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Abstract—In general, rearranging the legs of a Stewart–Gough
platform, i.e., changing the locations of its leg attachments, mod-
ifies the platform singularity locus in a rather unexpected way.
Nevertheless, some leg rearrangements have been recently found
to leave singularities invariant. Identification of such rearrange-
ments is useful not only for the kinematic analysis of the platforms,
but also as a tool to redesign manipulators avoiding the implemen-
tation of multiple spherical joints, which are difficult to construct
and have a small motion range. In this study, a summary of these
singularity-invariant leg rearrangements is presented, and their
practical implications are illustrated with several examples includ-
ing well-known architectures.

Index Terms—Manipulator design, parallel robots, robot kine-
matics, singularity analysis, Stewart-Gough platform.

I. INTRODUCTION

PARALLEL platforms have been widely studied during
the past decades because of their advantages with respect

to serial robots: improved stiffness-to-load ratio, lower iner-
tia, enhanced dynamics, and better accuracy. Among them, the
Stewart–Gough platform [1], [2] has attracted the interest of
many researchers and it is still the focus of several important
research projects for many applications: microforce sensors [3],
positioning tools [4], [5], microprecision interferometers [5],
milling machines [6], flight simulators [7], radiotelescopes [8],
[9], cable-driven robots [10] or supporting devices for rehabili-
tation, and surgery interventions [11], [12].

The Stewart–Gough platform is defined as a 6-DoF parallel
mechanism with six identical SPS legs. Despite its geometric
simplicity, its analysis translates into challenging mathemat-
ical problems [13], [14]. Forward kinematics usually involves
solving high-order polynomial systems with no possible closed-
form solution, i.e., they must be approached with computation-
ally costly numerical methods [15], [16]. The singularities of
a Stewart–Gough platform are those poses for which the ma-
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nipulator loses stiffness. Characterizing such unstable poses is
essential for improving the performance capacities of the robot,
but has revealed as a challenging problem, resulting in an ex-
tensive literature in the scientific kinematic world [17]–[19].

Closed-form forward kinematics and the characterization of
singularities have only been completely solved for some partic-
ular architectures. Indeed, there are specific designs of Stewart–
Gough platforms with nice symmetry properties [20], closed-
form solution kinematics [21], [22], decoupled motions for
position and orientation [23], [24], or a complete geometric
understanding of its singularities [25]–[27]. Despite their nice
properties, these designs are not usually chosen for practical
applications, mainly due to a characteristic they all have in com-
mon: some spherical joints in the platform, the base, or both,
share the same center of rotation forming multiple spherical
joints. Such multiple spherical joints are difficult to construct
and have a small range of motion.

Several solutions have been proposed in literature to solve
this issue. The most usual approach for practical applications
consists in substituting the multiple spherical joint by a group
of single spherical joints with small offsets between them, thus
simplifying the implementation of the platform but significantly
increasing the complexity of the kinematic solution and the char-
acterization of its singularities. If such offsets are neglected, then
errors arise in the computations [28]. Other researchers have
made efforts to design equivalent-motion mechanisms to sub-
stitute the multiple ball and socket joint. Such designs present
several drawbacks, such as a complex design, expensive imple-
mentation, small range of motion, or poor rigidity and accu-
racy [28]–[33].

This study proposes a new approach to solve this issue: find-
ing leg rearrangements in a given Stewart–Gough platform that
leave its kinematic solutions and singularity locus invariant.
In other words, finding how to redesign the geometry of the
platform so that the resulting architecture has its singularities
located at the same positions of the workspace as the previous
design. Even when there is no known solution to a given math-
ematical problem, it is always possible to try to find the set of
transformations to the problem that leave its solution invariant.
Although this does not solve the problem itself, it provides a lot
of insight into its nature. This way of thinking is the one applied
herein for the characterization of the singularity loci of Stewart–
Gough platforms and it leads to a complete characterization of
all the singularity invariant leg rearrangements.

It will be shown how such rearrangements provide a guide
to substitute a multiple spherical joint by a group of single
spherical joints separated by small offsets following a specific
geometry, so that the kinematics and the singularities of the

1083-4435/$31.00 © 2013 IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ASME TRANSACTIONS ON MECHATRONICS

platform remain the same as those of the original architecture.
In other words, for the previously mentioned designs, this study
proposes a methodology to redesign them in a way that their nice
kinematic and geometric properties are preserved, but avoiding
the use of multiple spherical joints.

The presented singularity-invariant leg rearrangements are
also useful for other reasons.

1) If the singularity locus of the platform at hand has al-
ready been characterized, it could be interesting to modify
the location of its legs to optimize some other platform
characteristics without altering such locus.

