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Abstract— In general, rearranging the legs of a Stewart-Gough
platform, i.e., changing the locations of its leg attachments,
modifies the platform singularity locus in a rather unexpected
way. Nevertheless, some leg rearrangements have been recentl
found to leave singularities invariant but, unfortunately, these

rearrangements are only valid for Stewart-Gough platforms

containing rigid components. In this work, the authors go a step g 1. The four possible rigid components involving lineaometric
further presenting singularity-invariant leg rearrangements that  elements in Stewart-Gough platforms.

can be applied to any Stewart-Gough platform whose base and

platform attachments are coplanar. The practical consequence

of the presented theoretical results are illustrated with several

examples including well-known architectures. Let us suppose th?_"t we want to apply a singularity-invariant
leg rearrangement limited to a subset of legs. Clearly, this
. INTRODUCTION is only possible if this subset of legs defines a rigid sub-

E hen th . K lution t . th assembly. Kong and Gosselin refer to these subassemblies as
ven when there 1S no known solution to a given ma %bmponents [12]. The simplest component arises when two

matical proplem, it is always possible to tlry to fin'd th'e set cf&gs share an attachment. The result is called the Poim-Lin
transformations to the problem that leave its solutionriiarg. component. Similarly, the three other components invavin

Although this does not solve the problem itself, it provides linear geometric entities (points, lines and planes) aee th

lot of insight into its nature. This way of th|nk|n_g_|s at thePoint—PIane, Line-Line and Line-Plane components (Fig.1)
root of the development of Group Theory and it is the o

. . o . 1€ ONPhe singularity-invariant leg rearrangements for eactheté
applied herein for the characterization of the singulalt four components have already been fully characterized [4],
of Stewart-Gough platforms.

h h olatf is defined | 3], [5]. In this paper, the authors go a step further praagnt
The S.tewar'F-Gogg. platiorm is defined as a 6'D_OF paralitle rules for the leg rearrangements that can be appliedyto an
mechanism with six identical_SPlegs [14], [6]. It triggered Stewart-Gough platform whose base and platform attachsnent

the refstiarch otn pglr?lle![ rg_ar(;liulators, aand I'tt his rema|t coplanari(e., the equivalent to a Plane-Plane component).
one ot tn€ most widely studied because, despite 1S 9EME yq i show that, for a leg rearrangement to be singularity-

simplicity, its analyS'S translates mto_challeng_mg netiatical invariant, it is necessary and sufficient that the lineanaictrs’
problems. One important part of this analysis CorreSpODOIS\}elocities, before and after the rearrangement, are lipear

the charactenzguon of its smgularmes. . related. By integrating this differential condition, théoxe
Th? geometric a”‘?' topological characterization _Of 'the Sl8tatement can be reformulated as follows: a leg rearrangeme
gularity locus of a given Stewart-Gough platform in its siXis gjngjarity-invariant if the squared leg lengths, befand

dimensional configuration space is, in general, a hugg taz?llfer the rearrangement, are affinely related. It is impurta
V.Vh'Ch h.as only _been. completely solved for some Sp?c'a“zﬁ‘)' realize that, if this condition is satisfied, a one-to-one
tions —i.e., designs in which some spherical joints in the., o5yondence between the elements of the platform fdrwar

plgtform, the b ase, or both, Colalesce to form multiple SPhbr kinematics solution sets, before and after the rearranggme
joints [2], [1]. In this context, it seems reasonable to fied | o;cqq Actually, the invariance in the singularities ahe t

rearrangements in a given Stewart-Gough platform thalelea'é(ssembly modes of a parallel platform are two faces of the
its singularity locus invariant for two main reasons:

same coin. These ideas are closely related to those that made

(@) If the singularity locus of the platform at hand has alfea possible the development of kinematic substitutions [Sieyl
been characterized, it could be interesting to modify thg&e general in the sense that they can be applied to any kind of
location of its legs to optimize some other platforniechanism, not only parallel platforms. We will also shoatth
characteristics without altering such locus. their application to well-studied platforms leads to ietting

(b) If the singularity locus of the analyzed platform has naiew results. For example, we will see that it is not necessary
been characterized yet, it could be of interest to simpliffaat a platform has collinear attachments to behave like a
the platform’s geometry by changing the location of it&riffis-Duffy type I manipulator.

