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Polynomial Solution to the
Position Analysis of Two Assur
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The direct position analysis (DPA) of a manipulator is the computation of the end-effector
poses (positions and orientations) compatible with assigned values of the actuated-joint
variables. Assigning the actuated-joint variables corresponds to considering the actuated
joints locked, which makes the manipulator a structure. The solutions of the DPA of a
manipulator one to one correspond to the assembly modes of the structure that is gener-
ated by locking the actuated-joint variables of that manipulator. Determining the assem-
bly modes of a structure means solving the DPA of a large family of manipulators since
the same structure can be generated from different manipulators. This paper provides an
algorithm that determines all the assembly modes of two structures with the same topol-
ogy that are generated from two families of mechanisms: one planar and the other
spherical. The topology of these structures is constituted of nine links (one quaternary
link, four ternary links, and four binary links) connected through 12 revolute pairs to
form four closed loops. �DOI: 10.1115/1.3046134�

Keywords: parallel mechanisms, kinematics, position analysis, Assur kinematic chains
Introduction

The direct position analysis �DPA� of a manipulator is the com-
utation of the end-effector poses �positions and orientations�
ompatible with assigned values of the actuated-joint variables.
ssigning the actuated-joint variables corresponds to considering

he actuated joints locked, which makes the manipulator a struc-
ure. The solutions of the DPA of a manipulator one to one corre-
pond to the assembly modes of the structure generated by locking
he actuated-joint variables of that manipulator. Determining the
ssembly modes of a structure means solving the DPA of a large
amily of manipulators since the same structure can be generated
rom different manipulators.

The solution of the DPA of parallel manipulators �PMs� is a
ifficult and challenging task since, in general, it involves the
olution of a system of nonlinear equations.

Spherical parallel manipulators �SPMs� are PMs where the end-
ffector performs only spherical motions with a center fixed to the
rame. SPMs can be collected into two subsets: �i� the set of the
PMs where only the end-effector and few �or no� other links
erform spherical motions with the same center and �ii� the set of
he SPMs where all the links perform spherical motions with the
ame center. When the actuated joints are locked, both these two
ypes of SPMs become structures whose assembly modes can be
dentified by considering equivalent structures where the links are
onnected only through revolute pairs with axes that converge
oward the spherical motion center. Such structures will be called
pherical structures �SSs�.

Structures composed of links connected only through revolute
airs are also generated from a large family of planar parallel
anipulators �PPMs� by locking the actuated joints. In this case,
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all the revolute-pair axes are parallel to one another and perpen-
dicular to the plane of motion. Such structures will be called pla-
nar structures �PSs�.

When the topology of a structure is analyzed, only the number
and the type �binary, ternary, etc.� of links and the type of kine-
matic pairs that connect the links to one another are considered.
Therefore, the SSs and the PSs share the same set of topologies.

Moreover, by using the Grübler–Kutzbach equation, it is easy
to demonstrate that, in the SSs and the PSs, the number of loops,
l, the number of links, m, and the number of revolute pairs, r, are
related by the following two relationships: m=2l+1 and r=3l.

Sometimes structures contain substructures �i.e., a subset of
links that form a structure by themselves�. A substructure can be
substituted into the original structure by a unique link whose
shape depends on the assembly modes of the substructure. This
substitution process ends when no other substructure can be iden-
tified in the last obtained structure. In literature, structures that do
not contain substructures have been called Assur kinematic chains
�AKCs�. The determination of all the assembly modes of any
structure can be implemented by exploiting a set of algorithms
that solve all the AKCs �1�.

The solution of the DPA of all the SPMs can be implemented
by classifying all the SS topologies, which refer to AKCs, and
then by providing, for each identified topology, an algorithm that
computes the assembly modes of the AKC with that topology. The
fact that the set of SS topologies coincides with the one of PSs
allows the wide literature on planar mechanisms to be exploited
�2�. In particular �see Ref. �1��, there are one single-loop AKC
topology �the triad�, one double-loop AKC topology �the pentad�,
and three triple-loop AKC topologies. Moreover, Manolescu �3�
gave a complete classification of triple-loop topologies and how
they are built. Eventually, Yang and Yao �4� identified all the AKC
topologies with four loops. So doing, they showed that there are
28 quadruple-loop AKC topologies �see also Refs. �5� and �9��.

The algorithms that analytically calculate all the assembly
modes of the AKCs up to three loops have been already presented
both for the planar case �see Ref. �1� for references� and for the

spherical case �see Ref. �2� for references�. Moreover, general
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echniques for solving the DPA of planar mechanisms have been
resented �see, for instance, Refs. �6–8��, and the assembly modes
f a number of planar structures with four loops have been ana-
ytically determined �see Ref. �9� for references�. As far as the
uthors are aware the determination of the assembly modes of
pherical structures with four loops was not addressed yet.

This paper addresses the determination of the assembly modes
f the structures, either planar or spherical, with 1 out of the 28
uadruple-loop AKC topologies �the 15th one reported in Table 1
f Ref. �9��. And it provides one algorithm, which is applicable to
he planar and the spherical cases and solves the closure-equation
ystems of these structures in analytical form. In particular, the
opology of these structures is the one reported in Fig. 1, and it is
onstituted of nine links �one quaternary link, four ternary links,
nd four binary links� connected through 12 revolute pairs to form
our closed loops.

The planar structure with this topology has been already solved
n Ref. �10� by using an algorithm based on complex numbers and
imilar to the ones reported in Refs. �9� and �11�. The solution
echnique used in Ref. �10� is different from the one reported here
nd cannot be extended to the spherical structure with the same
opology.

Background
The closure equations of a structure �or a mechanism� can be

ritten in many ways. The most common techniques are based on
he use of the loop equations that are a fixed number, say, n, of
ndependent scalar equations that can be written for each indepen-
ent loop appearing in the structure.

When the structure contains a number of particular binary links
t least equal to the number of independent loops, and the choice
f the independent loops can be operated so that each loop con-
ains at least one binary link not included in the other loops, the
umber n can be reduced to 1, and the closure-equation system
an be reduced to a number of scalar equations equal to the num-
er of loops.

The analysis of Fig. 1 reveals that, in the structures under study,
our independent loops with one binary link can be easily indi-
iduated: �1� loop 0-1-5-2 �link 5 is binary�, �2� loop 0-2-6-3 �link
is binary�, �3� loop 0-3-7-4 �link 7 is binary�, and �4� loop

-4-8-1 �link 8 is binary�. All these loops are four-bar loops with
nly revolute pairs.

