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The direct position analysis (DPA) of a manipulator is the computation of the end-effector
poses (positions and orientations) compatible with assigned values of the actuated-joint
variables. Assigning the actuated-joint variables corresponds to considering the actuated
Jjoints locked, which makes the manipulator a structure. The solutions of the DPA of a
manipulator one to one correspond to the assembly modes of the structure that is gener-
ated by locking the actuated-joint variables of that manipulator. Determining the assem-
bly modes of a structure means solving the DPA of a large family of manipulators since
the same structure can be generated from different manipulators. This paper provides an
algorithm that determines all the assembly modes of two structures with the same topol-
ogy that are generated from two families of mechanisms: one planar and the other
spherical. The topology of these structures is constituted of nine links (one quaternary
link, four ternary links, and four binary links) connected through 12 revolute pairs to
Jorm four closed loops. [DOL: 10.1115/1.3046134]
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1 Introduction

The direct position analysis (DPA) of a manipulator is the com-
putation of the end-effector poses (positions and orientations)
compatible with assigned values of the actuated-joint variables.
Assigning the actuated-joint variables corresponds to considering
the actuated joints locked, which makes the manipulator a struc-
ture. The solutions of the DPA of a manipulator one to one corre-
spond to the assembly modes of the structure generated by locking
the actuated-joint variables of that manipulator. Determining the
assembly modes of a structure means solving the DPA of a large
family of manipulators since the same structure can be generated
from different manipulators.

The solution of the DPA of parallel manipulators (PMs) is a
difficult and challenging task since, in general, it involves the
solution of a system of nonlinear equations.

Spherical parallel manipulators (SPMs) are PMs where the end-
effector performs only spherical motions with a center fixed to the
frame. SPMs can be collected into two subsets: (i) the set of the
SPMs where only the end-effector and few (or no) other links
perform spherical motions with the same center and (ii) the set of
the SPMs where all the links perform spherical motions with the
same center. When the actuated joints are locked, both these two
types of SPMs become structures whose assembly modes can be
identified by considering equivalent structures where the links are
connected only through revolute pairs with axes that converge
toward the spherical motion center. Such structures will be called
spherical structures (SSs).

Structures composed of links connected only through revolute
pairs are also generated from a large family of planar parallel
manipulators (PPMs) by locking the actuated joints. In this case,
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all the revolute-pair axes are parallel to one another and perpen-
dicular to the plane of motion. Such structures will be called pla-
nar structures (PSs).

When the topology of a structure is analyzed, only the number
and the type (binary, ternary, etc.) of links and the type of kine-
matic pairs that connect the links to one another are considered.
Therefore, the SSs and the PSs share the same set of topologies.

Moreover, by using the Griibler—Kutzbach equation, it is easy
to demonstrate that, in the SSs and the PSs, the number of loops,
[, the number of links, m, and the number of revolute pairs, r, are
related by the following two relationships: m=2[+1 and r=31.

Sometimes structures contain substructures (i.e., a subset of
links that form a structure by themselves). A substructure can be
substituted into the original structure by a unique link whose
shape depends on the assembly modes of the substructure. This
substitution process ends when no other substructure can be iden-
tified in the last obtained structure. In literature, structures that do
not contain substructures have been called Assur kinematic chains
(AKCs). The determination of all the assembly modes of any
structure can be implemented by exploiting a set of algorithms
that solve all the AKCs [1].

The solution of the DPA of all the SPMs can be implemented
by classifying all the SS topologies, which refer to AKCs, and
then by providing, for each identified topology, an algorithm that
computes the assembly modes of the AKC with that topology. The
fact that the set of SS topologies coincides with the one of PSs
allows the wide literature on planar mechanisms to be exploited
[2]. In particular (see Ref. [1]), there are one single-loop AKC
topology (the triad), one double-loop AKC topology (the pentad),
and three triple-loop AKC topologies. Moreover, Manolescu [3]
gave a complete classification of triple-loop topologies and how
they are built. Eventually, Yang and Yao [4] identified all the AKC
topologies with four loops. So doing, they showed that there are
28 quadruple-loop AKC topologies (see also Refs. [5] and [9]).

The algorithms that analytically calculate all the assembly
modes of the AKCs up to three loops have been already presented
both for the planar case (see Ref. [1] for references) and for the
spherical case (see Ref. [2] for references). Moreover, general
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Fig. 1 Topology of the studied structures: graph vertices rep-
resent links and graph edges represent joints (R stands for
revolute pair)

techniques for solving the DPA of planar mechanisms have been
presented (see, for instance, Refs. [6—8]), and the assembly modes
of a number of planar structures with four loops have been ana-
lytically determined (see Ref. [9] for references). As far as the
authors are aware the determination of the assembly modes of
spherical structures with four loops was not addressed yet.

This paper addresses the determination of the assembly modes
of the structures, either planar or spherical, with 1 out of the 28
quadruple-loop AKC topologies (the 15th one reported in Table 1
of Ref. [9]). And it provides one algorithm, which is applicable to
the planar and the spherical cases and solves the closure-equation
systems of these structures in analytical form. In particular, the
topology of these structures is the one reported in Fig. 1, and it is
constituted of nine links (one quaternary link, four ternary links,
and four binary links) connected through 12 revolute pairs to form
four closed loops.

The planar structure with this topology has been already solved
in Ref. [10] by using an algorithm based on complex numbers and
similar to the ones reported in Refs. [9] and [11]. The solution
technique used in Ref. [10] is different from the one reported here
and cannot be extended to the spherical structure with the same

topology.

2 Background

The closure equations of a structure (or a mechanism) can be
written in many ways. The most common techniques are based on
the use of the loop equations that are a fixed number, say, n, of
independent scalar equations that can be written for each indepen-
dent loop appearing in the structure.

When the structure contains a number of particular binary links
at least equal to the number of independent loops, and the choice
of the independent loops can be operated so that each loop con-
tains at least one binary link not included in the other loops, the
number n can be reduced to 1, and the closure-equation system
can be reduced to a number of scalar equations equal to the num-
ber of loops.

The analysis of Fig. 1 reveals that, in the structures under study,
four independent loops with one binary link can be easily indi-
viduated: (1) loop 0-1-5-2 (link 5 is binary), (2) loop 0-2-6-3 (link
6 is binary), (3) loop 0-3-7-4 (link 7 is binary), and (4) loop
0-4-8-1 (link 8 is binary). All these loops are four-bar loops with
only revolute pairs.

