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Fig. 7. Pentapod analyzed in Section V. Note that it is in an upside-down
configuration, so that the platform is located under the base.

This means that any leg can be rearranged to a leg going from the
base attachment a = (λ, y, 0)T to b̃ = (λ, 0, 0)T without modi-
fying the singularity locus (where for a fixed λ, the y coordinate
can take any value). This corresponds to the rearrangements
plotted in Fig. 7, that is, a one-to-one correspondence between
the attachments at the platform and a pencil of parallel lines
attached at the base. In this case, the center of the pencil lies at
infinity.

This particular architecture was proven to be quadratically
solvable in [48] and [50], that is, its forward kinematics can
be obtained by solving only two quadratic polynomials. If we
fix the attachments of the platform, the corresponding base at-
tachments can be relocated to any point of the red lines plotted
in Fig. 7. Taking advantage of this idea, at the Laboratory of
Parallel Robots of IRI we have developed a reconfigurable ma-
nipulator prototype based on this structure. Its base attachments
can be reconfigured along actuated guides, without modifying
the nature of its forward kinematics nor the singularities of the
manipulator, and thus increasing the versatility of the manipu-
lator, since for each task, the legs can be reconfigured to equally
distribute the forces among its legs (see Fig. 8).

This pentapod design can be useful to enlarge the workspace
of robots handling axisymmetric tools, with applications such
as five-axis milling, laser-engraving, spray-based paintings, and
water-jet cutting.

VI. CASE STUDY III: A DECOUPLED

STEWART–GOUGH PLATFORM

Consider the manipulator in Fig. 9. It contains a tripod and
three more legs, with all the base attachments coplanar. Thus,
without loss of generality, we can write the coordinates of the
attachments asai = (xi, yi , 0)T and b̃i = (ri, si , ti)T . This ma-
nipulator is said to be decoupled because the three legs forming
the tripod give the position of the platform, while the three re-
maining ones orient it [23]. When the tripod is rigid, i.e., fixed
at a position, this manipulator is also known as spherical [46],
[47].

Consider the example with numeric coordinates appearing in
Table IV. After performing Gaussian Elimination on the corre-
sponding matrix P, only six nonzero elements remain at the last
row. That is, a leg rearrangement will be singularity-invariant if

Fig. 8. Prototype of the reconfigurable quadratically-solvable pentapod and
its joint implementations.

Fig. 9. Decoupled manipulator with nonplanar platform. In red, its singularity-
invariant leg rearrangement lines.

TABLE IV
ATTACHMENT COORDINATES ai = (xi , yi , 0) AND bi = p + R(ri , si , ti )T

i xi yi ri si ti

1 2 -1 2 2 0
2 5 4 2 2 0
3 -1 4 2 2 0
4 7 -2 5 0 1
5 2 7 2 5 1
6 -3 -2 -1 0 1
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Fig. 10. Singularity-invariant leg rearrangements from the example in Fig. 9.

it fulfills the following six conditions:

−2xr + yr + 4x − 2y + 6r − 6s + 18t = 0

−4xr/3 + xs + 2x/3 + 6r − 6s + 12t = 0

1/5(17xr + ys − 34x − 10y − 34r + 34s − 207t) = 0

5xr/3 + xt − 10x/3 − 5r + 5s − 17t = 0

9xr/5 + yt − 18x/5 − 18r/5 + 18s/5 − 89t/5 = 0

−1xr/2 + x + r − 3s/2 + 9t/2 + 1 = 0.

This system of equations has four sets of solutions

T = {(x, y), (r, s, t) |
x = λ, y = μ; r = 2, s = 2, t = 0, λ, μ ∈ R}

Δ1 = {(x, y), (r, s, t) |
x = 2, y = 7; r = 2, s = 2 + 3λ, t = λ, λ ∈ R}

Δ2 = {(x, y), (r, s, t) | x = 7, y = −2;

r = 5 − 3λ/2, s = λ, t = 1 − λ/2, λ ∈ R}
Δ3 = {(x, y), (r, s, t) | x = −3, y = −2;

r = 2 − 3λ, s = 2 − 2λ, t = λ, λ ∈ R}.