IegS, thus eaSing the task of Obtaining this characteoizati This paper is organized as follows. In Section ||, a nec-



essary and sufficient condition that must be satisfied by aing. the platform is always in a singularity irrespective of its
singularity-invariant leg rearrangement in a Stewart-@ou leg lengths.

platform is presented. Then, the challenge becomes that oSince lengths are assumed to be positive magnitudes, equa-
finding the geometric transformations that satisfy thisdion tion (2) defines a one-to-one relationship between leg kengt
tion. This is discussed in Sections Ill and IV for any doublybefore and after a singularity-invariant leg rearrangemas
planar Stewart-Gough platform. Section V presents somescaa consequence, this kind of transformations leaves not only
that exemplify the potentialities of the obtained transfation. the singularities of the platform unaltered, but also theirea
Finally, Section VI summarizes the main results. and number of its assembly modes.

II. GENERAL CONDITION FOR A LEG REARRANGEMENT TO IIl. L EG REARRANGEMENTS

BE SINGULARITY-INVARIANT It has been shown in the preceding section that any

In general, if we change the location of the leg attachmergggularity-invariant leg rearrangement results in annaffi
in a Stewart-Gough platform, its singularity locus is maalifi relation between the leg lengths before and after the rear-
However, it is shown below that the singularity locus remsairrangement. In this section this idea is exploited to defire th
invariant if, and only if, the squared lengths of the legshieit singularity-invariant conditions for the doubly-planagrgral
new location can be expressed in terms of those in the otigifgtewart-Gough platform.
location through an affine relation (for any arbitrary pose o In a doubly-planar Stewart-Gough platform, theh leg
the platform with respect to the base). joins a base attachment with coordinates = (xi,yi,AO)T

Let us consider a general Stewart-Gough platfore, a with a platform attachment whose local coordinateslare-
6-DoF parallel mechanism with six identical SRegs [14], (z;,t;,0)”. Given the positionp = (p.,p,,p.)T and the
[6]. For this kind of platform, the linear actuators’ velbes, rotation

l1,l5,...,ls, can be expressed in terms of the platform velocity (2 P
vector (v, ) as follows: R=(@Gjk) =i Jy ky|, 4
. iz Jr ke
5; . the coordinates of the platform attachments in the base-refe
diagliy,....ls) | | | = (Q) , (1) ence frame ard; = p + R(z;,t;,0)T, fori=1...,6.
: Let; be the length of the originatth leg, then? = ||b; —
lg a;||? fori=1,...,6.

whereJ is the matrix of normalized Plicker coordinates of the We define a leg rearrangement of a single leg, the

six leg lines [14]. The parallel singularities of the platfoare f#:sggggo;tt;)(f:h?:gnfflotchaiefgi:b();; ang;?e{ociﬂg glgt?grrgom
those configurations in which ddt) = 0 [13]. ik P

. ttachment ab = p + R(z,¢,0)7. We will call it leg rear-
Now, let us change the Iocatl_on of_the leg attgchmen gngement towardsz, y, z,t). Now we proceed to compute
so that the lengths of the legs in their new locations, s

i _ _ 2
di,ds,...,ds, are related to those of the original Iegs{i‘]){e length of that newly introduced lef = ||b — all*.

1 I throuah the relation- ' Subtracting from the expressions f6randi?,i = 1,...,6,
bzt g ' the equations? +i2 +i2 = 1 andj2+ j2+ 52 = 1, and using
d3 13 the relationi - j = i,j, + i,j, + i.j. = 0, quadratic terms in
d3 13 the rotation variables cancel out, yielding
.| =A] .| +h, 3
: : 1,5 9 9
d2 12 - 5(]?1 +py + D3) — 2t — LU + TPy + YiPy

where A andb are a constant matrix and a constant vector, +@izite + Yizily + Titifo + Yitijy —ki =0 (5)

respectively. Differentiating this equation with respextime

and substituting (1) in the result, we get 1
9@ ¢ *—(pierf,eri)fzuftv+3:px+ypy

: 2
Zl + x2iy + yziy + xtje + ytjy —k+d*/2=0 (6)
. 2 v
diag(di,....ds) | . | =AJ (Q) : (3) whereu = p-i, v = p -j, and the constant factors, =
) L@yl +22+t2—12) andk = $(2® + 92 + 22 + ).
dg If we subtract the first equation from the others, quadratic