Both in the planar case and in the spherical case, the revolute-
pair axes are located by pomts lying on the motion plane (planar
case) or on the unit sphere (spherical case). In our case, this

2The motion plane is a plane surface perpendicular to all the revolute-pair axes.

*The unit sphere is a sphere surface with unit radius and center coincident with
the center of the spherical motion. It is worth noting that the unit sphere is perpen-
dicular to all the revolute-pair axes since all the revolute-pair axes converge toward
the center of the spherical motion.
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Fig. 2 Four-loop PS with the topology of Fig. 1

technique simply consists in writing, for each loop, that the dis-
tance (either on the motion plane or on the unit sphere *) between
the two points locating the revolute-pair axes at the endings of the
binary link is constant.

In Sec. 3 this technique will be used to write a minimal set of
closure equations both for the planar case and for the spherical
case.

3 Closure Equations

By using the above-mentioned technique to write the closure
equations, the resulting closure equations are very similar in the
two cases under study, and the same elimination technique can be
adopted for determining a univariate polynomial equation to
solve.

In Secs. 3.1 and 3.2, the closure-equation system will be de-
duced for both the cases.

3.1 Planar Structure. Figure 2 shows the planar structure
with the topology of Fig. 1. With reference to Fig. 2, Q; for
i=1,...,4 are the points that locate the axes of the revolute pairs
that join the quaternary link (link 0) to the ith ternary link
(i=1,...,4). P; for j=1,2 and i=1,... .4 are the points that lo-
cate the axes of the revolute pairs that join the ith ternary link to
the two adjacent binary links.

Figure 3 shows the ith loop (i=1,...,4) of the PS and the
notation that will be used to deduce its loop equation. With refer-
ence to Fig. 3, the link-index k is equal to (i+1) modulo 4. r, is
the length of the segment Q;0y. rj; (ry), j=1,2, is the length of
the segment Q;P;; (QyP ;). And r3(,+4) is the length of the segment
P,;Py;. The angles B; and y; (B and 7,) are the interior angles at
0; (Qy) of link i (link k) and link O, respectively. The angle 6; (6;)
is the joint variable of the revolute pair located by Q; (Qy). Even-
tually, the reference system Q;x;y; is a Cartesian reference system,
fixed to link O, that will be used to write the loop equation of the
ith loop.

It is worth noting that the eight geometric constants of the qua-
ternary link (i.e., y; and ry; for i=1,...,4) are related by the
following three scalar equations (see Flgs 2 and 3):

4
2 vi=2m
i=1

(1a)

Fo1 = Fop COS Y2 = g €COS Yy — oz coS(y + V) (1b)

“The distance between two points on a sphere surface is the length of the shortest
great-circle arc joining the two points. On the unit sphere, this distance coincides
with the convex central angle delimited by the two radii passing through the two
points if the angle is measured in radians.
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Fig. 3 ith loop of the PS: notation (i=1,...,4; k=(i+1) modulo
4)

Fop SIN ¥, = g sin y; = roz sin(y; + ) (1c)

With these notations, the position vectors of the points P,; and
Py, in the reference system Q;x;y;, have the following explicit
expressions (i=1,...,4; k=(i+1) modulo 4):

. aic;—b;s; . 7165k
lP2i=( ) 1P1k=( ) (2)
a;s;i+ by Toi = "'kCrk
where the left superscript 7 indicates that the vectors are measured
in Qix;y;. ¢; (c) and s; (s;) stand for cos 6; (cos ;) and sin 6;

(sin 6,), respectively. Eventually, a; and b; are geometric constants
with the following explicit expressions:

a;="ry; COS(’Y,'"’,B;'—%W) (3a)

b;=ry; sin(y,- +B;— %77) (3b)
By reminding that the distance r3(;,4) between the points Py;

and Py, (see Fig. 3) can be expressed through the coordinates of
the two points, measured in any Cartesian reference system, the
following set of closure equations can be written for the PS under
study:
(Pyi— P =13 i=1.....4; k=(i+1) modulo 4
4)

The introduction of the explicit expressions (2) into Eq. (4)
yields the following system of closure equations in explicit form:

2 2_ 2 _
(aici=bisi=rus)”™ + (azs; + bic; = rop + 113c)” = 1304 = 0

i=1,...,4; k=(i+1) modulo 4 (5)

Closure equations (5) constitute a system of four scalar equa-
tions in four unknowns: the four joint variables 6;, i=1,...,4. By
expanding Eq. (5), system (5) becomes

8io+ 8i1Si+ &inCi+ &isCr+ Gua(sicp = ¢i5) + gis(cicp + 5;5) =0

i=1,...,4; k=(i+1) modulo 4 (6)

where the constant coefficients g;,, n=0,1,...,5, have the follow-
ing explicit expressions:

2, 2,2 2
8i0=T2; + Mk T 70; = 13(i44) (7a)
g =—2roa; 8n=-2rob;, 8i3=-2rpry (7b)
8ia=2ruai  gis=2rub; (7¢)

Each equation of system (6) is linear both in ¢; and s; and in ¢;,
and s;.

3.2 Spherical Structure. Figure 4 shows the spherical struc-
ture with the topology of Fig. 1. With reference to Fig. 4, O is the
center of the unit sphere; Q; for i=1,...,4 are the points that
locate, on the unit sphere, the axes of the revolute pairs that join
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Fig. 4 Four-loop SS with the topology of Fig. 1

the quaternary link (link 0) to the ith ternary link (i=1,...,4). P;;
for j=1,2 and i=1,...,4 are the points that locate, on the unit
sphere, the axes of the revolute pairs that join the ith ternary link
to the two adjacent binary links.

Figure 5 shows the ith loop (i=1,...,4) of the SS and the
notation that will be used to deduce its loop equation. With refer-
ence to Fig. 5, the link-index & is equal to (i+ 1) modulo 4. py; is

the convex central angle5 Q,00y. p;; (pji), j=1.2, is the convex
central angle Q,0P;; (QOP ). And pj;,4) is the convex central

angle P,;,OP,;. The angles B; and y; (B and 7,) are the dihedral
angles at the edge 0Q; (0Qy) of link i (link k) and link O, respec-
tively. The angle 6; (6,) is the joint variable of the revolute pair
located by Q; (Qy). Eventually, the reference system Ox;y;z; is a
Cartesian reference system, fixed to link 0, that will be used to
write the loop equation of the ith loop.

