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Humanoid robots that have to operate in cluttered and unstructured environments,

such as man-made and natural disaster scenarios, require sophisticated sensorimotor

capabilities. A crucial prerequisite for the successful execution of whole-body locomotion
and manipulation tasks in such environments is the perception of the environment and

the extraction of associated environmental affordances., i.e. the action possibilities of

the robot in the environment. We believe that such a coupling between perception and
action could be a key to substantially increase the flexibility of humanoid robots.

In this paper, we approach the affordance-based generation of whole-body actions
for stable locomotion and manipulation. We incorporate a rule-based system to assign

affordance hypotheses to visually perceived environmental primitives in the scene. These

hypotheses are then filtered using extended reachability maps that carry stability in-
formation, for identifying reachable affordance hypotheses. We then formulate the hy-

potheses in terms of a constrained inverse kinematics problem in order to find whole-body

configurations that utilize a chosen set of hypotheses.
The proposed methods are implemented and tested in simulated environments based

on RGB-D scans as well as on a real robotic platform.
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1. Introduction

One of the most fundamental questions in robotics research is how to enable robots

to autonomously interact with unknown environments. This problem has been par-

tially addressed by numerous works that try to bridge the gap between low-level

control and high-level abstract reasoning.1,2,3,4 Most of these publications focus on

manipulation tasks with single robotic arms or upper body humanoids with mobile

platforms. Bipedal humanoid robots add more complexity to the problem, in terms
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Fig. 1: The proposed methods allow the identification of affordance hypotheses from

active vision and inertial sensor data.

of their kinematic structure as well as in terms of the possible ways of interact-

ing with the environment. Particularly, constraints on balance have to be satisfied,

including the utilization of the environment to enhance stability.

This paper extends our previous work5 in which we presented a first step towards

enabling humanoids to interact with unknown environments. We improved state-

of-the-art techniques to fuse inertial and visual information to a depth model which

is then segmented and categorized into geometric primitives. We assume that the

environment is unknown and that a safe navigation in unstructured environments

requires the ability to utilize walls and other objects for stabilization. We employ

active vision in order to detect environmental primitives that the robot can possibly

use for stabilizing interactions (see Fig. 1).

Due to the known structures of human-centered environments and the humanoid

kinematics of the robot, we can assume some prior knowledge on the scene in order

to infer affordance hypotheses based on shapes, sizes or orientations of the detected

primitives. For instance, we can assume that vertical, large planes are probably

walls that can afford to lean on them.

The concept of affordances was first proposed by JJ. Gibson6 in the context of

ecological psychology. Since then, it has been applied to several fields of research,

from cognitive science and neuropsychology to human-computer interaction and

autonomous robotics. In the original psychological context, the main idea behind

the concept of affordance was that perception is economical, i.e. instead of modeling

the whole world, only the relevant environmental information is perceived.

In the context of autonomous robots, affordances have been used to simplify
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complex tasks, such as grasp planning3. Works, e.g. by ten Pas and Platt7, show

that grasp affordances have the potential to completely avoid complex grasp plan-

ning, by associating unknown objects with known geometries for which the robot

has predefined grasps. Similarly, Bierbaum et al.2 proposed practical and efficient

solutions to grasp planning for unknown objects based on affordances and potential

fields. We think that the research on whole-body motion with contacts, e.g. Sentis

et al.8,9 or Lengagne et al.10 can greatly benefit from the use of whole-body affor-

dances to break down the problem in separate parts that can be organized by a

high level reasoning process.

In this work, we define a whole-body affordance hypothesis as an association of

a whole-body stable action to a perceived primitive of the environment. Based on

previous approaches2,11, we aim at deriving, refining and utilizing whole-body affor-

dances like holding, leaning, stepping-on or supporting in unknown environments.

For representation and execution of whole-body actions, we will rely on the

concept of Object-Action Complexes (OACs)1. The concept of OACs states that

the execution of an action is tightly related to the object that the action involves.

This viewpoint of objects and actions being coupled is related to the concept of

affordances. One could think of affordances as preconditions for the instantiation of

OACs.