2) If the singularity locus of the analyzed platform has not
been characterized yet, it could be of interest to simplify
the platform’s geometry by changing the location of its
legs, thus easing the task of obtaining this characterization.

In [34], it is shown that, for a leg rearrangement to be
singularity-invariant, it is necessary and sufficient that the lin-
ear actuators’ velocities, before and after the rearrangement, are
linearly related. It is important to realize that, if this condition
is satisfied, a one-to-one correspondence between the elements
of the platform forward kinematics solution sets, before and
after the rearrangement, exists. Actually, the invariance in the
singularities and the assembly modes of a parallel platform are
two faces of the same coin. These ideas are closely related to
those that made possible the development of kinematic sub-
stitutions [35]. They are general in the sense that they can be
applied to any kind of mechanism, not only parallel platforms.
Indeed, there are several platforms with line-based singularities
[36, ch. 12, p. 272], or even three-legged platforms [37], [38],
that are equivalent to six-legged Stewart–Gough platforms.

This paper shows how the application of singularity-invariant
leg rearrangements to well-studied platforms leads to interesting
new results.

Section II introduces the notation used in this paper and
Section III defines a singularity-invariant leg rearrangement in
mathematical terms. Then, three case studies are presented (see
Sections IV, VI, and V), with particular numerical examples
showing interesting results, as well as the development and im-
plementation of two prototypes based in them.

II. NOTATION

A general Stewart–Gough platform is a six-SPS platform.
In other words, it has six actuated prismatic legs with lengths
li , i = 1, . . . , 6, connecting two spherical passive joints centered
at ai = (xi, yi , zi)T and b̃i = (ri, si , ti)T , given in base and
platform reference frames, O and O′, respectively (see Fig. 1).
The pose of the platform is defined by a position vector p =
(px, py , pz )T and a rotation matrix R, with respect to frame O,

R = (i, j,k) =

⎛
⎜⎝

ix jx kx

iy jy ky

iz jz kz

⎞
⎟⎠

so that the platform attachments can be written in the base
reference frame as bi = p + Rb̃i , for i = 1, . . . , 6 (see Fig. 1).
To simplify the notation, the same name will be used to denote
a point and its position vector.

Fig. 1. General Stewart–Gough platform with base attachments ai and plat-
form attachments at bi , i = 1, . . . , 6. A single leg rearrangement consists of
the substitution of one of the legs by a new one, in gray in the drawing.

There are two types of parameters that fully define a Stewart–
Gough platform. The set of parameters that define the design of
the manipulators:

Geometric parameters:

G = (x1 , y1 , z1 , r1 , s1 , t1 , . . . , x6 , y6 , z6 , r6 , s6 , t6)

and two sets of parameters that can define the location of the
manipulator within its workspace:

Pose parameters:

X = (px, py , pz , ix , iy , iz , jx , jy , jz , kx , ky , kz ),

Joint parameters:

Θ = (l1 , . . . , l6).

Finally, it will be useful to introduce a 6-D space defined
by the coordinates (x, y, z, r, s, t), called the space of leg at-
tachments. Each point of this space defines a leg that goes
from base attachment a = (x, y, z)T to platform attachment
b̃ = (r, s, t)T .

III. SINGULARITY-INVARIANT LEG REARRANGEMENTS

A leg rearrangement consists in a relocation of the attach-
ments of the manipulator, without modifying the pose of the
platform, and thus, leading to new leg lengths d1 , d2 , . . . , d6
(see Fig. 1). In general, such rearrangement completely modi-
fies the kinematics of the manipulator and also the location of
its singularities, because the solution of the forward kinematics
of the rearranged platform changes, which leads to a different
number of assembly modes and to a different set of singularities.

Despite this, recently, we have been able to identify leg rear-
rangements that do not modify the singularity locus of the plat-
form, nor the solution of its forward kinematics. In other words,
for the rearranged platform, the location of the singular poses
within the workspace of the manipulator remain at the same
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position. This kind of rearrangements are called singularity-
invariant leg rearrangements, and were characterized in detail
in [34].

In Fig. 1, we show the rearrangement of the leg j, that is, the
relocation of the attachments aj and b̃j to the new coordinates
a = (x, y, z)T and b̃ = (r, s, t)T . In [34], it was shown that
such rearrangement is singularity invariant if, and only if, the
coordinates (x, y, z, r, s, t) make the matrix P in (1), shown at
the bottom of the page, to be rank deficient. Details of how we
obtained such matrix can be found in the Appendix.