Both in the planar case and in the spherical case, the revolute-
air axes are located by points lying on the motion plane2 �planar
ase� or on the unit sphere3 �spherical case�. In our case, this

2The motion plane is a plane surface perpendicular to all the revolute-pair axes.
3The unit sphere is a sphere surface with unit radius and center coincident with

he center of the spherical motion. It is worth noting that the unit sphere is perpen-
icular to all the revolute-pair axes since all the revolute-pair axes converge toward

ig. 1 Topology of the studied structures: graph vertices rep-
esent links and graph edges represent joints „R stands for
evolute pair…
he center of the spherical motion.
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technique simply consists in writing, for each loop, that the dis-
tance �either on the motion plane or on the unit sphere4� between
the two points locating the revolute-pair axes at the endings of the
binary link is constant.

In Sec. 3 this technique will be used to write a minimal set of
closure equations both for the planar case and for the spherical
case.

3 Closure Equations
By using the above-mentioned technique to write the closure

equations, the resulting closure equations are very similar in the
two cases under study, and the same elimination technique can be
adopted for determining a univariate polynomial equation to
solve.

In Secs. 3.1 and 3.2, the closure-equation system will be de-
duced for both the cases.

3.1 Planar Structure. Figure 2 shows the planar structure
with the topology of Fig. 1. With reference to Fig. 2, Qi for
i=1, . . . ,4 are the points that locate the axes of the revolute pairs
that join the quaternary link �link 0� to the ith ternary link
�i=1, . . . ,4�. Pji for j=1,2 and i=1, . . . ,4 are the points that lo-
cate the axes of the revolute pairs that join the ith ternary link to
the two adjacent binary links.

Figure 3 shows the ith loop �i=1, . . . ,4� of the PS and the
notation that will be used to deduce its loop equation. With refer-
ence to Fig. 3, the link-index k is equal to �i+1� modulo 4. r0i is
the length of the segment QiQk. rji �rjk�, j=1,2, is the length of
the segment QiPji �QkPjk�. And r3�i+4� is the length of the segment
P2iP1k. The angles �i and �i ��k and �k� are the interior angles at
Qi �Qk� of link i �link k� and link 0, respectively. The angle �i ��k�
is the joint variable of the revolute pair located by Qi �Qk�. Even-
tually, the reference system Qixiyi is a Cartesian reference system,
fixed to link 0, that will be used to write the loop equation of the
ith loop.

It is worth noting that the eight geometric constants of the qua-
ternary link �i.e., �i and r0i for i=1, . . . ,4� are related by the
following three scalar equations �see Figs. 2 and 3�:

�
i=1

4

�i = 2� �1a�

r01 − r02 cos �2 = r04 cos �1 − r03 cos��1 + �4� �1b�

4The distance between two points on a sphere surface is the length of the shortest
great-circle arc joining the two points. On the unit sphere, this distance coincides
with the convex central angle delimited by the two radii passing through the two

Fig. 2 Four-loop PS with the topology of Fig. 1
points if the angle is measured in radians.
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r02 sin �2 = r04 sin �1 − r03 sin��1 + �4� �1c�

ith these notations, the position vectors of the points P2i and
1k, in the reference system Qixiyi, have the following explicit
xpressions �i=1, . . . ,4 ; k= �i+1� modulo 4�:

iP2i = �aici − bisi

aisi + bici
�, iP1k = � r1ksk

r0i − r1kck
� �2�

here the left superscript i indicates that the vectors are measured
n Qixiyi. ci �ck� and si �sk� stand for cos �i �cos �k� and sin �i

sin �k�, respectively. Eventually, ai and bi are geometric constants
ith the following explicit expressions:

ai = r2i cos��i + �i − 3
2�� �3a�

bi = r2i sin��i + �i − 3
2�� �3b�

By reminding that the distance r3�i+4� between the points P2i

nd P1k �see Fig. 3� can be expressed through the coordinates of
he two points, measured in any Cartesian reference system, the
ollowing set of closure equations can be written for the PS under
tudy:

�iP2i − iP1k�2 = r3�i+4�
2 , i = 1, . . . ,4; k = �i + 1� modulo 4

�4�
The introduction of the explicit expressions �2� into Eq. �4�

ields the following system of closure equations in explicit form:

�aici − bisi − r1ksk�2 + �aisi + bici − r0i + r1kck�2 − r3�i+4�
2 = 0

i = 1, . . . ,4; k = �i + 1� modulo 4 �5�
Closure equations �5� constitute a system of four scalar equa-

ions in four unknowns: the four joint variables �i, i=1, . . . ,4. By
xpanding Eq. �5�, system �5� becomes

gi0 + gi1si + gi2ci + gi3ck + gi4�sick − cisk� + gi5�cick + sisk� = 0

i = 1, . . . ,4; k = �i + 1� modulo 4 �6�

here the constant coefficients gin, n=0,1 , . . . ,5, have the follow-
ng explicit expressions:

gi0 = r2i
2 + r1k

2 + r0i
2 − r3�i+4�

2 �7a�

gi1 = − 2r0iai, gi2 = − 2r0ibi, gi3 = − 2r0ir1k �7b�

gi4 = 2r1kai, gi5 = 2r1kbi �7c�

Each equation of system �6� is linear both in ci and si and in ck
nd sk.

3.2 Spherical Structure. Figure 4 shows the spherical struc-
ure with the topology of Fig. 1. With reference to Fig. 4, O is the
enter of the unit sphere; Qi for i=1, . . . ,4 are the points that

ig. 3 ith loop of the PS: notation „i=1, . . . ,4; k= „i+1… modulo
…

ocate, on the unit sphere, the axes of the revolute pairs that join

ournal of Mechanisms and Robotics
the quaternary link �link 0� to the ith ternary link �i=1, . . . ,4�. Pji

for j=1,2 and i=1, . . . ,4 are the points that locate, on the unit
sphere, the axes of the revolute pairs that join the ith ternary link
to the two adjacent binary links.

Figure 5 shows the ith loop �i=1, . . . ,4� of the SS and the
notation that will be used to deduce its loop equation. With refer-
ence to Fig. 5, the link-index k is equal to �i+1� modulo 4. �0i is

the convex central angle5 QiOQk
̂. � ji �� jk�, j=1,2, is the convex

central angle QiOPji
̂ �QkOPjk

̂�. And �3�i+4� is the convex central

angle P2iOP1k
̂. The angles �i and �i ��k and �k� are the dihedral

angles at the edge OQi �OQk� of link i �link k� and link 0, respec-
tively. The angle �i ��k� is the joint variable of the revolute pair
located by Qi �Qk�. Eventually, the reference system Oxiyizi is a
Cartesian reference system, fixed to link 0, that will be used to
write the loop equation of the ith loop.