Then, the singularities of the platform after the leg reaf€'™MS inpz. p, andp. cancel too, yielding six linear equations

. . . . 2 -
rangement leading to (2) are those configurations in whiéh € 9 unknowns.., p,, u, v, iz, iy , j., j, andd” [equation

_ _ (7)]. Note thatk; depends ori;.
detAJ) = del(A)d_et(J) L 0. h.c d_et(A? 7 0, the leg From the matrixQ of the system (7), let us cal};;;, the
rearrangement is said to Isengularity-invariant If det(A) = square matrix obtained fro after deleting columns, j and

0, the rearrangement introduces architectural singularity %, and@);;;, its determinant. The system can be solved if we



v
21 — 2y bt —1la Ta—T1 Y2 — Y1 ToZo — X121 Y222 — Y121 Talo — Tily Yoto —yit1 O » ko — kq
21 —2z3 bty —13 w3 —x1 Y3 — Y1 T323 —T121 Y323 — Y121 x3lz — w1ty Y3tz —yit1 O pz k3 — k1
21— 24 t1—ty Ta— X1 Ya— Y1 TaZs — T121 YaZa — Y121 Tats — 21t yaty — ity O iy _ | ka—F
Z1— 25 b1 —1ts T5 — X1 Y5 — Y1 Tszs — T121 Y525 — Y121 Tsts — x1ty ysts —yity O Z-I ks — kq
21 —26 t1—1le T —T1 Yo — Y1 TeZe — T121 Y626 — Y121 Tele — T1li Yete — y1t1 O jy ke — k1
z71—2z t1—t rz—x1 y—wy1 wz—w121 Yz—y1z21 ct—xity  yt —yity % jw k—k;
y
Q d?
(7)
Y1 X121 Y121 xiti it —wx1 1
take three unknowns as parameters, for examplg p,.. The Y2 T2za yaze oty yatz —axo 1
resulting linear system is: ys w3zs yszs wsts ysts —axs 1
Dy (22 — 21)u+ (t2 — t1)v — (22 — 21)pa + k2 — k1 Q120 = |Ya Xaza Yaza Talsa yatsa —x4 1 =0, (11)
iz (23 —z1)u+ (t3 —t1)v — (w3 — 21)pa + k3 — k1 Ys @525 Yszs st Ysts  —s 1
Q iy | | (a—20)u+ (b4 — t1)v — (4 — 21)ps + ka — k1 Y6 Teze Yez6 Tele Yele —Te 1
230 g0 | T | (25 —21)ud(ts —t1)v — (x5 — x1)ps + ks — k1 | y Tz yz xt yt -z 1
Jy (z6 — z1)u+ (t6 — t1)v — (6 — 21)pe + ke — k1
d? (z—z)u+ (t—t1)v—(x —z1)ps + k — k1

A. Generalizing and simplifying the condition

Solv!ng the _system forl? using Crammer_’s rule and t_hen The above reasoning fails #)12; — 0 but, for a non-
applylng multi-linear propertles (_)f 'determlnants.to Sph? architecturally singular manipulator,6ax 6 matrix Q;;; with
determinant of the resulting matrix into 4 determinantddge ;. _-ero determinant can always be found (otherwise, the 6
_ Qa39u + Q139v + Q1297 + Q703 8 leg length equations would be linearly dependent). However
- %ng ’ (®) this may change the expression of the singularity-invarizg

rearrangement condition in equations (9)-(11).
where Q7,3 is the determinant ofQ.2; except for the last 1o avoid such ambiguity, we can reformulate the condition
column that contains the elemenits — k1 for ¢« = 2,...,6 i terms of rank deficiency of the matriQq (that is, the
and k — ki. As a result, if we imposeszg = (130 = matrix Q in equation (7) without the last column). The 5 first
Qi20 = 0, then equation (8) becomes affine i ....18. rows of Qq are full rank for any non-architecturally singular
Indeed, expanding)i,; leads to an expression of the form manipulator. FurthermoreQy is rank defective if, and only
if, all its submatrices have null determinant. However,sit i
only necessary to check 3 of its submatrix determinantss;Thu
where all coefficients are known constants. Then, followirigie condition in equations (9)-(11) is equivalent to thekran
Section Il, any leg rearrangement satisfyi@gso = Q130 = deficiency of Qy. The advantage of this formulation is that
Q120 = 0 leaves singularities invariant. any set of 3 submatrices could be used instead of the three