To generate utilizable affordance hypotheses, we rely on the extension of ma-

nipulability maps12 to whole-body stability maps13. Such maps are discrete rep-

resentations of the robot’s workspace. For each end effector pose, the extended

reachability maps contain the best possible stability rating among the whole-body

configurations that realize the respective end effector poses. We use stability maps

for detecting affordances in reach and for computing feasible end effector poses for

the utilization of affordances.

Based on these results we show that by formulating the problem of affordance

utilization as a constrained inverse kinematics problem, we can compute whole-body

robot configurations that realize a chosen set of affordances. Due to perceptual errors

however, an additional step of whole-body control needs to be incorporated in order

to actually establish stable contact with the environment. This step is currently left

for future work.

We have implemented the perceptual pipeline and the affordance generation

methods in our robot framework ArmarX14 and evaluated them in different un-

known scenarios involving small and big objects, stairs and walls. We addi-

tionally implemented a simple verification strategy and let the humanoid robot

ARMAR-III 15 perceive and verify environmental affordances.

In the remainder of the paper, Section 2 describes the extension of reachability

maps and Section 3 explains how affordances are assigned to detected environmental

primitives, incorporating information from extended reachability maps. Section 4

discusses the generation of whole-body robot configurations based on a chosen set

of affordances to utilize and Section 5 demonstrates a simple affordance verification
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strategy on the humanoid robot ARMAR-III. Finally, Section 6 discusses the results

and outlines our ideas for future work.

2. Extended Reachability Maps

In our previous work13 we proposed an extension of classic reachability maps16,17 in

order to capture additional quality indices like end effector manipulability or whole-

body stability, besides the raw reachability information. An extended reachability

map for an end effector e is denoted as Re and the quality value stored in Re for

the end effector pose p ∈ SE(3) is accessed as:

Re(p) ∈ [0, 1] (1)

Depending on the type of quality information stored with Re, it can also be re-

ferred to as Se, in case of stability information, or asMe, in case of manipulability

information. A 3D visualization of exemplary reachability data is shown in Fig. 2.

Fig. 2: A visualization of an extended reachability map containing whole-body sup-

port information for the right hand of the humanoid robot ARMAR-418.

Several quality measures can be used together with extended reachability maps,

such as stability, manipulability, end effector visibility, human-likeliness of posture,

or energy efficiency. We investigated two quality measures which are of high interest

in humanoid robotics: manipulability and stability.

Manipulability measure

The manipulability index of an end effector pose expresses the robot’s capability to

adjust the pose in workspace. This capability can be important since it gives a whole-

body controller the freedom to react on inaccuracies in perception and actuation as
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well as on external disturbances while maintaining a desired end effector pose. To

compute the manipulability index of a given robot configuration we use the extended

manipulability formulation19 in order to consider joint limits and the robot’s self-

distance. An exemplary extended reachability map with manipulability information

is depicted in Fig. 2.

Stability measure

Stability information allows to identify end effector poses which cannot be reached

with a stable whole-body configuration. Even poses that are just reachable with a

low stability value should be avoided since in such cases even small disturbances

could make the robot fall. The quality measure stability(c) is computed by projecting

the center of mass (CoM) xcom(c) ∈ R3 of the current robot configuration c ∈
Rn to the ground plane, resulting in x′

com(c) ∈ R2. An exemplary configuration of

ARMAR-4 together with the support polygon and the CoM projection x′
com(c) is

depicted in Fig. 3.

Fig. 3: Cut through the whole-body stability map for the left hand of the simulated

robot ARMAR-4. The stability rating depends on the distance of the projected

center of mass x′
com(c) (blue box) to the border of the support polygon sc.

If x′
com(c) lies outside the support polygon sc that is spanned by the contact

points between feet and ground, the robot is not in a statically-stable configuration

and the resulting quality value is set to zero. Otherwise, the distance of x′
com(c) to

the support polygon’s border ∂sc is put in relation to the distance of the support

polygon’s center xcenter(c) to ∂sc (see Eq. 2).

stability(c) =
min {‖x′

com(c)− y‖ , ∀y ∈ ∂sc}
min {‖xcenter(c)− y‖, ∀y ∈ ∂sc}

∈ [0, 1] (2)
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2.1. Fusion of extended reachability maps

Individual extended reachability maps provide one type of workspace quality infor-

mation. In order to combine different types of quality information, fusion operations

on extended reachability maps become necessary. In this work we fuse a set of ex-

tended reachability maps R1, · · · ,RN by multiplying the individual quality values:

R(p) =
N∏
i=1

Ri(p) (3)

However, different operations are possible, e.g. linear combinations for weighting

the contribution of individual maps Ri. Fig. 4 shows the map RLeft Hand resulting

from the fusion of the extended reachability map SLeft Hand andMLeft Hand storing

stability and manipulability information, respectively.