It is worth noting that the eight geometric constants of the qua-
ternary link �i.e., �i and �0i for i=1, . . . ,4� are related by any tern
of independent scalar equations deducible from the following ma-
trix equation �see Figs. 4 and 5�:

1R4
4R3

3R2
2R1 = I �8�

where I is the 3�3 identity matrix, whereas kRi, k= �i+1� modulo
4, is the rotation matrix that transforms vector components mea-
sured in Oxiyizi into vector components measured in Oxkykzk.

kRi
has the following explicit expression:

kRi = Rx�− �0i�Rz�� − �k� �9�

where the following elementary rotation matrices have been intro-
duced:

Rx��� = �1 0 0

0 cos � − sin �

0 sin � cos �
	 �10a�

Rz��� = �cos � − sin � 0

sin � cos � 0

0 0 1
	 �10b�

With these notations, the position vectors of the points P2i and
P1k, in the reference system Oxiyizi, have the following explicit
expressions �i=1, . . . ,4 ; k= �i+1� modulo 4�:

5The measure of the convex central angle between two radius vectors gives the
distance, on the unit sphere, between the two points located on the sphere by the two

Fig. 4 Four-loop SS with the topology of Fig. 1
radius vectors.
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iP2i = �uici − visi

uisi + vici

wi
	, iP1k = � s1ksk

c1ks0i − s1kc0ick

c1kc0i + s1ks0ick
	 �11�

here the left superscript i indicates that the vectors are measured
n Oxiyizi. ci �ck� and si �sk� stand for cos �i �cos �k� and sin �i

sin �k�, respectively, whereas c0i �c1k� and s0i �s1k� stand for
os �0i �cos �1k� and sin �0i �sin �1k�, respectively. Eventually, ui,

i, and wi are geometric constants with the following explicit ex-
ressions:

ui = sin �2i cos��i + �i − 3
2�� �12a�

vi = sin �2i sin��i + �i − 3
2�� �12b�

wi = cos �2i �12c�

Since cos �3�i+4� is equal to the dot product of the position
ectors of the two unit-sphere points P2i and P1k �see Fig. 5� in
ny Cartesian reference system with origin at O,6 the following
et of closure equations can be written for the SS under study:

iP2i
T iP1k = c3�i+4�, i = 1, . . . ,4; k = �i + 1� modulo 4

�13�

here c3�i+4� stands for cos �3�i+4� and the right superscript �·�T

enotes the transpose of �·�. The ith equation �13� analytically
xpresses the fact that the distance, on the unit sphere, between
he two unit-sphere points P2i and P1k is constant; hence, it is the
pherical counterpart of the ith equation �4�.

The introduction of the explicit expressions �11� into Eq. �13�
ields the following system of closure equations in explicit form:

�uici − visi�s1ksk + �uisi + vici��c1ks0i − s1kc0ick� + wi�c1kc0i

+ s1ks0ick� − c3�i+4� = 0

�14�
i = 1, . . . ,4; k = �i + 1� modulo 4

Closure equations �14� constitute a system of four scalar equa-
ions in four unknowns: the four joint variables �i, i=1, . . . ,4. By
xpanding Eq. �14�, system �14� becomes

hi0 + hi1si + hi2ci + hi3ck + hi4sick + hi5cisk + hi6cick + hi7sisk = 0
�15�

i = 1, . . . ,4; k = �i + 1� modulo 4

here the constant coefficients hin, n=0,1 , . . . ,7, have the follow-
ng explicit expressions:

6Remind that radius vectors of the unit sphere coincide with position vectors of
he unit-sphere points, located by the radius vectors, in Cartesian reference systems

ig. 5 ith loop of the SS: notation „i=1, . . . ,4; k= „i+1… modulo
…

ith origin at the unit-sphere center O.

21003-4 / Vol. 1, MAY 2009
hi0 = wic1kc0i − c3�i+4�, hi1 = uic1ks0i �16a�

hi2 = vic1ks0i, hi3 = wis1ks0i, hi4 = − uis1kc0i �16b�

hi5 = uis1k, hi6 = − vis1kc0i, hi7 = − vis1k �16c�

Each equation of system �15� is linear both in ci and si and in ck
and sk.

4 Solution Technique
The closure-equation systems �6� and �15� can be transformed

into algebraic-equation systems by using the following trigono-
metric identities:

ci =
1 − ti

2

1 + ti
2 , si =

2ti

1 + ti
2 , i = 1, . . . ,4 �17�

where ti, i=1, . . . ,4, is equal to tan��i /2�.
So doing, both systems �6� and �15� are put in the following

form:

�
n=0

2

�
m=0

2

dinmti
ntk

m = 0, i = 1, . . . ,4; k = �i + 1� modulo 4

�18�

where the explicit expressions of the constant coefficients dinm,
n , m=0,1 ,2, are reported in Appendixes A and B for the PS and
the SS, respectively.

The first �i=1� and the fourth �i=4� equations of system �18�
can be rewritten in the following form:

A2t1
2 + A1t1 + A0 = 0 �19a�

B2t1
2 + B1t1 + B0 = 0 �19b�

where Aj =d1j2t2
2+d1j1t2+d1j0 and Bj =d42jt4

2+d41jt4+d40j for
j=0,1 ,2. Moreover, the second �i=2� and the third �i=3� equa-
tions of system �18� can be rewritten in the following form:

E2t3
2 + E1t3 + E0 = 0 �20a�

F2t3
2 + F1t3 + F0 = 0 �20b�

where Ej =d22jt2
2+d21jt2+d20j and Fj =d3j2t4

2+d3j1t4+d3j0 for
j=0,1 ,2.