In other words, if we substitute any leg by a new legeterminants in (9)-(11).

with base attachment located at= (z,y,0)" and platform  To simplify the notation, we consider the following simpler
attachment atb = p + R(z,,0)7, the singularities will matrix:
remain invariant as long aér,y, z,t) satisfies the system

d2

d2 = Cll% + Cgl% + Cgl§ + C4li + C5l§ + Cglg + Co,

Q230 = Q30 = Q20 = 0, where @;;;, can be simplified —z1 —t1 oy mz yiz xity oyt 1
into a7 x 7 determinant using simple row/column operations, —2z9 —lo Ty Y2 TazZa YozZo Taly Yalo 1
yielding the following system: —z3 —l3 X3 Y3 T32z3 Yszz xslz ystz 1
yi Tz iz wtt it oz 1 P=|-2z —ta 74 Yo @azs Yaza Tals yats 1
Y2  Taza Yaza Talz yole 2o 1 —z5 —ls X5 Ys Tszs YsZs Tsls Ysts 1
Yys 323 Yszz X3tz ysts =23 1 —26 —l6 Te Ys T2 Y6 Tele Ysle 1
Q230 = |Y4  Taza Yaza Tats yats za 1| =0, (9) -z —t oy xz yz xrt yt 1
Ys X525 Ys2zs Tsls  ysts  zs 1 ( 2)
Yo Tore U xgiﬁ ye? ZZG i Let us denote byP;; the determinant of the submatrix ob-
4 Y v tained fromP after deleting columnsg and j, and P;;;, the
yi 121 iz xats ittt 1 determinant of the submatrix formed by the first 6 rowsPof
Y2 T2z2 Y222 Xalz Yotz t2 1 after deleting columns, ;7 and k.
Ys Tszs  Ys3z3 .’E3§3 y3§3 1;5 i 10 Note thatPU = Qij9 for 1,7 7é 9 and Pijk = %Qijk for
Quz0 = Z“ o g‘lz‘* . Z4t4 T 0. (0 k4 9. Using these relations it can be proved tk is rank
5 5%5 5%5 55 55 5 . . . . .
Y6 Tezs Vezs Tote yste te 1 defectl\{e if, and oln_ly if, P is also rank defective. Thus, a
y w2z yz at oyt ot 1 much simpler condition can now be stated: a leg rearrangemen



towards(zx, y, z, t) leaves singularities invariant as long as the
matrix P is rank defective.

One practical methodology to check rank deficiency is to
apply Gaussian elimination dA. The last row of the resulting
matrix has 3 nonzero terms dependent ony, z and ¢.

The corresponding 3 equations are equivalent to the system
{(9),(10), (11)}. Different equations arise depending on the
order of the columns. For example, Gaussian elimination on
matrix P as it appears in equation (12) leads to a matrix whose
last row is

1
— (0 000 0 0 Pg P Pr).
Prgg

Then, as long as?gy # 0, the singularity-invariant leg
rearrangements are defined by the system

{Pgg =0, Prg = 0, Prg = 0} (13)

Fig. 2. Scheme of the platform described in Table I.

Alternatively, if the matrix P columns are sorted as ) . )
[y, 22, yz, xt,yt, 1, —z, —t, z], then the corresponding system From equation (15) itis clear that the system has a solution

is {(9), (10), (11)} and Py53 should be non-zero. on (z,t) only for those (z,y) that satisfydet(S,) = 0,
and this solution is unique (assuming that the mafix

IV. GEOMETRIC INTERPRETATION OF THE CONDITION  hag rank 2). In the same way, there exists a solution on
Note that any equation consisting of a submatrix deterniz,y) only for those(z,t) that makedet(S,) = 0. Both
nant P;; equated to zero will be bilinear in the unknownsgeterminants define cubic curves on the base and platform
but with different monomials. Let us consider the system glanes, respectively. In other words, the system (14) define
equations (13), which after cofactor expansion, leads to  one-to-one correspondence between points on the two cubic
curves. However, the correspondence may be not one-to-one