(a) MLeft Hand (b) SLeft Hand (c)MLeft Hand·SLeft Hand

Fig. 4: Fusion of extended reachability maps with manipulability and stability

information for the left hand MLeft Hand and SLeft Hand into a combined map

MLeft Hand · SLeft Hand. For clearer visualization, the map values are scaled to the

full range of [0, 1].

2.2. Evaluation of the map creation process

While querying an extended reachability map is efficient, the actual generation is a

time-consuming process which is intended to be carried out offline. Fig. 5 displays

the generation progress over time for an extended reachability map for ARMAR-4’s

right hand, containing stability information.

In this case the map contained about 40 million cells that have been filled to

up to 12% with stability information after a generation time of 22 hours. It can be

clearly seen, that a large part of the 6D workspace is not statically reachable due

to kinematic limitations and stability constraints, i.e. for a 3D position only a small

subset of the possible end effector orientations are reachable for the robot.

Since the map generation procedure is probabilistic, it can be speeded up with

regard to multicore systems by running N generation processes in parallel. The

resulting maps need to be merged afterwards in order to obtain a single result.
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Fig. 5: Plots of the filling levels of an extended reachability map during its generation

processes with 1 (black) up to 8 (blue) generation threads. In this example, an

extended reachability map SRight Hand was built, containing stability information

for the right hand. The captured workspace contained a total of about 40,000,000

cells.

Fig. 5 shows the number of filled cells for different values of N , ranging from 1

to 8. The plots show the bounded nature of the map generation process. They

also show that running multiple generation processes in parallel significantly speeds

up the overall generation process. For example, while a single-threaded process is

able to fill about 3.7 million cells in 22 hours, the combination of eight individual

generation processes can fill the same amount of cells in about 2.6 hours. The benefit

of employing additional generation processes decreases with the number of already

running processes.

3. Extraction of Affordance Hypotheses

In this sections, strategies are proposed for suggesting affordance hypotheses based

on visually perceived environmental primitives. Our preliminary experiments focus

on affordances related to planar surfaces, although there is no principle limitation

to these. Extension to curved surfaces, like cylindric or spherical ones, or volumetric

primitives is possible and initial experiments have been conducted.

The methods for visual perception5 allow the detection and approximation of

environmental surfaces based on RGB-D camera images. Fig. 6 shows the depth

image of an exemplary scene (Fig. 6a) and the set of primitives resulting from the

perception process (Fig. 6b).

In the following, the proposed process of affordance suggestion is explained.

First, we pursue a rule-based assignment of affordance hypotheses to environmental
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(a) (b) (c)

(d)

Fig. 6: Procession of an exemplary depth image (a) into a set of environmental

primitives with assigned affordance hypotheses (b). Finally extended reachability

maps are employed for determining reachable affordance hypotheses (c). The scene

contains a table with several objects on it, a chair next to the table and a wall

behind the table (d).

surfaces based on parameters like extent or orientation. Then, stability information

from extended reachability maps is used for limiting the amount of found hypotheses

to directly usable ones.

3.1. Suggestion of affordance hypotheses

Affordance hypotheses are suggested based on rules that incorporate parameters of

the perceived primitives like orientation or extent. This approach eventually results

in a set of rules that link geometric primitives to affordance hypotheses, similar to

Varadarajan and Vicze20. An exemplary set of such rules is given in Table 1.

For example, a planar surface that is sufficiently large and oriented horizontally,

e.g. a table, suggests the affordance support. A long curved surface of a certain

radius, e.g. a handrail, suggests the affordance hold. The last column of Table 1

describes the preferred end effector pose when utilizing the respective affordance,
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Table 1: Example of a set of rules for affordance derivation. See Fig. 7 for xeef, yeef

and zeef. The operator ↑ tells if two vectors point into the same directiona. The λi
are implementation-specific constants.