Note that the first six rows of P contain only geometric pa-
rameters of the manipulator, while the last row depends on the
coordinates of the new attachments of the rearranged leg. The
first six rows of P where used in [39] and [40] to character-
ize architectural singularities. With this additional row, we are
able to characterize any singularity-invariant leg rearrangement
by studying the rank of P.

Gaussian elimination uses elementary row operations to re-
duce a given matrix into a rank-equivalent one, with an upper
triangular shape. After it is applied to a matrix, rank deficiency
occurs when all the elements of the last row are zero. Matrix P
is 7 × 16 and, if we apply Gaussian elimination, the last row of
the resulting matrix can be expressed as

( 0 0 0 0 0 0 P1 . . . P10 ) (2)

where Pi , for i = 1, . . . , 10, are polynomials in the unknowns
(x, y, z, r, s, t), and we can state that P is rank deficient if and
only if, the ten polynomials do simultaneously vanish.

In conclusion, if any of the legs is relocated to the new at-
tachments a = (x, y, z)T and b̃ = (r, s, t)T , the resulting leg
rearrangement is singularity-invariant if and only if, {P1 =
0, . . . ,P10 = 0}.

This is an overdetermined system that has no solution for
a generic case. We need to impose at least five more scalar
equations to obtain a 1-D set of solutions. Next, we will see
several cases for which matrix P is simplified and solutions of
dimension 1 and 2 are obtained.

IV. CASE STUDY I: DOUBLY PLANAR

STEWART–GOUGH PLATFORMS

For any doubly planar Stewart–Gough platform, the coordi-
nates of the base and platform attachments can be written, with-
out loss of generality, as ai = (xi, yi , 0) and b̃i = (ri, si , 0). In
this case, a leg rearrangement with coordinates (x, y, r, s) stands
for the substitution of any of the legs by another one going from

TABLE I
ATTACHMENT COORDINATES (ai = (xi , yi , 0)T , b̃i = (ri , si , 0)T )

i xi yi ri si

1 3 5 5 6
2 7 9 7 8
3 8 9 9 8
4 12 5 9 6
5 5 2 6 4
6 9 2 9 5

the base attachment located at a = (x, y, 0)T to the platform
attachment at b = p + R(r, s, 0)T . In this case, matrix P can
be simplified to

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−r1 −s1 x1 y1 x1r1 y1r1 x1s1 y1s1 1

−r2 −s2 x2 y2 x2r2 y2r2 x2s2 y2s2 1

−r3 −s3 x3 y3 x3r3 y3r3 x3s3 y3s3 1

−r4 −s4 x4 y4 x4r4 y4r4 x4s4 y4s4 1

−r5 −s5 x5 y5 x5r5 y5r5 x5s5 y5s5 1

−r6 −s6 x6 y6 x6r6 y6r6 x6s6 y6s6 1

−r −s x y xr yr xs ys 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3)
Consider the example with attachment local coordinates ap-

pearing in Table I.
To check rank deficiency, Gaussian elimination is applied to

P with the corresponding numerical values substituted. In this
case, the last row of the resulting matrix has only three nonzero
terms dependent on x, y, r, and s. Different but equivalent equa-
tions arise depending on the order of the columns. For example,
Gaussian elimination on matrix P as it appears in (3) leads to a
matrix whose last row is

1
P789

( 0 0 0 0 0 0 P89 P79 P78 )

where Pij is the determinant of the submatrix obtained from
P after deleting columns i and j, and Pijk the determinant of
the submatrix formed by the first six rows of P after delet-
ing columns i, j, and k. With the corresponding numerical val-
ues, P789 = −12180 and the singularity-invariant leg rearrange-
ments are defined by the condition {P89 = P79 = P78 = 0},

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−r1 −s1 −t1 x1 y1 z1 r1x1 r1y1 r1z1 s1x1 s1y1 s1z1 t1x1 t1y1 t1z1 1

−r2 −s2 −t2 x2 y2 z2 r2x2 r2y2 r2z2 s2x2 s2y2 s2z2 t2x2 t2y2 t2z2 1

−r3 −s3 −t3 x3 y3 z3 r3x3 r3y3 r3z3 s3x3 s3y3 s3z3 t3x3 t3y3 t3z3 1

−r4 −s4 −t4 x4 y4 z4 r4x4 r4y4 r4z4 s4x4 s4y4 s4z4 t4x4 t4y4 t4z4 1

−r5 −s5 −t5 x5 y5 z5 r5x5 r5y5 r5z5 s5x5 s5y5 s5z5 t5x5 t5y5 t5z5 1

−r6 −s6 −t6 x6 y6 z6 r6x6 r6y6 r6z6 s6x6 s6y6 s6z6 t6x6 t6y6 t6z6 1

−r −s −t x y z rx ry rz sx sy sz tx ty tz 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)
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which reads