The product of Eq. �19� by t1 yields two more equations that,
when added to Eq. �19�, give the following homogeneous system:

M1f1 = 0 �21�

where f1 is equal to �t1
3 , t1

2 , t1 ,1�T, whereas M1 is a 4�4 matrix
defined as follows:

M1 =�
A2 A1 A0 0

B2 B1 B0 0

0 A2 A1 A0

0 B2 B1 B0

	 �22�

On the other hand, the product of Eq. �20� by t3 yields two more
equations that, when added to Eq. �20�, give the following homo-
geneous system:

M2f2 = 0 �23�

where f2 is equal to �t3
3 , t3

2 , t3 ,1�T, whereas M2 is a 4�4 matrix
defined as follows:

M2 =�
E2 E1 E0 0

F2 F1 F0 0

0 E2 E1 E0	 �24�
0 F2 F1 F0

Transactions of the ASME
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The two homogeneous systems �21� and �23� admit nontrivial
olutions for f1 and f2, respectively, if and only if the two deter-
inants det�M1� and det�M2� are equal to zero �i.e., their coeffi-

ient matrices are singular�. Since the entries of the first and the
hird rows of both the matrices are quadrics in t2, whereas their
econd and fourth rows are quadrics in t4, the vanishing condition
f det�M1� and det�M2� yields the following two algebraic equa-
ions that are quartics both in t2 and in t4:

�
n=0

4

�
m=0

4

pnmt2
nt4

m = 0 �25a�

�
n=0

4

�
m=0

4

qnmt2
nt4

m = 0 �25b�

here the explicit expressions of the constant coefficients pnm and
nm, for n , m=0, . . . ,4, as functions of the constant coefficients
eported in Appendixes A and B can be easily determined with the
elp of an algebraic manipulator. Such expressions are not re-
orted here since they are cumbersome.

Equation �25� constitutes a nonlinear system of two equations
n two unknowns: t2 and t4. System �25� can be rewritten as fol-
ows:

�
j=0

4

Ljt2
j = 0 �26a�

�
j=0

4

Njt2
j = 0 �26b�

here

Lj = �
m=0

4

pjmt4
m, Nj = �

m=0

4

qjmt4
m, j = 0, . . . ,4 �27�

The product of Eq. �26� by t2, t2
2, and t2

3 yields six more equa-
ions that, when added to Eq. �26�, give the following homoge-
eous system:

He = 0 �28�

here e is equal to �t2
7 , t2

6 , t2
5 , t2

4 , t2
3 , t2

2 , t2 ,1�T, whereas H is an
�8 matrix defined as follows:

H =�
L4 L3 L2 L1 L0 0 0 0

N4 N3 N2 N1 N0 0 0 0

0 L4 L3 L2 L1 L0 0 0

0 N4 N3 N2 N1 N0 0 0

0 0 L4 L3 L2 L1 L0 0

0 0 N4 N3 N2 N1 N0 0

0 0 0 L4 L3 L2 L1 L0

0 0 0 N4 N3 N2 N1 N0

	 �29�

The homogeneous system �28� admits nontrivial solutions for e
f and only if the following equation is satisfied:

det�H� = 0 �30�

Since the non-null entries of matrix H are univariate quartics in
4, and det�H� is a sum of terms that are products of eight entries
f matrix H �see Appendix C�, Eq. �30� is a univariate polynomial
quation in t4, which has at most degree 32. This result meets the
pper bound to the number of complex solutions of system �18�
hat the authors found by calculating the optimal multihomoge-
eous Bézout number �see Refs. �12� and �13� for details� of sys-
em �18�. Moreover, it is compatible with the number, 30, of com-

lex solutions found in Ref. �10� for the planar case.

ournal of Mechanisms and Robotics
Once the values of t4 that solve Eq. �30� have been computed,
by back substituting them into matrix H and then solving the
resulting systems �28�, the corresponding values of t2 can be com-
puted. Eventually, the computed values of the couple 
t2 , t4� must
be back substituted into Eqs. �21� and �23� to compute the corre-
sponding values of t1 and t3.

The adopted elimination procedure could have introduced ex-
traneous solutions of type �j with j=�−1 since the only factors,
which could generate extraneous roots and have been multiplied
by the original system of equations, are the factors �1+ ti

2��1+ tk
2�,

with i=1, . . . ,4 and k= �i+1� modulo 4. Such factors have been
used to obtain system �18� from the original ones �i.e., either Eq.
�6� or Eq. �15�� passing through the trigonometric identities �17�.

So far, the evaluation of the actual degree of Eq. �30� can be
done either through extended numerical tests, provided that they
identify at least one set of data that makes Eq. �30� a 32 deg
polynomial equation, or by analytically determining the coeffi-
cients of the polynomial equation �30�.

Extended numerical tests, carried out by the authors, with ran-
domly generated data brought to find many data sets both for the
planar geometry and for the spherical geometry, which make Eq.
�30� a 32 deg polynomial equation. Moreover, the same numerical
tests demonstrated that the elimination procedure used to obtain
Eq. �30� introduces one couple of extraneous roots of type �j in
the planar case, whereas it does not introduce extraneous roots in
the spherical case. These results bring to the conclusion that, in
general, Eq. �30� is a 32 deg polynomial equation both for the
planar geometry and for the spherical geometry, but, in the planar
case, one common factor of type �1+ t4

2� can always be collected
and simplified. Thus, in general, the complex solutions of our
problems are 30 for the planar case, which agrees with the result
reported in Ref. �10�, and 32 for the spherical case. Among the
complex solutions of Eq. �18�, only the real solutions correspond
to actual assembly modes of the structure under study. For the
planar case, a PS geometry with 28 assembly modes is reported in
Ref. �10�. For the spherical case, the above-mentioned numerical
tests brought to identify a SS geometry with 20 assembly modes.
The maximum number of real solutions of Eq. �30� is still an open
problem.

Regarding the analytic determination of the coefficients of the
polynomial equation �30�, it can be implemented with the help of
an algebraic manipulator by, first, determining the explicit expres-
sion of det�H� as a function of the non-null entries of matrix H
�see Appendix C�, and then elaborating the obtained expression,
either as a whole or by grouping terms according to the size of the
computer memory.

In the planar case, this procedure can be used to deduce the 30
deg univariate polynomial equation that contains only the com-
plex solutions of the closure-equation system. Indeed, since, in
this case, one common factor of type �1+ t4

2� can be collected and
simplified, Eq. �30�, written in the form � j=0

32 ljt4
j =0, can be put in

the form �1+ t4
2�� j=0

30 njt4
j =0 by considering that the following it-

erative formula, which relates the nj coefficients to the lj coeffi-
cients, holds:

nj = lj − nj−2, j = 0, . . . ,32 �31�

with n−2=n−1=n31=n32=0.