The first one corresponds to the tripod component and it means
that base attachments can be rearranged to any point of the
base plane as long as its corresponding platform attachment
is the vertex of the tripod. The other three sets correspond to
point-line correspondences as before, depicted as red lines in
Fig. 9. This means that b4 ,b5 , and b6 can be relocated to any
other point of the red lines (as long as their corresponding base
attachments remain the same).

In Fig. 10, we show two possible singularity-invariant leg
rearrangements of the manipulator at hand. For all of them, the
decoupling properties remain the same as they are all equivalent
manipulators.

Note that with this strategy we cannot completely eliminate
all the multiple spherical joints. But we can design a decoupled
manipulator with only single spherical joints by imposing ex-
tra alignments on the attachments. For example, consider the
manipulator in Fig. 11. It is still decoupled but, in this case, it
contains a line–plane component. As mentioned in the preced-

Fig. 11. Decoupled manipulator with a collinearity at the base and coplanar
platform and base. Below, the rearrangement to an equivalent manipulator with
only single spherical joints.

ing section, for the five legs forming the line–plane component,
there exists a one-to-one relationship between the collinear at-
tachments (the line) and a pencil of lines (at the plane), whose
center is called the B-point. In this case, the B-point is made co-
incident with the attachment b1 and the pencil of lines is located
attached to the platform. We can split the triple spherical joint by
placing two more attachments collinear with a4 ,a5 , and a6 and
then moving the platform attachment along their corresponding
lines of the pencil (see [48] for more details).

A manipulator with decoupled position and orientation has
many advantages. For example, the calibration becomes sim-
pler because the translation and rotation become 3-D indepen-
dent functions instead of a complex 6-D one. It also simplifies
path planning, for example, in cooperation tasks between ma-
nipulators. As a drawback, the designs presented to date have
a complex implementation and small range of motion due to
joint limits. Our proposed architecture is simpler than any other
decoupled manipulator presented before, in the sense that it
only contains single spherical joints. But it can benefit from the
kinematic decoupling properties, as all the computations can be
performed for the original decoupled manipulator and be used
for the rearranged one. In other words, we have designed a de-
coupled parallel manipulator easier to implement that avoids the
common drawbacks of multiple spherical joints.

VII. CONCLUSION

This paper shows how the application of singularity-invariant
leg rearrangements provides a new geometric approach to the
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study of Stewart–Gough platform singularities. Indeed, three
case studies have been provided that illustrate several new re-
sults. The background theory is based on the mathematical in-
variance of type 2 singularities, as no other type of singularities
appear for Stewart–Gough platforms. Nevertheless, it is also
extensible to type 1 singularities. To apply it to lower mobility
parallel platforms, a more thoughtful mathematical definition
of singularity invariance may be needed to consider constrain
singularities [51].

We have presented a tool to detect equivalences between ma-
nipulators, allowing the application of previously known geo-
metric interpretations of singularities to new architectures. This
is the case of the Griffis–Duffy platform in Section IV. The
6–6 Stewart–Gough platform prototype shown in Fig. 6 has the
same kinematic properties as the octahedral manipulator, that
is, the same geometric interpretation for its singularities applies,
as well as all other kinematic properties studied in the exten-
sive literature about the octahedral manipulator, with a crucial
advantage: the new architecture contains only single spherical
joints.

We have also shown how decoupled manipulators can be
rearranged to equivalent and apparently nondecoupled manipu-
lators, with different configurations of their spherical joints that
might be easier to implement.

Moreover, the hidden geometric structure revealed by the
curves of singularity-invariant leg rearrangements can be of
help in the simplification of the forward kinematics resolution.
For example, in the case study II, we show a manipulator that is
quadratically solvable.