−338
609

xr + xs +
3706
3045

yr +
1096
1015

x − 22713
1015

y

− 27743
3045

r +
19302
1015

s = 0

−470
609

xr +
10519
3045

yr + ys +
13274
1015

x − 61662
1015

y

− 87557
3045

r +
51343
1015

s = 0

17
609

xr − 38
609

yr − 67
203

x +
194
203

y +
247
609

r

−192
203

s + 1 = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (4)

Note that any equation consisting of a submatrix determinant
Pij equated to zero will be bilinear in the unknowns, but with
different monomials. As the system is linear, both in (x, y) and
(r, s), it can be rewritten in matrix form as

Sb

⎛
⎜⎝

r

s

1

⎞
⎟⎠ =

⎛
⎜⎝

0
0
0

⎞
⎟⎠ (5)

where Sb is
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−27743
3045

+
3706
3045

y − 338
609

x x +
19302
1015

22713
1015

y − 1096
1015

x

10519
3045

y − 87557
3045

− 470
609

x y +
51343
1015

61662
1015

y − 13274
1015

x

17
609

x − 38
609

y +
247
609

−192
203

−1 +
67
203

x − 194
203

y

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

which only depends on x and y (b refers to base, as x and y are
the coordinates of the base attachments). The other way round,
the system can also be written as

Sp

⎛
⎜⎝

x

y

1

⎞
⎟⎠ =

⎛
⎜⎝

0
0
0

⎞
⎟⎠ (6)

where Sp is
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

s+
1096
1015

− 338
609

r
−22713
1015

+
3706
3045

r
27743
3045

r− 19302
1015

s

13274
1015

− 470
609

r
−61662
1015

+
10519
3045

r+s
87557
3045

r− 51343
1015

s

−67
203

+
17
609

r
−38
609

r+
194
203

−247
609

r+
192
203

s−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

that only depends on r and s (p refers to platform, as r and s are
the coordinates of the platform attachments).

From (5), it is clear that the system has a solution for (r, s)
only for those (x, y) that satisfy det(Sb) = 0, and this solu-
tion is unique (assuming that Sb has rank 2). In the same way,
there exists a solution for (x, y) only for those (r, s) that make
det(Sp) = 0. Both determinants define cubic curves on the base
and platform planes, respectively. In other words, system (4)
defines a one-to-one correspondence between generic points on

Fig. 2. General singularity-invariant leg rearrangement for a doubly planar
Stewart–Gough platform.

Fig. 3. Base and platform curves of the doubly planar Stewart–Gough platform
depicted in Fig. 2.

two cubic curves. However, the correspondence may not be one-
to-one for special points on the cubics for nongeneric examples
(see details in [41]).

For this particular example, the equation of the cubic on the
base is

16
145

x3 − 293
609

x2y +
253
1015

xy2 − 142
609

y3 +
1061
3045

x2

+
4343
1015

xy +
2313
1015

y2 − 17888
1015

x − 26032
1015

y +
261691
3045

= 0

and that on the platform is

9
145

r3 − 396
1015

r2s +
293
1015

rs2 − 192
203

s3 +
282
203

r2 +
1877
1015

rs

+
2229
145

s2 − 17799
1015

r − 98097
1015

s +
32922
145

= 0

which have been plotted in Fig. 3. The curves attached to the
manipulator base and platform are shown in Fig. 2.

Depending on the placement of the attachments, these curves
can be generic curves of degree 3, or a line and a conic, or even
three lines crossing 2 × 2. In the next example, one of these
degenerate cases is analyzed.
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Fig. 4. Griffis–Duffy type I platform with the attachment coordinates given in Table II (left), and its equivalent octahedral manipulator after applying a leg
rearrangement (right).

TABLE II
COORDINATES OF THE ATTACHMENTS ai = (xi , yi , 0) AND

bi = p + R(ri , si , 0)T FOR THE ANALYZED ROBOT

i xi yi ri si

1
√

3 1 0
2 0 1/2 0

2/3 0 −1 0

−2 0 −1/2
√

3/2

−2/3 (4/3)
√

3 0
√

3

0 2
√

3 1/2
√

3/2

A. Octahedral Manipulator Implementation

In 1993, Griffis and Duffy patented a manipulator named
thereafter Griffis–Duffy platform [42]. The platform has its at-
tachments distributed on triangles, three attachments on the ver-
texes and three on the midpoints of the edges, and the platform
is formed by joining the attachments on the midpoints on the
base to the vertexes on the platform, as in the example with
attachment coordinates given in Table II. A representation of
this manipulator can be found in Fig. 4(left).