5 Numerical Examples
Two numerical examples, one for the planar case and the other

for the spherical case, are reported in this section in order to show
the effectiveness of the proposed algorithm.

The algorithm has been implemented in MAPLE. The numerical
computations have been executed by setting the machine precision
equal to 32 decimal digits in MAPLE. All the computed solutions,
when substituted into the closure equations, satisfy those equa-

tions with residuals whose absolute values range from less than

MAY 2009, Vol. 1 / 021003-5



t4

0843769 0.0819791126793446047065806293

0779633 0.0991483691462966418039440854

1347192 0.2238289048835068617548207877

6640091 0.3378809249470220693696311392
0659436 0.8390996311772800117631272981

1885292 1.045998408481253318241645595
5776656 1.050583466573429961237254444

2408517 1.800982930765191163895773994

7121085 1.895978137292928399253752311

2162538 1.943292745104974910169838954

1325649 −0.084308385270921315258566334

4144928 −0.167603233161461281813419201

7115700 −0.176970618142634298758693275

2803279 −0.302069667336494935593808144

0185019 −0.316590516221194220495666284

9109019 −0.363773478707546671785525565

4156329 −0.407984780649443848667174677

1703787 −1.02246294842782466661923238

8482685 −2.25282987723016144150037867

1051648 −2.42705297789839512570915480

7276301 −2.43031231220896800404824993

1539526 −2.43293211532249675222279903

53778j −0.44330155417−0.2650496400j

53778j −0.44330155417+0.2650496400j

2544j 0.42996169345+0.5607327793j

2544j 0.42996169345−0.5607327793j

32040j 0.50950215830+0.4401832433j

32040j 0.50950215830−0.4401832433j

91211j 0.76616003143+0.5562035841j

91211j 0.76616003143−0.5562035841j
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Table 1 Planar structure: solutions of the numerical example

t1 t2 t3

1 0.14540976407902879027293908 0.64496623994571841596263372 −0.3399515565082344707

2 −0.077227714709025110370104775 0.76803507980135176081753200 −0.3758392287439217697

3 0.31027317592256860100604449 −0.78277181236408978593774468 0.4218806029585396351

4 0.45062695967325673049797405 −0.69794362132646017838199605 −0.9747649879272306550
5 1.20695305556324089196099633 0.91633117401742338436255702 1.0913085010692713948

6 −0.64640026596367343569314724 4.04003082965422103236594713 −2.7196798424630071382
7 1.66916735389394832010007919 1.14216132858181575837207037 1.3714376229001736713

8 13.16425818060947425215680863 4.26882828246928634814151261 −4.5378940206068868976

9 208.45038747133619402856213487 −2.11674168109901666421941153 −4.7856206055076638227

10 −26.81541066700656298137161586 −3.07760509002559592809555103 2.9035733114706123169

11 0.039846847673210378188216602 −1.10048431924001936505603127 0.5547251383623364233

12 −0.15607071229759993578242963 −1.55698842971696026891592910 0.7864161740121370909

13 0.077971500241808447357197929 0.67054918338255699388821957 0.8157979638166455008

14 −0.30820112784483839462288724 −2.22324243579987649268244828 1.2522353826824726742

15 −0.32498273061036110891061454 1.09252930678734718250915716 1.3074602074664294593

16 0.17046575070945815221605462 0.63770346854436767382116706 −0.3379708134281425880

17 −0.43210685728254645483179199 1.36268671107614166134072405 1.6748836116334161363

18 0.52684373129210421002487735 −0.66739051464043879792708220 −0.9364235947750533196

19 −32.55430091621347845561677664 −2.82792448537262388807377299 −253.7312149142897720773

20 11.25055399577708095094706716 −1.47768067112559515995942455 −2.3016829309724803293

21 10.87826714915480388273577657 3.85237293514646026565524521 −2.3052394716550359687

22 10.59132861100362440506723393 3.79590172229500515671923849 −51.2641076260206604168

23 −0.46091396718−0.3147647875j 0.92479484478+0.6793627405j −0.39930489512−0.23985

24 −0.46091396718+0.3147647875j 0.92479484478−0.6793627405j −0.39930489512+0.23985

25 −0.22634298550−0.3044553268j −1.26354193430−0.9102694686j −1.31998222381−1.43652

26 −0.22634298550+0.3044553268j −1.26354193430+0.9102694686j −1.31998222381+1.43652

27 −0.27792212930−0.2474597288j −1.51031256094−0.9565297756j 0.65243761504+0.49438

28 −0.27792212930+0.2474597288j −1.51031256094+0.9565297756j 0.65243761504−0.49438

29 −0.40592787199−0.3396438907j 0.84446118451+0.6023166102j 0.93036922244+0.68290

30 −0.40592787199+0.3396438907j 0.84446118451−0.6023166102j 0.93036922244−0.68290
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0−24 to 10−16, which is coherent with the chosen machine preci-
ion.

5.1 Planar Structure. With reference to Fig. 3, the geometric
ata of the planar structure are �the angles are measured in radi-
ns; the lengths are measured in a generic unit of length� as fol-
ows:

�1 = �/3, �2 = 10�/21, �3 = 2�/3, �4 = 11�/21

�1 = �/3, �2 = �/2, �3 = 5�/18, �4 = �/2

r11 = 1.5, r12 = 2.3, r13 = 1, r14 = 2

r21 = 2, r22 = 1, r23 = 2, r24 = 2

r01 = 5.9068, r02 = 2, r03 = 4, r04 = 4.3069

r35 = 7.2893, r36 = 2.2485, r37 = 3.8270, r38 = 4.8127

mong these geometric data, the parameters �4, r01, and r04 have
een computed by using relationships �1� together with the values
f the other geometric data of the quaternary link. Moreover, once
he geometries of the quaternary and the ternary links were de-
ned, the lengths of the binary links �i.e., r35, r36, r37, and r38�
ave been computed through Eq. �4� after the following values of

Fig. 6 Planar structure: assembly modes corre
he angles �i, i=1, . . . ,4, were assigned:

ournal of Mechanisms and Robotics
�1 = 47�/84, �2 = 17�/36, �3 = 19�/36, �4 = 4�/9

which correspond to �ti=tan��i /2��:

t1 = 1.2069530555, t2 = 0.9163311740

t3 = 1.0913085010, t4 = 0.8390996311

This reference assembly mode appears in Table 1 as solution 5.
All the computed solutions of system �18� for this planar ge-

ometry are reported in Table 1. Among the 30 solutions reported
in Table 1, the first 22 solutions are real. Therefore the studied
planar geometry admits 22 assembly modes. Such assembly
modes are shown in Fig. 6.