It is worth noting that the eight geometric constants of the qua-
ternary link (i.e., y; and py, for i=1,...,4) are related by any tern
of independent scalar equations deducible from the following ma-
trix equation (see Figs. 4 and 5):

'R,Ry°R°R, =1 (8)

where I is the 3 X 3 identity matrix, whereas “R;, k=(i+1) modulo
4, is the rotation matrix that transforms vector components mea-
sured in Ox;y;z; into vector components measured in Ox;y;z;. kR,-
has the following explicit expression:

kRi =R, (- Poz‘)Rz(’TT - %) )

where the following elementary rotation matrices have been intro-
duced:

1 0 0
R(a)=|0 cosa —sina (10a)
0 sina cosa
cosa —sina 0
R.(a)=|sina cosa 0 (10b)
0 0 1

With these notations, the position vectors of the points P,; and
Py, in the reference system Ox;y;z;, have the following explicit
expressions (i=1,...,4; k=(i+1) modulo 4):

SThe measure of the convex central angle between two radius vectors gives the
distance, on the unit sphere, between the two points located on the sphere by the two
radius vectors.
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Fig. 5 ith loop of the SS: notation (i=1,...,4; k=(i+1) modulo
4)

UiC; = U;S; S1kSk

i i
Pyi=|wsi+vic; |, Py=| cusoi = SiCoiCr (11)

wi C1kCoi T S14S0iCk
where the left superscript 7 indicates that the vectors are measured
in Ox;y;z;. ¢; (¢;) and s; (s;) stand for cos 6; (cos 6;) and sin 6,
(sin 6;), respectively, whereas cy; (ci,) and sy (sy;) stand for
cos py; (cos pyp) and sin py; (sin pyy), respectively. Eventually, u;,

v;, and w; are geometric constants with the following explicit ex-
pressions:

u; = sin py; cos(y, + B — 3m) (12a)

) . 3
v;=sin py; sin(y; + B - 37) (12b)
W; = COS py; (12¢)

Since cos p3(.a) is equal to the dot product of the position
vectors of the two unit-sphere points P,; and P (see Fig. 5) in
any Cartesian reference system with origin at 0. the following
set of closure equations can be written for the SS under study:

k=(i+1) modulo 4
(13)

where c3(;14) stands for cos ps(,4) and the right superscript O
denotes the transpose of (). The ith equation (13) analytically
expresses the fact that the distance, on the unit sphere, between
the two unit-sphere points P,; and Py is constant; hence, it is the
spherical counterpart of the ith equation (4).

The introduction of the explicit expressions (11) into Eq. (13)
yields the following system of closure equations in explicit form:

o . .
Py Pre=c304a, i=1,...,4;

(uic; = vs)s s+ (;s; + vi¢,) (cpso; = S1pcoick) + wileco;

+51150iCk) = C3(i+4)= 0
(14)
i=1,...,4; k=(i+1) modulo 4
Closure equations (14) constitute a system of four scalar equa-

tions in four unknowns: the four joint variables 6, i=1,...,4. By
expanding Eq. (14), system (14) becomes

hiO + hilsi"' hizci + hiSCk+ hi4sick+ h,-5Cisk+ hiécick'f' hﬁSiSk: 0

(15)
i=1,...,4; k=(i+1) modulo 4

where the constant coefficients 4;,, n=0,1,...,7, have the follow-
ing explicit expressions:

®Remind that radius vectors of the unit sphere coincide with position vectors of
the unit-sphere points, located by the radius vectors, in Cartesian reference systems
with origin at the unit-sphere center O.
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hio =WiC1Coi = C3(ieays  Pit = UiC S0 (16a)
hp=vicuso,  hiz=wisuso,  hia=—uis1Co; (16b)
his=usi  hig=—viSCoi  hig=—VS11 (16¢)

Each equation of system (15) is linear both in ¢; and s; and in ¢;,
and ;.

4 Solution Technique

The closure-equation systems (6) and (15) can be transformed
into algebraic-equation systems by using the following trigono-
metric identities:

-1 21;

1 .
= , i=1,...,4
l+t[2

(17)

Ci Si

1+

where 1;, i=1,...,4, is equal to tan(6;/2).
So doing, both systems (6) and (15) are put in the following
form:

2 2
E E dinmt;ltzl = 0’

n=0 m=0

i=1,...,4; k=(i+1) modulo 4

(18)

where the explicit expressions of the constant coefficients d;,,,,
n, m=0,1,2, are reported in Appendixes A and B for the PS and
the SS, respectively.

The first (i=1) and the fourth (i=4) equations of system (18)
can be rewritten in the following form:

Azl%+A1tl+A0=0 (19&)

Byt? + Bit; + By =0 (19b)
where Aj=d1j2[%+d1jlt2+dlj0 and Bj=d42jtzzl+d41jt4+d40j for
j=0,1,2. Moreover, the second (i=2) and the third (i=3) equa-
tions of system (18) can be rewritten in the following form:

Efi+Et;+ Ey=0 (20a)

(20D)
where Ej=d22jl%+d21jt2+d20j and Fj=d3j2fi+d3j1t4+d3j0 for

j=0,1,2.
The product of Eq. (19) by 7, yields two more equations that,
when added to Eq. (19), give the following homogeneous system:
M,f, =0 (21)

where f; is equal to (t?,t%,tl,l)T, whereas M| is a 4 X4 matrix
defined as follows:

F2t§+F1t3+FO=O

Ay A Ay O
B, B, B, 0
0 A, A, A
0 B, B, B,

On the other hand, the product of Eq. (20) by #3 yields two more
equations that, when added to Eq. (20), give the following homo-
geneous system:

Ml = (22)

M.f, =0 (23)

where f, is equal to (zg,zg,g, 1)7, whereas M, is a 4 X 4 matrix
defined as follows:

E, E, E, 0
F, F,
0 E,
0 F,

M, = (24)

E, Ey
Fy Fy

Transactions of the ASME



The two homogeneous systems (21) and (23) admit nontrivial
solutions for f; and f,, respectively, if and only if the two deter-
minants det(M;) and det(M,) are equal to zero (i.e., their coeffi-
cient matrices are singular). Since the entries of the first and the
third rows of both the matrices are quadrics in f,, whereas their
second and fourth rows are quadrics in ?4, the vanishing condition
of det(M;) and det(M,) yields the following two algebraic equa-
tions that are quartics both in #, and in #4:

4 4
> > Pty =0

n=0 m=0

(25a)

4 4
E 2 qnmtgtxl =0

n=0 m=0

(25b)

where the explicit expressions of the constant coefficients p,,,, and
Gum» for n, m=0,....4, as functions of the constant coefficients
reported in Appendixes A and B can be easily determined with the
help of an algebraic manipulator. Such expressions are not re-
ported here since they are cumbersome.