Affordance Surface Parameters Conditions EEF

Support Planar
Normal n n ↑ zworld

zeef ↑ n

Area a a ≥ λ1

Lean Planar
Normal n n ⊥ zworld

Area a a ≥ λ2

Grasp

Planar
Normal n

a ∈ [λ3, λ4]
Area a

Curved
Radius r r ∈ [λ5, λ6]

yeef ↑ d
Direction d ‖d‖ ≤ λ7

Hold Curved
Radius r r ∈ [λ8, λ9]

Direction d ‖d‖ ≥ λ10

Fig. 7: The TCP coordinate systems for the left hand (left) and the left foot (right)

of ARMAR-4.

(see also Fig. 7). This will be of interest in Section 3.2.

Using the rules outlined in Table 1, the system can identify several affordance

hypotheses in the exemplary scene (see Fig. 6b). In the next steps, the resulting

hypotheses are filtered according to their stable reachability, based on precomputed

extended reachability maps.

3.2. Determination of reachable hypotheses

The previous sections show that, based on depth models obtained from active cam-

eras, a robot can identify plenty of primitives pi in a scene and is able to assign

affordance hypotheses hi to these primitves:

H = {(p1, h1), · · · , (pk, hk)}. (4)

For planning purposes it is important to identify HR, the subset of hypotheses

that are directly reachable for the robot, either for utilization or for verification.

av ↑ w ↔ v·w
‖v‖·‖w‖ ≈ 1
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For each affordance hi, Table 1 constraints the set of possible end effector poses

by fixing one axis of the end effector’s local coordinate system (see Fig. 7). The

resulting constrained space of orientations will be denoted as Ω(pi,hi). The geometric

shapes of the primitives together with the suitable end effector poses allow us to

assign a stability value to each point x ∈ ∂pi on the surface of the primitive pi:

stability(pi,hi)(x) = max
{
Se(x,R) : R ∈ Ω(pi,hi)

}
. (5)

This value tells how stable the robot would be when reaching for the differ-

ent points on the primitive’s surfaces while maintaining the preferred end effector

orientation.

Based on the stability value defined in Eq. 5, the set HR of reachable affordance

hypotheses can be determined by omitting hypotheses for which the stability value

lies below a threshold σ:

HR =
{

(p, h) ∈ H : ∃x ∈ ∂p : stability(p,h)(x) > σ
}

(6)

Fig. 6c depicts the result of the affordance assignment process. It shows only

those affordances whose stability rating lies above a threshold σ. Furthermore, the

affordance labels are attached to the points with the highest stability ratings.

3.3. Identification of end effector poses for affordance utilization

Extended reachability maps have already been used in order to reduce the full set of

inferred affordance hypotheses H to the set of reachable hypotheses HR. Based on

the rules in Table 1, we can infer the set of possible end effector poses for each point

on the surface of an environmental primitive. Each of the resulting end effector poses

can then be examined in terms of the incorporated extended reachability map R
in order to find the most promising poses in terms of whole-body stabilityb. Fig. 8

depicts the process of generating the six best grasps for each detected environmental

primitive.

A similar method can be employed to find promising foot poses for utilizing

support affordances. In terms of the above example, we try to find poses for the

right foot that allow the robot to climb the first step of the stairs. Fig. 9 shows the

projection of the fused map MRight Foot · SRight Foot to the detected primitives as

well as the most promising foot poses for each support hypothesis.

4. Towards Finding Affordance-Utilizing Robot Configurations

In this section we present an approach for computing initial whole-body configura-

tions that utilize a chosen set of affordances. As stated above, the perceptual and

bOther measures as well as the combination of different measures are possible13
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(a) (b) (c) (d)

Fig. 8: An exemplary depth image of a staircase with a handrail (a) is segmented

into environmental primitives (b). Affordance hypotheses based on the rules in

Table 1 are generated (c). Finally, the proposed target poses for the right hand are

computed based on a fusion of reachability and stability information (d). The color

indicates the corresponding quality information value from blue (low) to red (high).