5.2 Spherical Structure. With reference to Fig. 5, the geo-
metric data of the spherical structure are �the angles are measured
in radians� as follows:

�1 = �/6, �2 = 2�/3, �3 = 1.62440, �4 = 2�/3

�1 = �/4, �2 = �/4, �3 = �/6, �4 = �/4

�11 = �/5, �12 = �/7, �13 = �/5, �14 = �/6

�21 = �/5, �22 = �/7, �23 = �/5, �24 = �/6

nding to the real solutions reported in Table 1
�01 = 0.1855, �02 = 0.1068, �03 = �/7, �04 = �/8
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t4

93485363 0.08888750399467942592826241

11120878 0.10816694054981834932287101

50147610 0.10950012413553095254398550

35735756 0.16000844373201842754237919

35389670 0.27451592178874086050489859

70979698 0.68727090141199789465811756
89225502 0.99953905003138499326551774
40500497 1.14028145816754857419174148

17838809 2.44302088284558462087474599

55832889 3.26553951295171978376109941

48241709 5.03567470968899676965553945

96061489 5.61748994274721802111609339

66990473 −0.08542804448235159783879797

05942853 −0.10012284021138216272481265

14054648 −0.36991906499149841363008628

55231635 −0.39495622231747702816149454

61692181 −0.61864963851011157573145133

31990899 −2.21676044670613406595744070

57203809 −2.25993333485671694287174695

43861252 −2.31799366029688446938212761

7220241j −0.57746797303−2.18365466581j

7220241j −0.57746797303+2.18365466581j

3035245j −0.27842265152−1.15434019112j

3035245j −0.27842265152+1.15434019112j

6889984j −0.21193805682−0.94629004473j

6889984j −0.21193805682+0.94629004473j

5586423j −0.03952558872−0.56289938664j

5586423j −0.03952558872+0.56289938664j

1796677j 0.07761152840−1.02215361384j

1796677j 0.07761152840+1.02215361384j

2638956j 0.12386266728−0.81145941293j

2638956j 0.12386266728+0.81145941293j
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Table 2 Spherical structure: solutions of the numerical example

t1 t2 t3

1 0.71210618362405426284256680 −1.07497455753610126844941610 −0.448003290912148582

2 −0.77555049530120851859608902 −0.74503557530432738102964660 −0.247922291230868173

3 0.73108529113176738147778583 0.36104413133812455092212669 −0.237467453001565852

4 −0.72549776292846969591003825 0.79320769587113511335921109 0.036302972517909675

5 −0.63263922860470586533425186 −0.56652126398478751309846081 −1.449027488185080546

6 1.57053701322224629303710825 −0.52991180805252246579181921 −1.372104526646958945
7 2.40142765596175495890746839 0.99959051861156910688335979 1.471914033598983216
8 2.94590500454578732727341691 1.14028145816754857419174148 1.683871209897118173

9 −0.32795607767030026969899765 2.19663385872870672116782892 3.924480078512959362

10 −0.35516231227752358582549022 −0.28916074078427804669446380 −0.946002203624220083

11 −1.65975815407406043940241852 −2.56923193640685492125416214 9.793353218015128010

12 −1.38917347319588278667302307 −1.84208964986328586214502214 −0.846515948080330247

13 0.57581984213681238722225099 −1.30867847119402492580107470 −4.654551156610748886

14 −1.04104284673259602904066614 −1.14747508391672336044297166 −3.504069698458878860

15 −1.61463716957538962922155030 0.24467583838696498764648277 0.545976429032311321

16 0.42332462997183013284378318 0.20417982508098921066693455 0.505148224163169125

17 −2.62820087281999567358612281 −9.29741813777522859855414691 −2.570591626681720647

18 0.55460724172756564825008630 0.27238511180213352674820919 −0.308180769708750678

19 0.59483291307175496023888520 −1.26993077235092135957743913 −4.333532380968725396

20 0.90142516808676214346285897 −0.86488448942789661222868463 −0.323038291364948260

21 0.00342194452−1.44883692156j −0.07299074451−0.36795252833j −0.56722944684−0.4261

22 0.00342194452+1.44883692156j −0.07299074451+0.36795252833j −0.56722944684+0.4261

23 0.07455997783−0.12122912972j −3.11221184246−3.63391279861j −1.81717583594−1.0509

24 0.07455997783+0.12122912972j −3.11221184246+3.63391279861j −1.81717583594+1.0509

25 −0.23381078635−1.21762411406j 0.09063269535−1.17945847211j 0.04271862463−0.7320

26 −0.23381078635+1.21762411406j 0.09063269535+1.17945847211j 0.04271862463+0.7320

27 −0.55234273464−0.64624481380j 0.14522125200−0.66631164661j 0.32805303569−0.6427

28 −0.55234273464+0.64624481380j 0.14522125200+0.66631164661j 0.32805303569+0.6427

29 0.09011189540−1.15046250591j 0.10893422241−0.97670327545j 0.15179864121−0.9922

30 0.09011189540+1.15046250591j 0.10893422241+0.97670327545j 0.15179864121+0.9922

31 −0.13337931843−0.39981317759j 0.27358440193−1.79147591705j 0.32398368945−0.8610

32 −0.13337931843+0.39981317759j 0.27358440193+1.79147591705j 0.32398368945+0.8610
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�35 = 0.7099, �36 = 0.4532, �37 = 0.7324, �38 = 0.8997

mong these geometric data, the angles �01, �02, and �3 have been
omputed by using a tern of independent scalar equations, de-
uced from the matrix equation �8�, together with the values of the
ther geometric data of the quaternary link. Moreover, once the
eometries of the quaternary and the ternary links were defined,
he central angles of the binary links �i.e., �35, �36, �37, and �38�
ave been computed through Eq. �13� after the following values
f the angles �i, i=1, . . . ,4, were assigned:

�1 = 19�/24, �2 = 13�/24

�3 = �11�/12� − �81/100�, �4 = 13�/24

hich correspond to �ti=tan��i /2��:

t1 = 2.945905004545, t2 = 1.140281458167

t3 = 1.683871209897, t4 = 1.140281458167

his reference assembly mode appears in Table 2 as solution 8.
All the computed solutions of system �18� for this spherical

eometry are reported in Table 2. Among the 32 solutions reported
n Table 2, the first 20 solutions are real. Therefore the studied
pherical geometry admits 20 assembly modes. Such assembly

Fig. 7 Spherical structure: assembly modes cor
odes are shown in Fig. 7.

ournal of Mechanisms and Robotics
6 Conclusions
An algorithm that determines all the assembly modes of two

structures with the same topology has been presented.
The topology of the studied structures is constituted of nine

links �one quaternary link, four ternary links, and four binary
links� connected through 12 revolute pairs to form four closed
loops.