In this case, the equation system obtained by applying Gaus-
sian elimination on the corresponding matrix P results in:

2s − y + yr + xs = 0

(
√

3r + s −
√

3)y = 0

−2
√

3r + 4s +
√

3x − y +
√

3xr + 3yr − 2
√

3 = 0

⎫⎪⎬
⎪⎭

. (7)

The resolution of this system gives correspondences between
base and platform attachments that leave singularities invariant.
The base and platform cubic curves, in this case, factorize into
the three lines:

(
√

3r − s +
√

3)(
√

3r + s −
√

3)s = 0

and

(−3x +
√

3y − 6)(3x +
√

3y − 6)y = 0

respectively.

Actually, it can be checked that system (7) has six sets of
solutions

Δb1 = {(x, y, r, s) |

x = λ, y = (λ1 + 2)
√

3, r = 0, s =
√

3; λ1 ∈ R}
Δb2 = {(x, y, r, s) |

x = λ2 , y = (2 − λ2)
√

3, r = 1, s = 0; λ2 ∈ R}
Δb3 = {(x, y, r, s) | x = λ3 , y = 0, r = −1, s = 0; λ3 ∈ R}
Δp1 = {(x, y, r, s) |

x = −2, y = 0, r = λ4 , s =
√

3(λ4 + 1); λ4 ∈ R}
Δp2 = {(x, y, r, s) |

x = 0, y = 2
√

3, r = λ5 , s =
√

3(1 − λ5); λ5 ∈ R}
Δp3 = {(x, y, r, s) | x = 2, y = 0, r = λ6 , s = 0; λ6 ∈ R}

These are six point-line correspondences, that is, to each ver-
tex of the base (platform) triangle corresponds a line on the
platform (base) triangle. This means that, for the Griffis–Duffy
type manipulator, we can fix the attachments at the vertexes
of the platform (base), and then rearrange the opposite attach-
ments along a line in the base (platform) without modifying the
kinematics of the platform.

As a result, by moving the six midpoint attachments along
their supporting lines, the manipulator can be rearranged into the
manipulator depicted in Fig. 4(right), which is the widely known
octahedral manipulator. This is an interesting result, because we
can avoid the use of multiple spherical joints (that is, spherical
joints sharing the same center) without losing the properties of
the celebrated octahedral architecture [25].

Following the design in Fig. 5, a manipulator has been
constructed in the Laboratory of Parallel Robots, Institut de
Robòtica i Informàtica Industrial [43] (see Fig. 6). Its advan-
tage is that it is a 6–6 manipulator with the same kinematics
and singularities as the widely studied octahedral manipulator.
We computed the relationship between the legs lengths before
and after the rearrangement in Fig. 5, in the form of (10) in the
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Fig. 5. Contrarily to what happens to the Stoughton–Arai approximation, the
proposed modification leads to a 6–6 platform kinematically equivalent to the
octahedral manipulator.

Fig. 6. This platform consists of six extensible legs connecting a moving
platform to a fixed base. We avoid the use of multiple spherical joints (that is,
spherical joints sharing the same center) without losing the properties of the
celebrated octahedral architecture.

Appendix, i.e., we obtained A and b. Given a configuration of
the manufactured manipulator, its leg lengths are used to com-
pute the leg lengths of a virtual octahedral using (10). With the
new legs lengths, we can solve the kinematics of the octahedral,
whose solution will be the pose of the platform (see more details
in [44] and [45]). The manipulator in Fig. 6 is a practical proof
that, indeed, such rearrangement does not change the kinematic
solution of the octahedral.

Most, if not all, of the Stewart–Gough platform practical
implementations are based on an approximation to the octa-
hedral manipulator, locating the spherical joints close together
but avoiding the double spherical joints, and thus, resulting

TABLE III
ATTACHMENTS ai = (xi , yi , 0) AND b̃i = (ri , 0, 0)

i xi yi ri

1 −2 2 −2
2 −1 −2 −1
3 0 3 0
4 1 −2 1
5 2 2 2

in a different manipulator with a complex kinematic solution.
Here, we propose a design that is not an approximation, but
has the same kinematic properties as the octahedral without any
double-spherical joint. This has applications ranging from the
well-known flight simulators to micro-positioning devices.

V. CASE STUDY II: PENTAPODS

A pentapod is usually defined as a 5-DoF fully parallel ma-
nipulator with an axial spindle as moving platform. This kind of
manipulators have revealed as an interesting alternative to serial
robots handling axisymmetric tools. The moving platform can
freely rotate around the axis defined by the five aligned revolute
joints, but if this rotation axis is made coincident with the sym-
metry axis of the tool, the uncontrolled motion becomes irrele-
vant in most cases. The particular geometry of pentapods per-
mits that, in one tool axis, large inclination angles are possible
thus overcoming the orientation limits of the classical Stewart–
Gough platform.

