torque are shown in the first 

row, while reductions of the maximum torque in each configuration 

are shown in the second row. 

the dot position. As a global measurement, using the spring 

parameters in equation (36), 88.4% of the configurations in the 

workspace  show a reduction of the overall torque, with a total 

reduction of         in that region. The net reduction over all 

the workspace, computed as in equation (19), is        . 

Fig. 10 shows the modification of the static workspace. In this 

case, we set the limit of the motor torques to 10Nm. When 

applying the vertical force (0,0,-10,0,0,0), the manipulator without 

springs can reach only 26.77% of the kinematic workspace. With 

the springs, the reachable workspace increases to 47.67% of the 

kinematic workspace. Fig. 10 shows a representation of the 

position static workspace and the histogram of the maximum 

motor torque in all the configurations of the workspace for the 

manipulator without springs (dark color/red) and the manipulator 

using the springs with parameters in equation  (36) (light 

color/yellow).  

Figures 11 and 12 show results where different applied forces 

are considered, showing reductions/increases of the motor torque 

for the central regions of the WS similarly as in the previous 

example. Fig. 11 shows how results change when the magnitude 

of the applied force changes. Dashed lines show results for the 

optimum obtained with a range of applied forces of magnitude 2N, 

and solid lines optimums obtained with 10N range of applied 

forces. Different colors correspond to different directions of the 

applied forces shown in the diagram. 

Finally, Fig. 12 shows the reduction over the central workspace 

for all the possible applied force directions, for a manipulator 

using the parameters in (36). The net increases in all the WS are 

computed using equations (19) for the overall motor torque and 

(23) for the maximum motor torque. 

6. Discussion 

The results for the two parallel manipulators analyzed show 
that for a desired range of force directions applied on the platform, 
springs can help to significantly reduce the motor torque. 

Fig. 6 and 12 show that springs cannot reduce the motor torque 

for all possible applied forces, because if there is reduction of 

actuation force under one force direction, there will be increase in 

the opposite one. However, we have provided design tools to 

optimize the manipulator for the desired range of external forces, 

and the desired regions of the workspace where motor force 

reduction occurs. This allows users to specify the desired 

workspace regions and directions of forces for which the most 

significant motor torque reduction is needed. 

If a manipulator has to perform tasks with a preferred direction 

of external applied forces, as for example a flight simulator, the 

static workspace, which defines the real borders of the reachable 

workspace, can be greatly increased by an appropriate selection of 

the springs. For a more versatile and general-use manipulator, 

springs in parallel with the motors may not be a good design 

solution.  
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The curves in Fig. 7 and 11 indicate that the performance under 

lower forces can significantly increase the motor torques instead 

of reducing it, but a significant reduction will occur for larger 

forces. Therefore, we can conclude that the springs have to be 

designed to compensate the minimum external force the 

manipulator has to resist, for instance, the weight of the platform. 

Other approaches to reduce actuation torque on parallel 

manipulators like static balance or gravity compensation methods 

require a complex design and an ad-hoc location of the compliant 

elements. However, we have shown that by simply locating 

springs in parallel with the motors, large reductions of actuation 

torque can be also obtained. 

This simple solution to reduce actuation torque has been 

applied in industry for simple cases, as for instance, using springs 

in parallel with the prismatic motors of industrial electric jacks. 

Here, we provide a method to implement similar reductions for 

more complex architectures including active and passive 

(rotational and prismatic) joints.  

7. Conclusions 

We have presented a mathematical framework that clearly 

distinguishes between active and passive compliant joints. The 

framework can be used to model compliant parallel manipulators 

by changing the definition of the compliant actuated joint torque, 

with the spring serially connected to the motor as in [6]. In this 

case, the proposed formulation show simpler static equilibrium 

equations than previous approaches, as it only requires the 

computation of one Jacobian matrix instead of the Jacobian 

between passive and active joints. 

The quantification of the variation of the torques due to the 

presence of passive compliance has been expressed in an 

analytical equation that allows us to study such variation through 

all the workspace of the manipulator. 

The framework has been successfully applied to two examples 

of manipulators that show a significant reduction of the actuator 

forces for a significant range of forces and portions of the 

workspace. 

In a future work, we want to study the influence of compliance 

when it acts in parallel with a pulling cable in underactuated hands 

manipulating objects [3]. In one torque direction, the compliance 

acts in parallel and thus, it behaves as in the proposed model, but 

in the other direction the cable becomes loose and the compliant 

joints become passively compliant. 

The presented analysis, together with the existing compliant 

parallel robots analysis, constitutes a further step towards a full 

understanding of the role of compliant joints in parallel 

manipulators. 
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