Finally, new geometric interpretations of singularities have
been found thanks to singularity-invariant leg rearrangements.
For example, for pentapods with planar bases, the identified
pencil of lines at the base of the manipulator reveals to be cru-
cial for the geometric interpretation of its singularities. Similar
interpretations represent a challenge for future work.

In conclusion, this indirect approach to the analysis of
Stewart–Gough platform singularities has succeeded in finding
new results in a topic with an extensive previous literature.

APPENDIX

Here, we mathematically define the notion of singularity-
invariance and we give the derivation of matrix P in (1).

Singularities are defined as the zeros of the determinant of
the Jacobian matrix. The Jacobian matrix relates the velocities
of the joints with the twist of the platform T in the well-known
equation JT = Θ̇ [17].

We define a leg rearrangement as singularity-invariant if, and
only if, there is an affine one-to-one relationship between the leg
lengths before and after such rearrangement. Such relationship
can always be computed independently of the pose parameters,
i.e., it is constant with respect to time. More formally, if Λ =
(d1 , . . . , d6) are the lengths of the legs after the rearrangement
and Θ = (l1 , . . . , l6) the original ones, we can write

Λ = AΘ + b (10)

where A is a constant matrix and b a constant vector. Indeed,
differentiating with respect to time the previous equation gives
a linear relationship between the joint velocities before and
after the rearrangement. Substituting such linear relationship
in the equation JT = Θ̇ leads to AJT = Λ̇. In other words,
the Jacobian matrix of the rearranged platform is AJ, whose
determinant has the same zeros as J, i.e., the same singularities
as the original platform. See [34] for details.

In practice, we perform rearrangements of only one leg at
a time, as any sequence of singularity-invariant leg rearrange-
ments is also singularity-invariant. In Fig. 1, we show the re-
arrangement of the leg j, that is, the relocation of the attach-
ments aj and b̃j to the new coordinates a = (x, y, z)T and
b̃ = (r, s, t)T . Such rearrangement will be singularity invariant
if, and only if, the length of the new relocated leg is uniquely
determined by the geometry parameters and the joint parame-
ters. In [34], it was shown that such rearrangement is singularity
invariant if, and only if, the coordinates (x, y, z, r, s, t) make the
matrix P in (1) to be rank deficient. The key of the derivation of
this matrix is based on the computation of the length of the new
relocated leg, d, and on the consideration of under which condi-
tions it can be computed independently of the pose parameters.
For space reasons, we only give a sketch of the proof.

By definition, leg lengths satisfy

(bi − ai)2 = l2i , for i = 1, . . . , 6 and (b − a)2 = d2 ,

where the geometric and joint parameters are considered given
and the unknowns are the pose parameters and d. This quadratic
system of equations can be converted into a linear system by
simplifying all the equations, using the properties of the orthog-
onality and determinant equal to 1 of the rotation matrix R and
introducing new variables u = p · i, v = p · j, and w = p · k.
The only quadratic terms in the resultant system are the same
three terms in all the equations, p2

x + p2
y + p2

z , which can be
eliminated subtracting the first equation from all the others. The
result is a linear system of 6 equations in 16 unknowns: the 12
pose parameters, the 3 new variables {u, v, w}, and the length
we want to compute, d. We define the vector of unknowns as
χ = {px, py , pz , ix , iy , iz , jx , jy , jz , kx , ky , kz , u, v, w}.

We want to compute d, so we choose five extra unknowns
from the list χ to solve the linear system using Crammer’s rule.
As a result, we obtain an algebraic expression depending on the
other ten left unknowns in the form

d =
1

c02

(
c01 +

10∑
i=1

ciχ[i]

)
(11)

where χ[i] is the ith element from the list of nonchosen un-
knowns χ. It can be shown that for a nonarchitecturally singular
manipulator, we can always choose a set of unknowns to solve
the linear system so that c02 �= 0.