A pentapod involves only five of the six legs of the Stewart–
Gough platform, with the platform attachments collinear. These
five legs form a rigid component by itself that can be studied
separately. In addition to the platform attachments collinearity,
if we consider all the base attachments coplanar, then we can
write the coordinates of the attachments as ai = (xi, yi , 0)T and
b̃i = (ri, 0, 0)T for i = 1 . . . 5 and the corresponding matrix P
after some simplifications reads

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1 x1 y1 x1r1 y1r1 1

r2 x2 y2 x2r2 y2r2 1

r3 x3 y3 x3r3 y3r3 1

r4 x4 y4 x4r4 y4r4 1

r5 x5 y5 x5r5 y5r5 1

r x y xr yr 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8)

In this case, P is a square matrix, so its rank deficiency is
characterized only by the equation det(P) = 0. In [48], it was
shown that such condition defines a one-to-one correspondence
between the platform attachments and the lines of a pencil at-
tached to the base. The center of this pencil, called B-point
in [48], [49], plays an important role in the geometric charac-
terization of the manipulator singularities.

Consider the example with numerical coordinates appearing
in Table III.

After substituting the numerical values in P, we get that the
condition for singularity invariance is

det(P) = x − r = 0. (9)
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Fig. 7. Pentapod analyzed in Section V. Note that it is in an upside-down
configuration, so that the platform is located under the base.

This means that any leg can be rearranged to a leg going from the
base attachment a = (λ, y, 0)T to b̃ = (λ, 0, 0)T without modi-
fying the singularity locus (where for a fixed λ, the y coordinate
can take any value). This corresponds to the rearrangements
plotted in Fig. 7, that is, a one-to-one correspondence between
the attachments at the platform and a pencil of parallel lines
attached at the base. In this case, the center of the pencil lies at
infinity.

This particular architecture was proven to be quadratically
solvable in [48] and [50], that is, its forward kinematics can
be obtained by solving only two quadratic polynomials. If we
fix the attachments of the platform, the corresponding base at-
tachments can be relocated to any point of the red lines plotted
in Fig. 7. Taking advantage of this idea, at the Laboratory of
Parallel Robots of IRI we have developed a reconfigurable ma-
nipulator prototype based on this structure. Its base attachments
can be reconfigured along actuated guides, without modifying
the nature of its forward kinematics nor the singularities of the
manipulator, and thus increasing the versatility of the manipu-
lator, since for each task, the legs can be reconfigured to equally
distribute the forces among its legs (see Fig. 8).

This pentapod design can be useful to enlarge the workspace
of robots handling axisymmetric tools, with applications such
as five-axis milling, laser-engraving, spray-based paintings, and
water-jet cutting.

VI. CASE STUDY III: A DECOUPLED

STEWART–GOUGH PLATFORM

Consider the manipulator in Fig. 9. It contains a tripod and
three more legs, with all the base attachments coplanar. Thus,
without loss of generality, we can write the coordinates of the
attachments asai = (xi, yi , 0)T and b̃i = (ri, si , ti)T . This ma-
nipulator is said to be decoupled because the three legs forming
the tripod give the position of the platform, while the three re-
maining ones orient it [23]. When the tripod is rigid, i.e., fixed
at a position, this manipulator is also known as spherical [46],
[47].

Consider the example with numeric coordinates appearing in
Table IV. After performing Gaussian Elimination on the corre-
sponding matrix P, only six nonzero elements remain at the last
row. That is, a leg rearrangement will be singularity-invariant if

Fig. 8. Prototype of the reconfigurable quadratically-solvable pentapod and
its joint implementations.

Fig. 9. Decoupled manipulator with nonplanar platform. In red, its singularity-
invariant leg rearrangement lines.

TABLE IV
ATTACHMENT COORDINATES ai = (xi , yi , 0) AND bi = p + R(ri , si , ti )T

i xi yi ri si ti

1 2 -1 2 2 0
2 5 4 2 2 0
3 -1 4 2 2 0
4 7 -2 5 0 1
5 2 7 2 5 1
6 -3 -2 -1 0 1
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Fig. 10. Singularity-invariant leg rearrangements from the example in Fig. 9.

it fulfills the following six conditions:

−2xr + yr + 4x − 2y + 6r − 6s + 18t = 0

−4xr/3 + xs + 2x/3 + 6r − 6s + 12t = 0

1/5(17xr + ys − 34x − 10y − 34r + 34s − 207t) = 0

5xr/3 + xt − 10x/3 − 5r + 5s − 17t = 0

9xr/5 + yt − 18x/5 − 18r/5 + 18s/5 − 89t/5 = 0

−1xr/2 + x + r − 3s/2 + 9t/2 + 1 = 0.