—Pgo12 + Pgoat + Pgosr — Pgoay + Proszz . . . s .
for singular points on the cubics, as will be seen in the examp
—Psogyz + Psorat = 0 of Section V-B.
—Prg1z + Proat + Prosx — Proay + Prosxz (14) Depending on the geometric placement of the attachments,
—Prggyz + Progyt = 0 these curves can be generic curves of degree 3, or a line and a
— Prg12 + Prgot + Prgax — Prgay + Prgsaz conic, or even 3 lines crossing 2 by 2. This will be exemplified
in the following section.
—Prsyz + Prgg = 0

As the system is linear both if,y) and in(z,t), it can

. . . V. EXAMPLES
be rewritten in matrix form as

0 A. Classic Stewart-Gough platform
Se[t]=10], (15) )
0 In [9] Husty et al. analyzed the classic Stewart-Gough

platform, searching where additional legs could be placed
without changing the forward kinematics solution, to obtai
( Psgst — Psosy — Pso1 Pgoa + Peorx Psgsx — Pgoay ) a redundant manipulator. The same example is analyzed here.

whereS; is the matrix

Prosz — Progy — Pro1 Proa + Progy Prosx — Proay The local coordinates of the attachments are listed in Thble
Prgsx — Prsey — Prs1 Prga Prgzx — Prsay + Prso

TABLE |
COORDINATES OF THE ATTACHMENTSa; = (x4, yi,0) AND
b; = p + R(z;,t;,0)T FOR THE ANALYZED ROBOT

that only depends om andy (the b refers tobase, asx and
y are the coordinates of the base plane). The other way round,
the system can also be written as

T 0 .
L] @ [l z [ ti]
Splv]=1Y] (16) 1] 3]0 50
1 0 21 3 [0 ] 5 |0
where now matrixS,, is 2 RV RO A
Pgg3 + Psgs2z + Psgrt —Psgs — Pgogz Pggat — Pgg12 5 —6 16 | -2 | 10
Prg3 + Prosz Prgst — Prga — Procz Prgat — Pro12 6 | —10 | 10 | -7 3
Prs3 + Prgsz —Prsa — Prsez Prgot — Prg1z + Prso

that only depends on andt (andp refers toplat form, as
z andt are the coordinates of the platform plane). After substituting the corresponding numerical valueg, th



Fig. 3. Scheme of the platform described in Table Il (left)d @ahe equivalent platform after moving the 3rd leg (right).

system of equations (14) results in: In [9], the authors propose to add additional legs to ob-
tain redundant manipulators. Instead, here we propose to

2430z — 4050z + 255y + 188zt = 0 substitute any leg by another leg satisfying the one-to-one

—280t + 45y + 13yt =0 correspondence between the base and platform cubics defined
—70t + 43y — 422 +60 =0 by (17). The singularity locus will remain unchanged, and
_ _ other performance indices can be improved, such as stifnes
and, thus, matriceS, andS, are: or maneuverability, or the workspace can be enlarged by
2430 + 255y 1882 — 4050 reducing the risk of leg collisions.
Sy = 0 13y — 280 45
b A y_70 604_2!13?} ’ B. Degenerate cubic curves
188t — 4050 2552 24302 Interesting cases appear when one or both of the curves
S, = 0 13t +45 —280t |, are degenerate. Consider the example given in Table Il,avher
—4z 43 60 — 70t two of the attachments on the platform are made coincident,

. . . by = bz [Fig. 3-(left)]. The two legs sharing an endpoint form
whose determinants equated to zero give the two cubic cur¢point-Line component, and it was proved in [4] that the base
—162962%y + 95031> + 30240023 attachments, andaz can be rearranged on any point on the

) line apasz without modifying the singularity locus.
—47312y" — 1599420y — 2721600 = 0,

2059822t — 8554¢% + 2187022
+ 275173t — 1932795t — 546750 = 0;

an TABLE I

COORDINATES OF THE ATTACHMENTSa; = (x4, yi,0) AND
b; = p + R(zi,t;,0)T FOR THE ANALYZED ROBOT

plotted in Fig. 4. The cubic in the base coincides with the

one appearing in [9], whereas the cubic in the platform is not (P& v s & ]

1
given explicitly there. T 3 [ 4] 2] -2
By definition, all attachment coordinates are solutionshef t 215 [—-2] 2 | —-1/2
system, and therefore belong to the curves, as shown in.Fig.4 2 g i _22 _12/2
51 4] 1 | -3 1
6