Equation (25) constitutes a nonlinear system of two equations
in two unknowns: 7, and #,. System (25) can be rewritten as fol-
lows:

4
DLA=0

(26a)
j=0
4
> Nih=0 (26b)
=0
where
4 4
Li= 2 pjlis Nj= 2 qnlis j=0,....4  (27)
=0 m=0

The product of Eq. (26) by t,, 13, and 7, yields six more equa-
tions that, when added to Eq. (26), give the following homoge-
neous system:

He=0 (28)
5 43 2

where e is equal to (1,15,55,63,53,13,1,,1)7, whereas H is an
8 X 8 matrix defined as follows:

(29)

S O O O o O

The homogeneous system (28) admits nontrivial solutions for e
if and only if the following equation is satisfied:

det(H) =0 (30)

Since the non-null entries of matrix H are univariate quartics in
t4, and det(H) is a sum of terms that are products of eight entries
of matrix H (see Appendix C), Eq. (30) is a univariate polynomial
equation in 4, which has at most degree 32. This result meets the
upper bound to the number of complex solutions of system (18)
that the authors found by calculating the optimal multihomoge-
neous Bézout number (see Refs. [12] and [13] for details) of sys-
tem (18). Moreover, it is compatible with the number, 30, of com-
plex solutions found in Ref. [10] for the planar case.

Journal of Mechanisms and Robotics

Once the values of #, that solve Eq. (30) have been computed,
by back substituting them into matrix H and then solving the
resulting systems (28), the corresponding values of 7, can be com-
puted. Eventually, the computed values of the couple {t,,7,} must
be back substituted into Egs. (21) and (23) to compute the corre-
sponding values of #; and #3.

The adopted elimination procedure could have introduced ex-
traneous solutions of type *j with j= -1 since the only factors,
which could generate extraneous roots and have been multiplied
by the original system of equations, are the factors (1 +ti2)(1 +t,%),
with i=1,...,4 and k=(i+1) modulo 4. Such factors have been
used to obtain system (18) from the original ones (i.e., either Eq.
(6) or Eq. (15)) passing through the trigonometric identities (17).

So far, the evaluation of the actual degree of Eq. (30) can be
done either through extended numerical tests, provided that they
identify at least one set of data that makes Eq. (30) a 32 deg
polynomial equation, or by analytically determining the coeffi-
cients of the polynomial equation (30).

Extended numerical tests, carried out by the authors, with ran-
domly generated data brought to find many data sets both for the
planar geometry and for the spherical geometry, which make Eq.
(30) a 32 deg polynomial equation. Moreover, the same numerical
tests demonstrated that the elimination procedure used to obtain
Eq. (30) introduces one couple of extraneous roots of type *; in
the planar case, whereas it does not introduce extraneous roots in
the spherical case. These results bring to the conclusion that, in
general, Eq. (30) is a 32 deg polynomial equation both for the
planar geometry and for the spherical geometry, but, in the planar
case, one common factor of type (1 +t§) can always be collected
and simplified. Thus, in general, the complex solutions of our
problems are 30 for the planar case, which agrees with the result
reported in Ref. [10], and 32 for the spherical case. Among the
complex solutions of Eq. (18), only the real solutions correspond
to actual assembly modes of the structure under study. For the
planar case, a PS geometry with 28 assembly modes is reported in
Ref. [10]. For the spherical case, the above-mentioned numerical
tests brought to identify a SS geometry with 20 assembly modes.
The maximum number of real solutions of Eq. (30) is still an open
problem.

Regarding the analytic determination of the coefficients of the
polynomial equation (30), it can be implemented with the help of
an algebraic manipulator by, first, determining the explicit expres-
sion of det(H) as a function of the non-null entries of matrix H
(see Appendix C), and then elaborating the obtained expression,
either as a whole or by grouping terms according to the size of the
computer memory.

In the planar case, this procedure can be used to deduce the 30
deg univariate polynomial equation that contains only the com-
plex solutions of the closure-equation system. Indeed, since, in

this case, one common factor of type (1 +ti) can be collected and

simplified, Eq. (30), written in the form E?zzol ,»t[i:O, can be put in

the form (1 +tﬁ)2§£0n #4=0 by considering that the following it-
erative formula, which relates the n; coefficients to the l i coeffi-

cients, holds:

ni=1— (31)

i j nj_z, j=0,...,32

with n_p=n_j=ns =n32=0.

5 Numerical Examples

Two numerical examples, one for the planar case and the other
for the spherical case, are reported in this section in order to show
the effectiveness of the proposed algorithm.