Fig. 9: MRightFoot · SRightFoot projected to the detected primitives (left). The six

best proposed target poses for the right foot, based on the fusion of reachability

and stability information (right).

interpretational errors in the process make an additional control strategy necessary

that actually establishes contact with the environment. However, for initiating this

control procedure it is crucial to find a stable start configuration that is already

close to satisfying all considered constraints. We formulate the problem as a con-

strained inverse kinematics problem21,22,23 and then use state-of-the art tools24 for

solving it.
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Task space regions

Constraints on end effector pose are formulated in terms of Task Space Regions

(TSRs)25. A TSR is a six-dimensional interval Bw defined in the coordinates of

a frame w, in our case the environmental primitives’ local frames. The idea of

TSRs additionally includes an end effector offset Tw
e . An exemplary TSR for an

environmental primitive p with extents (2lx, 2ly, 2lz) having a support affordance

can look as follows:

Bp
support =



xmin xmax

ymin ymax

zmin zmax

ψmin ψmax

θmin θmax

φmin φmax


=



−lx lx
−ly ly
−lz lz
0 0

0 0

−π π


(7)

The TSR Bp
support fixes two out of three orientational dimensions, while giv-

ing the end effector the freedom to rotate around the support surface’s normal.

As described by Berenson et al.25, TSRs can easily be formulated as kinematic

constraints.

Static stability

As we compute the start configuration as a basis for further investigation if the

assumed affordance hypotheses actually prevail, we cannot rely on a stabilizing

contact to the considered environmental primitive p. Hence, we need to make sure

that the computed start configuration is statically stable, leaving the robot enough

tolerance to maneuver for an affordance verification procedure. Our kinematic con-

straint for static stability bases on COG Jacobians26. Assuming the robot to be

composed of N links li with their respective masses mi and centers of gravity xcogi ,

the COG Jacobian JCOG is calculated as:

JCOG =
1∑N

i=1mi

N∑
i=1

mi · Jli(xcogi) (8)

Finding suitable start configurations for approaching affordance utilization re-

quires at least the discussed constraints on whole-body stability and end effector

pose. However, employment of further constraints, e.g. joint torque minimization,

human-likeliness of posture, is possible as long as these constraints can be formu-

lated in terms of the above problem. Taking additional constraints into account

makes the overall problem harder and will eventually make more sophisticated

solvers necessary, e.g. Kaiser et al.27. Fig. 10 depicts two whole-body configura-

tions computed based on a chosen set of perceived environmental primitives.
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Fig. 10: Two statically stable whole-body configurations that approach the uti-

lization of a grasp affordance at the handrail (left) or the combination of a grasp

affordance at the handrail and a support affordance at the first step (right).

5. Verification of Whole-Body Affordances

The extraction of environmental primitives and the consecutive derivation of whole-

body affordance hypotheses as outlined in the previous sections does not produce

results that are directly ready for use on a real robot platform, due to two main

reasons:

(1) The perceptual process relies on the fusion of RGB-D camera images with

inertial sensor data. This procedure introduces noise that results in a certain

amount of error in the extraction of environmental primitives. Position and

orientation of the resulting primitives are therefore only approximately known.

(2) We assign affordance hypotheses based on pure geometric attributes of the

extracted environmental primitives. There is no further perceptual step that

estimates the level of robustness of an extracted primitive. Detected supporting

structures can therefore easily collapse when the robot tries to utilize assumed

affordances.

Due to the level of uncertainty in the perception-based process of affordance

extraction, an additional step has to be carried out by the robot in order to verify

affordance hypotheses, resulting in actual affordances. The schematic process of

affordance verification is outlined in Fig. 11.

As a first step towards verification of whole-body affordances, we have imple-

mented the full process of primitive extraction and affordance derivation in the

robot framework ArmarX14 and employed a simple force-based verification strat-

egy outlined in Fig. 12 on the humanoid robot ARMAR-III.
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Fig. 11: The process of detection and exploration of whole-body affordances: Based

on sensory information from active cameras or IMUs, the perceptual component

produces an abstract representation of the environment. The resulting primitives

are used for deriving affordance hypotheses. One possible choice is then to trust

a derived hypothesis, in which case it directly results in an OAC instance that

can be executed. The other choice is to start an exploration process to estimate

the affordance’s reliability and the execution parameters. In this case, exploration

OACs are executed and the sensed feedback again contributes to the affordance

assignment step.