Such structures can be thought as generated from two large
families �one planar and the other spherical� of parallel manipu-
lators by locking the actuated joints. Thus, the proposed algorithm
can be used to solve the DPA of all these manipulators.

Through the proposed algorithm, it has been confirmed that the
DPA of the planar manipulators, which generate structures with
this topology, has 30 complex solutions. And it has been demon-
strated that the DPA of their spherical counterparts has 32 com-
plex solutions. Moreover, extended numerical tests, which used
the proposed algorithm, demonstrated the robustness of the algo-
rithm and brought to find a spherical geometry with 20 assembly
modes �i.e., real solutions of the DPA�. As far as the authors are
aware, the analytic solution of the DPA of the spherical parallel
manipulators that generate structures with this topology is new.

This work is framed into a research activity oriented to provide
efficient algorithms that solve the DPA of all the planar and
spherical parallel manipulators that become quadruple-loop Assur

ponding to the real solutions reported in Table 2
res
kinematic chains when their actuators are locked.

MAY 2009, Vol. 1 / 021003-9
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ppendix A
With reference to Eqs. �18� and �7�, the constant coefficients

inm, n , m=0,1 ,2, have the following explicit expressions for the
lanar structure �Fig. 2�:

di00 = gi0 + gi2 + gi3 + gi5, di10 = 2�gi1 + gi4�

di01 = − 2gi4, di11 = 4gi5, di20 = gi0 − gi2 + gi3 − gi5
di02 = gi0 + gi2 − gi3 − gi5, di12 = 2�gi1 − gi4�

0 3 0 3 2 0 4 2 0 4 1

21003-10 / Vol. 1, MAY 2009
di21 = 2gi4, di22 = gi0 − gi2 − gi3 + gi5

Appendix B
With reference to Eqs. �18� and �16�, the constant coefficients

dinm, n , m=0,1 ,2, have the following explicit expressions for the
spherical structure �Fig. 4�:

di00 = hi0 + hi2 + hi3 + hi6, di10 = 2�hi1 + hi4�

di01 = 2hi5, di11 = 4hi7, di20 = hi0 − hi2 + hi3 − hi6

di02 = hi0 + hi2 − hi3 − hi6, di12 = 2�hi1 − hi4�

di21 = − 2hi5, di22 = hi0 − hi2 − hi3 + hi6

Appendix C
The explicit expression of det�H� as a function of the non-null
entries of matrix H �see definition �29�� is
et�H� = L4
4N0