This system of equations has four sets of solutions

T = {(x, y), (r, s, t) |
x = λ, y = μ; r = 2, s = 2, t = 0, λ, μ ∈ R}

Δ1 = {(x, y), (r, s, t) |
x = 2, y = 7; r = 2, s = 2 + 3λ, t = λ, λ ∈ R}

Δ2 = {(x, y), (r, s, t) | x = 7, y = −2;

r = 5 − 3λ/2, s = λ, t = 1 − λ/2, λ ∈ R}
Δ3 = {(x, y), (r, s, t) | x = −3, y = −2;

r = 2 − 3λ, s = 2 − 2λ, t = λ, λ ∈ R}.

The first one corresponds to the tripod component and it means
that base attachments can be rearranged to any point of the
base plane as long as its corresponding platform attachment
is the vertex of the tripod. The other three sets correspond to
point-line correspondences as before, depicted as red lines in
Fig. 9. This means that b4 ,b5 , and b6 can be relocated to any
other point of the red lines (as long as their corresponding base
attachments remain the same).

In Fig. 10, we show two possible singularity-invariant leg
rearrangements of the manipulator at hand. For all of them, the
decoupling properties remain the same as they are all equivalent
manipulators.

Note that with this strategy we cannot completely eliminate
all the multiple spherical joints. But we can design a decoupled
manipulator with only single spherical joints by imposing ex-
tra alignments on the attachments. For example, consider the
manipulator in Fig. 11. It is still decoupled but, in this case, it
contains a line–plane component. As mentioned in the preced-

Fig. 11. Decoupled manipulator with a collinearity at the base and coplanar
platform and base. Below, the rearrangement to an equivalent manipulator with
only single spherical joints.

ing section, for the five legs forming the line–plane component,
there exists a one-to-one relationship between the collinear at-
tachments (the line) and a pencil of lines (at the plane), whose
center is called the B-point. In this case, the B-point is made co-
incident with the attachment b1 and the pencil of lines is located
attached to the platform. We can split the triple spherical joint by
placing two more attachments collinear with a4 ,a5 , and a6 and
then moving the platform attachment along their corresponding
lines of the pencil (see [48] for more details).

A manipulator with decoupled position and orientation has
many advantages. For example, the calibration becomes sim-
pler because the translation and rotation become 3-D indepen-
dent functions instead of a complex 6-D one. It also simplifies
path planning, for example, in cooperation tasks between ma-
nipulators. As a drawback, the designs presented to date have
a complex implementation and small range of motion due to
joint limits. Our proposed architecture is simpler than any other
decoupled manipulator presented before, in the sense that it
only contains single spherical joints. But it can benefit from the
kinematic decoupling properties, as all the computations can be
performed for the original decoupled manipulator and be used
for the rearranged one. In other words, we have designed a de-
coupled parallel manipulator easier to implement that avoids the
common drawbacks of multiple spherical joints.

VII. CONCLUSION

This paper shows how the application of singularity-invariant
leg rearrangements provides a new geometric approach to the
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study of Stewart–Gough platform singularities. Indeed, three
case studies have been provided that illustrate several new re-
sults. The background theory is based on the mathematical in-
variance of type 2 singularities, as no other type of singularities
appear for Stewart–Gough platforms. Nevertheless, it is also
extensible to type 1 singularities. To apply it to lower mobility
parallel platforms, a more thoughtful mathematical definition
of singularity invariance may be needed to consider constrain
singularities [51].

We have presented a tool to detect equivalences between ma-
nipulators, allowing the application of previously known geo-
metric interpretations of singularities to new architectures. This
is the case of the Griffis–Duffy platform in Section IV. The
6–6 Stewart–Gough platform prototype shown in Fig. 6 has the
same kinematic properties as the octahedral manipulator, that
is, the same geometric interpretation for its singularities applies,
as well as all other kinematic properties studied in the exten-
sive literature about the octahedral manipulator, with a crucial
advantage: the new architecture contains only single spherical
joints.

We have also shown how decoupled manipulators can be
rearranged to equivalent and apparently nondecoupled manipu-
lators, with different configurations of their spherical joints that
might be easier to implement.

Moreover, the hidden geometric structure revealed by the
curves of singularity-invariant leg rearrangements can be of
help in the simplification of the forward kinematics resolution.
For example, in the case study II, we show a manipulator that is
quadratically solvable.