6. Conclusions

This paper presents our approach to the detection of whole-body affordance hy-

potheses based on the fusion of visually perceived environmental primitives. This

incorporates a predefined set of rules that links symbolic affordances to properties

of the extracted primitives like orientation or extent. The extracted affordance hy-

potheses are fused with an extended reachability map covering stability information

in order to determine affordance hypotheses that are reachable for the robot in a

statically stable manner.

In a second step we propose a method for deriving promising robot configurations

that utilize a chosen set of affordances. This method is based on the idea that

affordances act as constraints in a constraint-based inverse kinematics problem.

The proposed methods on affordance extraction and configuration generation have

been implemented and evaluated in simulation based on real RGB-D data.

In addition to the simulated results, we have implemented and tested a first

strategy for validating support and lean hypotheses that have before been assumed

purely based on visual perception. The affordance hypotheses are validated by ob-
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Fig. 12: A simple affordance verification strategy based on measuring the resis-

tance force of perceived enivonmental primitives that presumably afford leaning.

The robot perceives the two sides of a swing door, one of which being locked. It

perceives two vertical planar primitives and starts verifying the assigned lean af-

fordance hypotheses by exerting a force to each of the sides of the door. Based on

the measured resistance force, the left side of the door is detected as a verified lean

affordance while the right side of the door is rejected as it does not resist the exerted

force.

serving the reaction forces measured in the robot’s wrist while touching the corre-

sponding environmental primitives. The validation strategy has been implemented

in the robot framework ArmarX on the humanoid robot ARMAR-III.
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four, D. Kraft, D. Omrčen, A. Agostini, and R. Dillmann, “Object-Action Complexes:
Grounded Abstractions of Sensorimotor Processes,” Robotics and Autonomous Sys-
tems, vol. 59, pp. 740–757, 2011.

2. A. Bierbaum, M. Rambow, T. Asfour, and R. Dillmann, “Grasp Affordances from
Multi-Fingered Tactile Exploration using Dynamic Potential Fields,” in IEEE/RAS
International Conference on Humanoid Robots (Humanoids), pp. 168–174, 2009.



16 P. Kaiser, N. Vahrenkamp, F. Schültje, J. Borràs and T. Asfour
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Júlia Borràs received the M.Sc. degrees in mathematics and

computer science from the Technical University of Catalonia,

Barcelona, Spain,in 2004 and the Open University of Catalonia,

Barcelona, in 2006, respectively. From 2004 to 2007, she worked

with several companies as a programmer. In 2007, she joined the

Institut de Robtica i Informtica Industrial, where she completed

her Ph.D. degree in advanced automation and robotics from the

Technical University of Catalonia, and the Spanish Scientific Research Council,

Institut de Robtica i Informtica Industrial, Barcelona, in 2011. From November 2011

to July 2013, she was a Postdoctoral Associate at the Grasping and Manipulation,

Rehabilitation Robotics and Biomechanics (GRAB) Laboratory, Yale University

(USA). In February 2014, she joined the High Performance Humanoid Technologies

(H2T) team at KIT (Germany) as a postdoctoral researcher. She has worked in

kinematics and singularities of parallel robots, and applied later these frameworks

to grasping and whole-body humanoid poses.

Tamim Asfour is full Professor at the Institute for Anthropo-

matics, Karlsruhe Institute of Technology (KIT). He is chair of

Humanoid Robotics Systems and head of the High Performance

Humanoid Technologies Lab (H2T). His current research inter-

est is high performance humanoid robotics. He is developer and

leader of the development team of the ARMAR humanoid robot

family. He has been active in the field of Humanoid Robotics

for the last 14 years resulting in about 150 peer-reviewed publications with focus

on engineering complete humanoid robot systems including humanoid mechatron-

ics and mechano-informatics, grasping and dexterous manipulation, action learning

from human observation, goal-directed imitation learning, active vision and active

touch, whole-body motion planning, system integration, robot software and hard-

ware control architecture. He received his diploma degree in Electrical Engineering

in 1994 and his PhD in Computer Science in 2003 from the University of Karlsruhe.