The algorithm has been implemented in MAPLE. The numerical
computations have been executed by setting the machine precision
equal to 32 decimal digits in MAPLE. All the computed solutions,
when substituted into the closure equations, satisfy those equa-
tions with residuals whose absolute values range from less than
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Table 1

Planar structure: solutions of the numerical example

I

15}

I3

Iy

O 0 N AN AW N =

[SSINN ST S RN S EN S 2N SR SR S I S N SR S e e e e e e e
S O 00 AN R WD = O 0 0NN R WD = O

0.14540976407902879027293908

—-0.077227714709025110370104775

0.31027317592256860100604449
0.45062695967325673049797405
1.20695305556324089196099633
—-0.64640026596367343569314724
1.66916735389394832010007919
13.16425818060947425215680863
208.45038747133619402856213487
—26.81541066700656298137161586

0.039846847673210378188216602

—-0.15607071229759993578242963

0.077971500241808447357197929

—0.30820112784483839462288724
—0.32498273061036110891061454
0.17046575070945815221605462
—0.43210685728254645483179199
0.52684373129210421002487735
—32.55430091621347845561677664
11.25055399577708095094706716
10.87826714915480388273577657
10.59132861100362440506723393
—0.46091396718-0.3147647875j
—0.46091396718+0.3147647875j
—0.22634298550-0.3044553268;
—-0.22634298550+0.3044553268;
—-0.27792212930-0.2474597288;j
—0.27792212930+0.2474597288
—0.40592787199-0.3396438907;
—0.40592787199+0.3396438907

0.64496623994571841596263372
0.76803507980135176081753200
—0.78277181236408978593774468
—0.69794362132646017838199605
0.91633117401742338436255702
4.04003082965422103236594713
1.14216132858181575837207037
4.26882828246928634814151261
—2.11674168109901666421941153
—-3.07760509002559592809555103
—1.10048431924001936505603127
—1.55698842971696026891592910
0.67054918338255699388821957
—2.22324243579987649268244828
1.09252930678734718250915716
0.63770346854436767382116706
1.36268671107614166134072405
—0.66739051464043879792708220
—2.82792448537262388807377299
—1.47768067112559515995942455
3.85237293514646026565524521
3.79590172229500515671923849
0.92479484478+0.6793627405;
0.92479484478-0.6793627405;
—1.26354193430-0.9102694686;
—1.26354193430+0.9102694686;
—1.51031256094-0.9565297756;
—1.51031256094+0.9565297756;
0.84446118451+0.6023166102;
0.84446118451-0.6023166102;

—0.33995155650823447070843769
—0.37583922874392176970779633
0.42188060295853963511347192
—0.97476498792723065506640091
1.09130850106927139480659436
—2.71967984246300713821885292
1.37143762290017367135776656
—-4.53789402060688689762408517
—4.78562060550766382277121085
2.90357331147061231692162538
0.55472513836233642331325649
0.78641617401213709094144928
0.81579796381664550087115700
1.25223538268247267422803279
1.30746020746642945930185019
—0.33797081342814258809109019
1.67488361163341613634156329
—0.93642359477505331961703787

—253.73121491428977207738482685

—-2.30168293097248032931051648
—2.30523947165503596877276301
-51.26410762602066041681539526
—0.39930489512-0.2398553778j
—0.39930489512+0.2398553778j
—1.31998222381—1.436522544j
—1.31998222381+1.436522544;
0.65243761504+0.4943832040;
0.65243761504—-0.4943832040;
0.93036922244+0.6829091211;
0.93036922244-0.6829091211;

0.0819791126793446047065806293
0.0991483691462966418039440854
0.2238289048835068617548207877
0.3378809249470220693696311392
0.8390996311772800117631272981
1.045998408481253318241645595
1.050583466573429961237254444
1.800982930765191163895773994
1.895978137292928399253752311
1.943292745104974910169838954
—0.084308385270921315258566334
—0.167603233161461281813419201
—0.176970618142634298758693275
—0.302069667336494935593808144
—0.316590516221194220495666284
—0.363773478707546671785525565
—0.407984780649443848667174677
—1.02246294842782466661923238
—2.25282987723016144150037867
—2.42705297789839512570915480
—2.43031231220896800404824993
—2.43293211532249675222279903
—0.44330155417-0.2650496400;
—0.44330155417+0.2650496400;
0.42996169345+0.5607327793
0.42996169345-0.5607327793
0.50950215830+0.4401832433;
0.50950215830-0.4401832433;
0.76616003143+0.5562035841
0.76616003143-0.5562035841




-5
i 10

Solution 1. Solution 2. Solution 3. Solution 4. Solution 5.
5 5 5 5 10
5
0 0 0 0
0
-5 -5 -5 -5 -5
-5 0 5 10 -5 0 5 10 -5 0 5 10 -5 0 5 10 -5 0 5 10
Solution 6. Solution 7. Solution 8. Solution 9. Solution 10.
5 10 10 10 10
5 5 5 5
0
0 0 0 0
-5 -5 -5 -5 -5
-5 0 5 10 -5 0 5 10 -5 0 5 10 -5 0 5 10 -5 0 5 10
Solution 11. Solution 12. Solution 13. Solution 14. Solution 15.
5 5 5 5 5
0 ﬁ 0 g 0 W 0 ﬁ 0 W
-5 -5 -5 -5 -5
-5 0 5 10 -5 0 5 10 -5 0 5 10 -5 0 5 10 -5 0 5
Solution 16. Solution 17. Solution 18. Solution 19. Solution 20.
6 5 6 10 10
4 5 5
0 0
2 0 0
-5 -5 0 -5 -5
-5 0 5 10 -5 0 5 -5 0 5 10 -5 0 5 10 -5 0 5 10
Solution 21. Solution 22.
10 10
< <
0 0
0 5 0 5

Fig. 6 Planar structure: assembly modes corresponding to the real solutions reported in Table 1

10724 to 107'°, which is coherent with the chosen machine preci-
sion.

5.1 Planar Structure. With reference to Fig. 3, the geometric
data of the planar structure are (the angles are measured in radi-
ans; the lengths are measured in a generic unit of length) as fol-
lows:

=73, v=10m21, y;=27/3, 7y,=117/21
Bi=m3, By=m2, PB3=57/18, PBy=m/2
=15 r,=23, rz=1, ryu=2
r =2, rp=1, rp=2, ry=2
ro1=5.9068, rep=2, rpz=4, ro=4.3069
r35=17.2893, 1r34=2.2485, 1r3;=3.8270, ryz=4.8127

Among these geometric data, the parameters 7y, ¢, and ro4 have
been computed by using relationships (1) together with the values
of the other geometric data of the quaternary link. Moreover, once
the geometries of the quaternary and the ternary links were de-
fined, the lengths of the binary links (i.e., r35, 3¢, r37, and r3g)
have been computed through Eq. (4) after the following values of
the angles 6;, i=1,...,4, were assigned:

Journal of Mechanisms and Robotics

0, =47m/84, 6,=17m/36,
which correspond to (z;=tan(6;/2)):
t; =1.2069530555, 1,=0.9163311740

0,=197/36, 0,=4m/9

t3=1.0913085010, 1,=0.8390996311

This reference assembly mode appears in Table 1 as solution 5.