Finally, new geometric interpretations of singularities have
been found thanks to singularity-invariant leg rearrangements.
For example, for pentapods with planar bases, the identified
pencil of lines at the base of the manipulator reveals to be cru-
cial for the geometric interpretation of its singularities. Similar
interpretations represent a challenge for future work.

In conclusion, this indirect approach to the analysis of
Stewart–Gough platform singularities has succeeded in finding
new results in a topic with an extensive previous literature.

APPENDIX

Here, we mathematically define the notion of singularity-
invariance and we give the derivation of matrix P in (1).

Singularities are defined as the zeros of the determinant of
the Jacobian matrix. The Jacobian matrix relates the velocities
of the joints with the twist of the platform T in the well-known
equation JT = Θ̇ [17].

We define a leg rearrangement as singularity-invariant if, and
only if, there is an affine one-to-one relationship between the leg
lengths before and after such rearrangement. Such relationship
can always be computed independently of the pose parameters,
i.e., it is constant with respect to time. More formally, if Λ =
(d1 , . . . , d6) are the lengths of the legs after the rearrangement
and Θ = (l1 , . . . , l6) the original ones, we can write

Λ = AΘ + b (10)

where A is a constant matrix and b a constant vector. Indeed,
differentiating with respect to time the previous equation gives
a linear relationship between the joint velocities before and
after the rearrangement. Substituting such linear relationship
in the equation JT = Θ̇ leads to AJT = Λ̇. In other words,
the Jacobian matrix of the rearranged platform is AJ, whose
determinant has the same zeros as J, i.e., the same singularities
as the original platform. See [34] for details.

In practice, we perform rearrangements of only one leg at
a time, as any sequence of singularity-invariant leg rearrange-
ments is also singularity-invariant. In Fig. 1, we show the re-
arrangement of the leg j, that is, the relocation of the attach-
ments aj and b̃j to the new coordinates a = (x, y, z)T and
b̃ = (r, s, t)T . Such rearrangement will be singularity invariant
if, and only if, the length of the new relocated leg is uniquely
determined by the geometry parameters and the joint parame-
ters. In [34], it was shown that such rearrangement is singularity
invariant if, and only if, the coordinates (x, y, z, r, s, t) make the
matrix P in (1) to be rank deficient. The key of the derivation of
this matrix is based on the computation of the length of the new
relocated leg, d, and on the consideration of under which condi-
tions it can be computed independently of the pose parameters.
For space reasons, we only give a sketch of the proof.

By definition, leg lengths satisfy

(bi − ai)2 = l2i , for i = 1, . . . , 6 and (b − a)2 = d2 ,

where the geometric and joint parameters are considered given
and the unknowns are the pose parameters and d. This quadratic
system of equations can be converted into a linear system by
simplifying all the equations, using the properties of the orthog-
onality and determinant equal to 1 of the rotation matrix R and
introducing new variables u = p · i, v = p · j, and w = p · k.
The only quadratic terms in the resultant system are the same
three terms in all the equations, p2

x + p2
y + p2

z , which can be
eliminated subtracting the first equation from all the others. The
result is a linear system of 6 equations in 16 unknowns: the 12
pose parameters, the 3 new variables {u, v, w}, and the length
we want to compute, d. We define the vector of unknowns as
χ = {px, py , pz , ix , iy , iz , jx , jy , jz , kx , ky , kz , u, v, w}.

We want to compute d, so we choose five extra unknowns
from the list χ to solve the linear system using Crammer’s rule.
As a result, we obtain an algebraic expression depending on the
other ten left unknowns in the form

d =
1

c02

(
c01 +

10∑
i=1

ciχ[i]

)
(11)

where χ[i] is the ith element from the list of nonchosen un-
knowns χ. It can be shown that for a nonarchitecturally singular
manipulator, we can always choose a set of unknowns to solve
the linear system so that c02 �= 0.

To guarantee that such expression does not depend on any
of the unknowns, we need to impose the 10 coefficients ci to
be zero. It can be checked that such ten coefficients are ten
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maximal minors1 of the matrix P. Depending on which are the
variables for which one chooses to solve the system, different
combinations of minors appear but all from the same matrix.
Finally, using linear algebra properties, it can be seen that such
minors will vanish if, and only if, the matrix P is rank deficient.

The ten coefficients ci are expressions depending only on ge-
ometric parameters and the coordinates of the new attachments.
In fact, they are the same 10 polynomials that we obtain when
we study the rank deficiency of the matrix P in (2).
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l’École Polytech., vol. 11, no. 2, pp. 1–93, 1906.
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