4 − L3L4
3N0

3N1 + L2L4
3N0

2N1
2 − L1L4

3N0N1
3 + L0L4

3N1
4 + L3

2L4
2N0

3N2 − 2L2L4
3N0

3N2 − L2L3L4
2N0

2N1N2 + 3L1L4
3N0

2N1N2

+ L1L3L4
2N0N1

2N2 − 4L0L4
3N0N1

2N2 − L0L3L4
2N1

3N2 + L2
2L4

2N0
2N2

2 − 2L1L3L4
2N0

2N2
2 + 2L0L4

3N0
2N2

2 − L1L2L4
2N0N1N2

2

+ 3L0L3L4
2N0N1N2

2 + L0L2L4
2N1

2N2
2 + L1

2L4
2N0N2

3 − 2L0L2L4
2N0N2

3 − L0L1L4
2N1N2

3 + L0
2L4

2N2
4 − L3

3L4N0
3N3 + 3L2L3L4

2N0
3N3

− 3L1L4
3N0

3N3 + L2L3
2L4N0

2N1N3 − 2L2
2L4

2N0
2N1N3 − L1L3L4

2N0
2N1N3 + 4L0L4

3N0
2N1N3 − L1L3

2L4N0N1
2N3 + 2L1L2L4

2N0N1
2N3

+ L0L3L4
2N0N1

2N3 + L0L3
2L4N1

3N3 − 2L0L2L4
2N1

3N3 − L2
2L3L4N0

2N2N3 + 2L1L3
2L4N0

2N2N3 + L1L2L4
2N0

2N2N3 − 5L0L3L4
2N0

2N2N3

+ L1L2L3L4N0N1N2N3 − 3L0L3
2L4N0N1N2N3 − 3L1

2L4
2N0N1N2N3 + 4L0L2L4

2N0N1N2N3 − L0L2L3L4N1
2N2N3 + 3L0L1L4

2N1
2N2N3

− L1
2L3L4N0N2

2N3 + 2L0L2L3L4N0N2
2N3 + L0L1L4

2N0N2
2N3 + L0L1L3L4N1N2

2N3 − 4L0
2L4

2N1N2
2N3 − L0

2L3L4N2
3N3 + L2

3L4N0
2N3

2

− 3L1L2L3L4N0
2N3

2 + 3L0L3
2L4N0

2N3
2 + 3L1

2L4
2N0

2N3
2 − 3L0L2L4

2N0
2N3

2 − L1L2
2L4N0N1N3

2 + 2L1
2L3L4N0N1N3

2 + L0L2L3L4N0N1N3
2

− 5L0L1L4
2N0N1N3

2 + L0L2
2L4N1

2N3
2 − 2L0L1L3L4N1

2N3
2 + 2L0

2L4
2N1

2N3
2 + L1

2L2L4N0N2N3
2 − 2L0L2

2L4N0N2N3
2 − L0L1L3L4N0N2N3

2

+ 4L0
2L4

2N0N2N3
2 − L0L1L2L4N1N2N3

2 + 3L0
2L3L4N1N2N3

2 + L0
2L2L4N2

2N3
2 − L1

3L4N0N3
3 + 3L0L1L2L4N0N3

3 − 3L0
2L3L4N0N3

3

+ L0L1
2L4N1N3

3 − 2L0
2L2L4N1N3

3 − L0
2L1L4N2N3

3 + L0
3L4N3

4 + L3
4N0

3N4 − 4L2L3
2L4N0

3N4 + 2L2
2L4

2N0
3N4 + 4L1L3L4

2N0
3N4 − 4L0L4

3N0
3N4

− L2L3
3N0

2N1N4 + 3L2
2L3L4N0

2N1N4 + L1L3
2L4N0

2N1N4 − 5L1L2L4
2N0

2N1N4 − L0L3L4
2N0

2N1N4 + L1L3
3N0N1

2N4 − 3L1L2L3L4N0N1
2N4

− L0L3
2L4N0N1

2N4 + 3L1
2L4

2N0N1
2N4 + 2L0L2L4

2N0N1
2N4 − L0L3

3N1
3N4 + 3L0L2L3L4N1

3N4 − 3L0L1L4
2N1

3N4 + L2
2L3

2N0
2N2N4

− 2L1L3
3N0

2N2N4 − 2L2
3L4N0

2N2N4 + 4L1L2L3L4N0
2N2N4 + 2L0L3

2L4N0
2N2N4 − 3L1

2L4
2N0

2N2N4 + 2L0L2L4
2N0

2N2N4 − L1L2L3
2N0N1N2N4

+ 3L0L3
3N0N1N2N4 + 2L1L2

2L4N0N1N2N4 + L1
2L3L4N0N1N2N4 − 8L0L2L3L4N0N1N2N4 + 2L0L1L4

2N0N1N2N4 + L0L2L3
2N1

2N2N4

− 2L0L2
2L4N1

2N2N4 − L0L1L3L4N1
2N2N4 + 4L0

2L4
2N1

2N2N4 + L1
2L3

2N0N2
2N4 − 2L0L2L3

2N0N2
2N4 − 2L1

2L2L4N0N2
2N4 + 4L0L2

2L4N0N2
2N4

− 4L0
2L4

2N0N2
2N4 − L0L1L3

2N1N2
2N4 + 2L0L1L2L4N1N2

2N4 + L0
2L3L4N1N2

2N4 + L0
2L3

2N2
3N4 − 2L0

2L2L4N2
3N4 − L2

3L3N0
2N3N4

+ 3L1L2L3
2N0

2N3N4 − 3L0L3
3N0

2N3N4 + L1L2
2L4N0

2N3N4 − 5L1
2L3L4N0

2N3N4 + 2L0L2L3L4N0
2N3N4 + 5L0L1L4

2N0
2N3N4

+ L1L2
2L3N0N1N3N4 − 2L1

2L3
2N0N1N3N4 − L0L2L3

2N0N1N3N4 − L1
2L2L4N0N1N3N4 + 10L0L1L3L4N0N1N3N4 − 8L0

2L4
2N0N1N3N4

− L0L2
2L3N1

2N3N4 + 2L0L1L3
2N1

2N3N4 + L0L1L2L4N1
2N3N4 − 5L0

2L3L4N1
2N3N4 − L1

2L2L3N0N2N3N4 + 2L0L2
2L3N0N2N3N4

+ L0L1L3
2N0N2N3N4 + 3L1

3L4N0N2N3N4 − 8L0L1L2L4N0N2N3N4 + 2L0
2L3L4N0N2N3N4 + L0L1L2L3N1N2N3N4 − 3L0

2L3
2N1N2N3N4

− 3L0L1
2L4N1N2N3N4 + 4L0

2L2L4N1N2N3N4 − L0
2L2L3N2

2N3N4 + 3L0
2L1L4N2

2N3N4 + L1
3L3N0N3

2N4 − 3L0L1L2L3N0N3
2N4

+ 3L0
2L3

2N0N3
2N4 − L0L1

2L4N0N3
2N4 + 2L0

2L2L4N0N3
2N4 − L0L1

2L3N1N3
2N4 + 2L0

2L2L3N1N3
2N4 + L0

2L1L4N1N3
2N4 + L0

2L1L3N2N3
2N4

− 4L3L4N2N2N4 − L3L3N3N4 + L4N2N2 − 4L1L2L3N2N2 + 2L2L2N2N2 + 4L0L2L2N2N2 + 4L2L2L4N2N2 − 4L0L2L4N2N2

3 0 4 3 0 4 1 0 4 2 0 4

Transactions of the ASME



R

J

− 8L0L1L3L4N0
2N4

2 + 6L0
2L4

2N0
2N4

2 − L1L2
3N0N1N4

2 + 3L1
2L2L3N0N1N4

2 + L0L2
2L3N0N1N4

2 − 5L0L1L3
2N0N1N4

2 − 3L1
3L4N0N1N4

2

+ 2L0L1L2L4N0N1N4
2 + 5L0

2L3L4N0N1N4
2 + L0L2

3N1
2N4

2 − 3L0L1L2L3N1
2N4

2 + 3L0
2L3

2N1
2N4

2 + 3L0L1
2L4N1

2N4
2 − 3L0

2L2L4N1
2N4

2

+ L1
2L2

2N0N2N4
2 − 2L0L2

3N0N2N4
2 − 2L1

3L3N0N2N4
2 + 4L0L1L2L3N0N2N4

2 − 3L0
2L3

2N0N2N4
2 + 2L0L1

2L4N0N2N4
2 + 2L0

2L2L4N0N2N4
2

− L0L1L2
2N1N2N4

2 + 2L0L1
2L3N1N2N4

2 + L0
2L2L3N1N2N4

2 − 5L0
2L1L4N1N2N4

2 + L0
2L2

2N2
2N4

2 − 2L0
2L1L3N2

2N4
2 + 2L0

3L4N2
2N4

2

− L1
3L2N0N3N4

2 + 3L0L1L2
2N0N3N4

2 + L0L1
2L3N0N3N4

2 − 5L0
2L2L3N0N3N4

2 − L0
2L1L4N0N3N4

2 + L0L1
2L2N1N3N4

2 − 2L0
2L2

2N1N3N4
2

− L0
2L1L3N1N3N4

2 + 4L0
3L4N1N3N4

2 − L0
2L1L2N2N3N4

2 + 3L0
3L3N2N3N4

2 + L0
3L2N3

2N4
2 + L1

4N0N4
3 − 4L0L1

2L2N0N4
3 + 2L0

2L2
2N0N4

3

+ 4L2L L N N3 − 4L3L N N3 − L L3N N3 + 3L2L L N N3 − 3L3L N N3 + L2L2N N3 − 2L3L N N3 − L3L N N3 + L4N4

0 1 3 0 4 0 4 0 4 0 1 1 4 0 1 2 1 4 0 3 1 4 0 1 2 4 0 2 2 4 0 1 3 4 0 4
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