After applying Gaussian elimination to the mati#x given
(i“ in equation (12) corresponding to this example, the foltayvi
s a3 - equations are obtained:

40
—4 -1 -3 —1
304
207
as

0 4 @0 W) i@y jag 10 (20 3
3722 + 18988t + 1302z — 5656y + 527x2
+2828yz + 1212zt = 0
5172z + 808t — 25022 + 404y + 257z (18)
+404yz + 2424yt = 0

Fig. 4. The base and the platform curves defined in (17). T4z — 44y — 1322 +202 =0



N . 109 ¢ X . .
n points on the base, and vice versa. Observe that, on theaingu
/a%// point z = 2, (20) is undefined. However, ternis — 2) can
~ aV a3 b q;%“\ by — be simplified and then the resulting point gives the inter-
z 5 2 3 . .
B BTN 1 -5 0 by %o 1 section between the line and the hyperbola. In other words,
C T~ ¥ by this parametrization represents the one-to-one corresgrme
ar [~ M between points on the platform cubic and the base hyperbola,
-104 -104 except for the singular platform poir2, —1/2), a double

point that corresponds to two points on the hyperbola (the
two intersections of the line with the conic).
To avoid multiple spherical joints, here the Point-Line
and the corresponding cubic curves are defined by component can be split by substituting any of its legs by
another leg going from the conic to the base cubic. For
1713768(z — 5) example, take the point on the platform cubic givenzby: 0

Fig. 5. The base and the platform curves defined in (19).

(312 — 280y + 631z + 2308) = 0, andt = =93+4162022 ' and solve system (18) after evaluating
1713768(—1322% + 12422t + 4762t + 19122 it on this point, or equivalently, evaluate expression (&%)
46202t + 1528¢2 + 1250z + 744t — 1606) =0. ~ # = U- The resultis:
(19) 101 and 243033 — 444/162022
T=—— Yy = .
In other words, the cubic curve in the base factorizes into 22 —3872 + 132162022

a conic (an hyperbola) and a line, while the platform curve Hence, we can substitute the 3rd leg by a new leg going
remains a cubic, but with a singular point (called node) oafiom the base pointlQl, 243033-44v162022 ) tg the platform

the vertex of the Point-Line componemi; = (2, —1/2). Fig. 227 —3872+132v/162022°

H i —93+v162022
5 shows the plot of these two curves and the correspondi‘;Flleﬁi""Chment with local coordinatés, 382 ,0) and the

location of the attachments ulting Jacobian is the same as before, multiplied by a

159904+93v162022 __ H H H
The correspondence between the base line and the platfGPRStANt ¢35 == = 0.794, and with no coincident
cubic curve can be derived by solving system (18) for arffftachments (Fig. 3-right).
point on the base linesasz (i.e, x = 5), leading to C. Griffis-Duffy platforms
3007z + 25048t + 6510 — 5656y + 2828yz = 0 In 1993, Griffis and Duffy patented two manipulators named
46457z + 808t — 12510 + 404y + 404yz + 2424yt = 0 thereafter Griffis-Duffy type | and Il platforms [7]. Both
92 18 = 0 platforms have their attachments distributed on triandtage

attachments on the vertices and three on the midpoints of the
edges. Type | platforms are formed by joining the attachment
on the midpoints on the base to the vertices on the platform,

From the last equation; = 2. Substituting this value into the
first two equations and factorizing the result yields

12524(1 4 2t) = 0, and the vertices on the base to midpoints on the platform
404(1 + 3y)(1 + 2t) = 0. (Fig. 6_—Ieft). Type II join midpoints to midpoints and vertis
. ) to vertices (Fig. 7-left).
The solution of the system i§z = 5,y = y,z = 2,{ = A type | Griffis-Duffy platform is shown to be singularity

—1/2}, that is, any point on the ling = 5 corresponds to the gqyivalent to the octahedral manipulator [4]. In [11], tylpe

vertexby = b3 in accordance with previous results [4]. Griffis-Duffy manipulators are shown to be always non-
For the rest of the points on the cubic curve, the COIrespOLyehitecturally singular.