All the computed solutions of system (18) for this planar ge-
ometry are reported in Table 1. Among the 30 solutions reported
in Table 1, the first 22 solutions are real. Therefore the studied
planar geometry admits 22 assembly modes. Such assembly
modes are shown in Fig. 6.

5.2 Spherical Structure. With reference to Fig. 5, the geo-
metric data of the spherical structure are (the angles are measured
in radians) as follows:

y=m6, =23, y;=1.62440, vy,=27/3

,812’77'/4, B2= 77/4, B3=7T/6’ ﬂ4=77/4

pu=m5, pp=7/l, pi=m5py4=7/6

P =15, pn=7ll, py=m15 pyu=m/6

Po1=0.1855, pgr,=0.1068, pyz=m/7, po=m/8

MAY 2009, Vol. 1 / 021003-7
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Table 2 Spherical structure: solutions of the numerical example
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0.71210618362405426284256680
—0.77555049530120851859608902
0.73108529113176738147778583
—0.72549776292846969591003825
—-0.63263922860470586533425186
1.57053701322224629303710825
2.40142765596175495890746839
2.94590500454578732727341691
—0.32795607767030026969899765
—0.35516231227752358582549022
—1.65975815407406043940241852
—1.38917347319588278667302307
0.57581984213681238722225099
—1.04104284673259602904066614
—1.61463716957538962922155030
0.42332462997183013284378318
—2.62820087281999567358612281
0.55460724172756564825008630
0.59483291307175496023888520
0.90142516808676214346285897
0.00342194452—-1.44883692156,
0.00342194452+1.44883692156;
0.07455997783-0.12122912972;
0.07455997783+0.12122912972;
—0.23381078635-1.21762411406;
—0.23381078635+1.21762411406/
—0.55234273464-0.64624481380;
—0.55234273464+0.64624481380;
0.09011189540-1.15046250591;
0.09011189540+1.15046250591;
—0.13337931843-0.39981317759;
—0.13337931843+0.39981317759;

—1.07497455753610126844941610
—0.74503557530432738102964660
0.36104413133812455092212669
0.79320769587113511335921109
—0.56652126398478751309846081
—0.52991180805252246579181921
0.99959051861156910688335979
1.14028145816754857419174148
2.19663385872870672116782892
—0.28916074078427804669446380
—2.56923193640685492125416214
—1.84208964986328586214502214
—1.30867847119402492580107470
—1.14747508391672336044297166
0.24467583838696498764648277
0.20417982508098921066693455
—9.29741813777522859855414691
0.27238511180213352674820919
—-1.26993077235092135957743913
—0.86488448942789661222868463
—-0.07299074451-0.36795252833j
—0.07299074451+0.36795252833
—3.11221184246-3.63391279861;
—3.11221184246+3.63391279861;
0.09063269535—-1.17945847211j
0.09063269535+1.17945847211j
0.14522125200-0.66631164661 )
0.14522125200+0.66631164661 )
0.10893422241-0.97670327545;
0.10893422241+0.97670327545j
0.27358440193-1.79147591705j
0.27358440193+1.79147591705;

—0.44800329091214858293485363
—0.24792229123086817311120878
—0.23746745300156585250147610
0.03630297251790967535735756
—1.44902748818508054635389670
—-1.37210452664695894570979698
1.47191403359898321689225502
1.68387120989711817340500497
3.92448007851295936217838809
—-0.94600220362422008355832889
9.79335321801512801048241709
—0.84651594808033024796061489
—4.65455115661074888666990473
—3.50406969845887886005942853
0.54597642903231132114054648
0.50514822416316912555231635
—2.57059162668172064761692181
—0.30818076970875067831990899
—4.33353238096872539657203809
—-0.32303829136494826043861252
—0.56722944684-0.42617220241;
—0.56722944684+0.42617220241;
—1.81717583594—-1.05093035245;
—1.81717583594+1.05093035245;
0.04271862463-0.73206889984
0.04271862463+0.73206889984
0.32805303569—-0.64275586423 )
0.32805303569+0.64275586423
0.15179864121-0.99221796677;
0.15179864121+0.99221796677;
0.32398368945-0.86102638956;
0.32398368945+0.86102638956,

0.08888750399467942592826241
0.10816694054981834932287101
0.10950012413553095254398550
0.16000844373201842754237919
0.27451592178874086050489859
0.68727090141199789465811756
0.99953905003138499326551774
1.14028145816754857419174148
2.44302088284558462087474599
3.26553951295171978376109941
5.03567470968899676965553945
5.61748994274721802111609339
—0.08542804448235159783879797
—0.10012284021138216272481265
—0.36991906499149841363008628
—0.39495622231747702816149454
—-0.61864963851011157573145133
—2.21676044670613406595744070
—2.25993333485671694287174695
—2.31799366029688446938212761
—0.57746797303-2.18365466581
—0.57746797303+2.18365466581
—0.27842265152-1.15434019112j
—0.27842265152+1.15434019112j
—0.21193805682-0.94629004473 )
—0.21193805682+0.94629004473 )
—0.03952558872-0.56289938664
—0.03952558872+0.56289938664
0.07761152840-1.02215361384;
0.07761152840+1.02215361384;
0.12386266728—-0.81145941293
0.12386266728+0.81145941293;
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Fig. 7 Spherical structure: assembly modes corresponding to the real solutions reported in Table 2

P15 =0.7099, pi=0.4532, py;=0.7324, pig=0.8997 6 Conclusions

Among these geometric data, the angles py, pgy, and 3 have been
computed by using a tern of independent scalar equations, de-
duced from the matrix equation (8), together with the values of the
other geometric data of the quaternary link. Moreover, once the
geometries of the quaternary and the ternary links were defined,
the central angles of the binary links (i.e., p35, p3g. P37, and p3g)
have been computed through Eq. (13) after the following values
of the angles 6, i=1,...,4, were assigned:

0,=19m/24, 6,=13m/24

0, = (117/12) — (81/100),
which correspond to (¢;=tan(6;/2)):

0,=137/24

1, =2.945905004545, t,=1.140281458167

t;=1.683871209897, t,=1.140281458167

This reference assembly mode appears in Table 2 as solution 8.