To guarantee that such expression does not depend on any
of the unknowns, we need to impose the 10 coefficients ci to
be zero. It can be checked that such ten coefficients are ten
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maximal minors1 of the matrix P. Depending on which are the
variables for which one chooses to solve the system, different
combinations of minors appear but all from the same matrix.
Finally, using linear algebra properties, it can be seen that such
minors will vanish if, and only if, the matrix P is rank deficient.

The ten coefficients ci are expressions depending only on ge-
ometric parameters and the coordinates of the new attachments.
In fact, they are the same 10 polynomials that we obtain when
we study the rank deficiency of the matrix P in (2).
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Stewart platform for precision surgery,” Trans. Inst. Meas. Contr., vol. 25,
no. 4, pp. 329–334, 2003.

[13] J.-P. Merlet, Parallel Robots. New York: Springer-verlag, 2000.
[14] B. Dasguptaa and T. Mruthyunjayab, “The Stewart platform manipulator:

A review,” Mech. Mach. Theor., vol. 35, pp. 15–40, 2000.
[15] M. Husty, “An algorithm for solving the direct kinematics of Stewart–

Gough-type platforms,” McGill Centre Intell. Mach., McGill Univ., Mon-
treal, QC, Canada, Res. Rep. TR-CIM-94-7, 1994.

[16] J.-P. Merlet, “Solving the forward kinematics of a Gough-type parallel
manipulator with interval analysis,” Int. J. Robot. Res., vol. 23, no. 3,
pp. 221–236, 2004.

[17] C. Gosselin and J. Angeles, “Singularity analysis of closed-loop kinematic
chains,” IEEE Trans. Robot., vol. 6, no. 3, pp. 281–290, Jun. 1990.

[18] D. Zlatanov, “Generalized singularity analysis of mechanisms,” Ph.D.
dissertation, Univ. Toronto, Toronto, ON, Canada, 1998.

[19] P. Donelan. (2007). “Singularities in robot kinematics—A publications
database [accessed 1-Dec.-2008].” [Online]. Available: http://www.mcs.
vuw.ac.nz/∼donelan/cgi-bin/rs/main

[20] K. Hunt and P. McAree, “The octahedral manipulator: Geometry and
mobility,” Int. J. Robot. Res., vol. 17, no. 8, pp. 868–885, 1998.

[21] Z. Geng and L. S. Haynes, “A 3-2-1 kinematic configuration of a Stewart
platform and its application to six degree of freedom pose measurements,”
Robot. Comput.—Integr. Manuf., vol. 11, no. 1, pp. 23–34, 1994.

1A maximal minor of a matrix A is the determinant of a square submatrix cut
down from A, with the maximum size you can obtain removing one or more of
its rows or columns.

[22] J. Porta, L. Ros, and F. Thomas, “On the trilaterable six-degree-of-freedom
parallel and serial manipulators,” in Proc. IEEE Int. Conf. Robot. Autom.,
Apr. 2005, pp. 960–967.

[23] C. Innocenti and V. Parenti-Castelli, “Direct kinematics of the 6-4 fully
parallel manipulator with position and orientation uncoupled,” in Proc.
Robot. Syst. (ser. Intelligent Systems, Control and Automation: Science
and Engineering), S. G. Tzafestas, Ed. The Netherlands: Springer-
Verlag, 1992, vol. 10, pp. 3–10.

[24] I. Bonev and C. Gosselin, “Singularity loci of spherical parallel mecha-
nisms,” in Proc. IEEE Int. Conf. Robot. Autom., Apr. 2005, pp. 2957–2962.

[25] D. Downing, A. Samuel, and K. Hunt, “Identification of the special con-
figurations of the octahedral manipulator using the pure condition,” Int. J.
Robot. Res., vol. 21, no. 2, pp. 147–159, 2002.
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