dence can be written in terms of a single parametegiven

4 ) Consider the two examples specified in Table Ill, where the
a point on the platform cubic

same triangles define two manipulators of type | and type II,

—3122 — 1552 — 186 £ VA respectively.
zZ, ,
2(119z + 382) ABLE I
the corresponding point on the base hyperbola is COORDINATES OF THE ATTACHMENTSa; = (i, Y;, 0) AND

b; = p + R(z;,t;,0)” FOR THE ANALYZED ROBOT

2(37z + 101)
44 + 13z

] 1 2
3(z — 2)(1666922 + 103981z + 162022) F (262 + 88)vVA | ; | Zl | to || Typet | Typell | vi
4(2 — 2)(44 + 132)2 £ 2(392 + 132)VA "z o 2 . 233 0
(20 [ 3] -1 0 7 3 = 0
41 -1/2 | V3/2 5 4 | —2/3 | (4/3)V3
where the discriminantA = (1666922 + 103981z + 5[ o V3 5 : . 573
162022)(z — 2)? determines whether points are real or com-| 6 | 1/2 | v3/2 1 6 1 73

plex. Real points on the platform always correspond to real



Fig. 6. Scheme of the platform described in Table Ill of a Ggiffiuffy type | platform (left), and its equivalent octahadmanipulator after applying a leg
rearrangement (right).

The computation of the base and platform curves factorizé® invariance of the singularity locus, but in the first ctise
into the 3 same lines for both type | and type Il platforms: correspondence is between points and lines and in the second

B case it is point-to-point between lines.
(\/32 L \/5) (\/ﬁz i \/3)\1;/ =0, The legs of the type Il manipulator can be rearranged
LPy LP, LPs following the correspondencéB; — LP;. But some rear-
(=3z+V3y—6)(3z+V3y—6) y =0; rangements must be avoided, for example, placing four legs
~~

in the same line-line correspondence leads to an architgigtu

. ) ) ~ singular manipulator (as it contains a Line-Line comporient
but the system obtained by applying Gaussian elimination BRojective correspondence [4, 10)).

matrix_P results in different equations. The system corre- 5, interesting rearrangement consists in removing all
sponding to the type | platform is: collinearities from the type Il manipulator. As a result, an

LB, LBy LB3

2 —y+yz+at=0 equivalent platform such as that shown in Fig. 7-right is
(V324t—3)y =0 obtained. . N
To remove collinearities, all legs from vertex to vertex chee
—2V3z + 4t + V3x —y +V3rz +3yz —2V3 =10 to be rearranged. The 1st leg can be placed going from a point
whereas for the type Il platform is: on LB, to the corresponding point ohP;. In other words,

take a point on the lind B,, substitute the values on system
2t-ytat—yz=0 (21) and the solution gives a point on the lifé>:

3V3y —8V3t +V3yz +yt =0 _
Substitute on (21)

103z — 16t — 5v3z + 9y + V3zz + yz — 23 =0 r=1/2 - z=1/4
_ _ (21) y=(3/2)V3 and solve t=(3/4)V3
The resolution of these systems gives correspondences be- ~———— e S
on LBy on LP;

tween base and platform attachments that leave the simgular

ties invariant. The same can be done to substitute the 3rd leg by a leg going
For the type | platform, the correspondence is betwe@m L.B; to LPs:

points and lines (in accordance with results in [4]), that is

to each vertex of the base (platform) triangle corresponds a r=—2/3 Substitute on (21) r= 17
line on the platform (base) triangle, in the same way as in the y=0 — t=0
preceding section the vertex of the Point-Line componerst wa _ and solve _—
in correspondence with a line on the base. Thus, by moving on LB on LPs

the six midpoint attachments along their supporting liries,
manipulator can be rearranged into the equivalent octahe
manipulator depicted in Fig. 6-right (a result concordaithw

nd finally, the 5th leg is substituted by a leg going from a
oint on LB, to a point onLP;

that in [4]). _ 4o Substituteon (21) _ ..
On the other hand, for the type Il platform, there is a one-to- v =3/ N z=—6/
one correspondence between points on lif¢ and LB;, for y=(1/2)v3 and solve t=(1/T)V3

1 =1,2,3. That is, the same geometrical elements determine on LB, onLP,



Fig. 7. Scheme of the platforms described in Table Il of a Gribiuffy type Il platform (left), and its equivalent platforafter removing all collinearities
(right).
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