All the computed solutions of system (18) for this spherical
geometry are reported in Table 2. Among the 32 solutions reported
in Table 2, the first 20 solutions are real. Therefore the studied
spherical geometry admits 20 assembly modes. Such assembly
modes are shown in Fig. 7.

Journal of Mechanisms and Robotics

An algorithm that determines all the assembly modes of two
structures with the same topology has been presented.

The topology of the studied structures is constituted of nine
links (one quaternary link, four ternary links, and four binary
links) connected through 12 revolute pairs to form four closed
loops.

Such structures can be thought as generated from two large
families (one planar and the other spherical) of parallel manipu-
lators by locking the actuated joints. Thus, the proposed algorithm
can be used to solve the DPA of all these manipulators.

Through the proposed algorithm, it has been confirmed that the
DPA of the planar manipulators, which generate structures with
this topology, has 30 complex solutions. And it has been demon-
strated that the DPA of their spherical counterparts has 32 com-
plex solutions. Moreover, extended numerical tests, which used
the proposed algorithm, demonstrated the robustness of the algo-
rithm and brought to find a spherical geometry with 20 assembly
modes (i.e., real solutions of the DPA). As far as the authors are
aware, the analytic solution of the DPA of the spherical parallel
manipulators that generate structures with this topology is new.

This work is framed into a research activity oriented to provide
efficient algorithms that solve the DPA of all the planar and
spherical parallel manipulators that become quadruple-loop Assur
kinematic chains when their actuators are locked.

MAY 2009, Vol. 1 / 021003-9
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With reference to Eqgs. (18) and (16), the constant coefficients
dipms s m=0,1,2, have the following explicit expressions for the
spherical structure (Fig. 4):

Appendix A dio1 =2h;s,  dij1=4hy,  dig=hijg—hip+hiz— hie
With reference to Egs. (18) and (7), the constant coefficients

diyms 1, m=0,1,2, have the following explicit expressions for the
planar structure (Fig. 2):

dip=hio+hip—hiz—hig,  din= Z(hil - hi4)

dipy==2his, dipp=hig—hp—hiz+hig
dion=8io+8n+8i+8is» dino=2(8i1+8&ia)
Appendix C
dig1=—28is, dinn=48is, dino=8io— 8t &3~ 8&is PP o . .
The explicit expression of det(H) as a function of the non-null
dip=8io+8n— 83— &is» din=2(gi1 — gis) entries of matrix H (see definition (29)) is

|
det(H) = LiNg — LyLININ| + LoLINAN? — LiLINGN? + LyLINT + L3LININ, — 2L, LIN3N, — LoyLsLIN3N N, + 3L, LIN3N,| N,

+ L L3L2NyN3N — ALoLINGN?N, — LyL;L2NIN, + L3LIN3N3 — 2L, Ly LANZN? + 2LoLINN3 — Ly L,L2NoN N>
+ 3LoLALINGN N3 + LoL,LINN3 + LILANN3 = 2LoLoLiNGN3 — LoL,LIN| N3 + L3L3N3 — L3L,NyN5 + 3L,L;LAN3N;
— 3L LINGN3 + LyL3LyNGN N5 = 2L5LENGN | Ny — L L LiNGN | N5 + 4Ly LiNGN N3y — L L3L4NoN N3 + 2L, L,L;NoNiN;
+ LoLsLANGNIN; + LoLAL4NINy = 2LoLoLANINy = L3L3LyN3N,N5 + 2L LALNEN, Ny + Ly Ly LANAN, Ny = SLoLsLININ,Ny
+ Ly LoL3LyNyN N>N = 3LoLAL4NoNNoN3 = 3LTLNGN {NoN3 + 4LoL,LiNgN | NyN5 — LoLoLLyNN,N + 3LoL, LiNTN,N3
— L2L3L,NyN3N; + 2LoLoLALyNoN3N5 + LoL  LANGN3N + LoLi LyLyN N3N5 — 4LALIN\N3N5 — LALsL4N3N5 + L3L,NN>
— 3L, LyLAL4NGN3 + 3LoL3L4NGN3 + 3LILINGN; — 3LoL,LiNGNG — LiL3LyNoN N3 + 2L LsLyNoN N3 + LoLoLsLyNoN\N3
2 2 2 272 272 272072772 2 2 2 2 2
— 5LL LINGN|N3 + LoLALyN3N3 = 2LoLy LyLyN?N3 + 2LL2NING + L2LoLyNoNoN3 — 2LoL3L4NN,N — LoL,L;LyNoN,N>
+ 4L LINGN,N3 — LoLi Ly LyN | NoN3 + 3LALAL4N\NoN3 + LALoLyNAN3 — LILyNoN3 + 3LoLy LoLyNoN3 — 3L3LsLyNoN;
+ LoL3L,N N3 = 2L2L,LyN N3 — L3LLyN>N3 + LiLyN + LANIN, = 4L, L3L,NaN, + 2L3L2N3N, + 4L LA LININ,, — 4LoLINN,
— LoL3NIN Ny + 3L3L5LyNiN Ny + LiL3LNEN Ny = SLLLINGN Ny = LoLALINAN Ny + LiLINGNIN, = 3L, LoLsLyNoNIN,
2 2 272 2 2 2 3a73 3 2a73 27272

— LoLALyNNIN, + 3L2LINGNIN, + 2LoLoLANGNIN, — LoLANIN, + 3LoLoLsLyNiNy — 3LoL  LANIN, + L3LIN3N,N,
— 2L LINAN,N = 2LAL4NAN,N + 4L, Ly Ly LyNiN,Ny + 2LoLALNEN,Ny = 3L2LINANAN, + 2LoL,LANZN,N, — LiL,L3NGN NN,
+3LoLANGN | NoNyy + 2L, L3LyNoN \NoNy + LILsLyNoN \NoNy = 8LoLoLsLyNoN NoNy + 2LoLy LiNGN NoNy + LoL,L3NTN,N,
— 2LLALyN? NNy = LoLiLALyN*N,N, + 4LALIN? NN, + LALANGNAN, = 2LoLoLANGNIN, — 2L3L,LyNgN3N, + 4LoLAL4NoN3N,

272 2 2 2 2) 2 2 27273 2 3 3 2
— AL3LANGNAN, — Loy LAN N3N, + 2Lo L\ LoLyN\ N3Ny + LALAL4N N3N,y + LALAN3N, — 2L3L,LyN3N, — L3L;N3N3N,
+ 3L L LANANSN, = 3LoLANAN3N, + Ly LALyNIN3N, — SLILsLyN3N3Ny + 2LoLoLLyNANN, + SLoL LININ3N,
+ L L3LsNyN N3N, = 2LILINGN | N3Ny — LoL,LiANgN N3Ny = LIL,LyNoN N3N, + 10LoL, L3LyNyN N3N, — 8LILINGN | N5N,,
— LoL3LyN3N3Ny + 2LL  LANN3N, + LoLi LyLyN*N3Ny — SL2L3LyNiN3N, — L2 LoLsNoNoN3Ny + 2L L3LyNoN,N3N,
+ LoL \L3NyN>N3Ny + 3L LyNoN,N3Ny = 8LoLy LoyLyNyNoN3Ny + 2L3LALyNoN,N3N, + LoLi Ly LyNN,N3Ny — 3LAL3N,N,N3N,
= 3LoLIL4N NoN3Ny + 4LGLoLyN NoN3N, — LiLoLsNsN3Ny + 3LGL LyN3N3N, + LiLsNgN3N, — 3LoLy Ly LyNoN3N,

272 2 2 2 2 2 2 2 2 2 2 2 2 2
+3LLANGNAN, — LyL>LyNoN>Ny + 2L3LoLyNoN>Ny — LoL2LsN N3N, + 2L3L,LyN N3Ny + LAL,LyN N3N, + LAL,LyN>NaN,

— 4L LN, N3N, — LILsN3N, + LINGNG — AL L5LNgN; + 2LILANGNG + 4LoLoL3NGNG + 4L, LyNgN; — 4LoL3L4NGN;
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— 8LoL LsLyNINS + 6LALINING — LiLANGN, N3 + 3L2LoLysNoyN N2 + LoL3LsNoyN N3 = SLoL,L3NgN, N> = 3L3L,NoN, N3

+2LoLy LoLyNoN\ N3 + SLALsLuNGN N2 + LoLANIN3 — 3LoLiL,LyNIN? + 3LALAN?N + 3LoL2LyNTN3 — 3L3L,L,NIN?

+ LiL5NGN2N; = 2LoLANgN,N; = 2L3LsNgN, NG + 4LoLy LyLyNgNoN; = 3LGLINGN,N; + 2LoLTLyNoNoNG + 2LGL,LyNoN,N;

— LoL,\L5N\N>N7 + 2LoL1LsN | N,N; + LiL,LsN N>N; = SLALLyN\NoNG + LILANGNG — 2L, LyNGNG + 2L LuNSN;

— L3L,NoN3N; + 3LL, L3NgN;N; + LoLILyNoN;N7 = SLAL,LyNoN3NG — LIL,LyNoN3N7 + LoLIL,N N3N7, — 2LELIN N3N

— L3L\LyN N3N3 + AL3LyN N3N = LILLyN>N3N- + 3LILAN,N3NG + LILNANG + LiNGN3 — 4LoLIL,NoN; + 2LALANGN

+ 4L LsNN; = 4LILNGN3 — LoL3N| N3 + 3L3L,LoN\N3 = 3L LN N3 + LALIN,N3 = 2L3L,N,N; — LiL,N5N3 + LN

References

[1] Innocenti, C., 1995, “Polynomial Solution to the Position Analysis of the
7-Link Assur Kinematic Chain With One Quaternary Link,” Mech. Mach.
Theory, 30, pp. 1295-1303.

[2] Wampler, C. W., 2004, “Displacement Analysis of Spherical Mechanisms Hav-
ing Three or Fewer Loops,” ASME J. Mech. Des., 126, pp. 93-100.

[3] Manolescu, N. L., 1973, “A Method Based on Baranov Trusses, and Using
Graph Theory to Find the Set of Planar Jointed Kinematic Chains and Mecha-
nisms,” Mech. Mach. Theory, 8, pp. 3-22.

[4] Yang, T.-L., and Yao, F. H., 1988, “Topological Characteristics and Automatic
Generation of Structure Analysis and Synthesis of Plane Mechanisms, Part
I—Theory, Part II—Application,” Proceedings of the 1988 ASME Mechanisms
Conference, Kissimmee, FL, DE-Vol. 15-1, pp. 178-190.

[5] Shen, H., Ting, K.-L., and Yang, T.-L., 2000, “Configuration Analysis of Com-
plex Multiloop Linkages and Manipulators,” Mech. Mach. Theory, 35, pp.
353-362.

[6] Nielsen, J., and Roth, B., 1999, “Solving the Input/Output Problem for Planar
Mechanisms,” ASME J. Mech. Des., 121, pp. 206-211.

Journal of Mechanisms and Robotics

[7] Wampler, C. W., 1999, “Solving the Kinematics of Planar Mechanisms,”
ASME J. Mech. Des., 121, pp. 387-391.

[8] Wampler, C. W., 2001, “Solving the Kinematics of Planar Mechanisms by
Dixon Determinant and a Complex-Plane Formulation,” ASME J. Mech. Des.,
123, pp. 382-387.

[9] Wang, P, Liao, Q., Zhuang, Y., and Wei, S., 2007, “A Method for Position
Analysis of a Kind of Nine-Link Barranov Truss,” Mech. Mach. Theory, 42,
pp. 1280-1288.

[10] Han, L., Liao, Q., and Liang, C., 1999, “A Kind of Algebraic Solution for the
Position Analysis of a Planar Basic Kinematic Chain,” Journal of Machine
Design, 16(3), pp. 16-18.

[11] Han, L., Liao, Q., and Liang, C., 2000, “Closed-Form Displacement Analysis
for a Nine-Link Barranov Truss or an Eight-Link Assur Group,” Mech. Mach.
Theory, 35, pp. 379-390.

[12] Malajovich, G., and Meer, K., 2004, “Computing Multi-Homogeneous Bézout
Numbers is Hard,” Preprint, http://www.arxiv.org/abs/cs/0405021.

[13] Wampler, C. W., 1992, “Bézout Number Calculations for Multi-Homogeneous
Polynomial Systems,” Appl. Math. Comput., 51, pp. 143-157.

MAY 2009, Vol. 1 / 021003-11



