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Abstract—The algebraic characterization of the singularities of
a Stewart platform is usually presented as a 6 × 6 determinant,
whose rows correspond to the line coordinates of its legs, equated
to zero. This expression can be rewritten in a more amenable way,
which is known as the pure condition, as sums and products of 4 × 4
determinants, whose rows correspond to the point coordinates of
the leg attachments. Researchers usually rely on one of these two
expressions to find the geometric conditions associated with the
singularities of a particular Stewart platform. Although both are
equivalent, it is advantageous to use either line or point coordinates,
depending on the platform topology. In this context, an equivalent
expression involving only plane coordinates, i.e., a dual expression
to that using point coordinates, seems to be missing. This paper is
devoted to its derivation and to show how its use is advantageous in
many practical cases, mainly because of its surprising simplicity:
It only involves the addition of 4 × 4 determinants whose rows are
plane coordinates defined by sets of three attachments.

Index Terms—Grassman–Cayley algebra, pure condition,
singularities, Stewart platform.

I. INTRODUCTION

A STEWART platform is a type of parallel robot that in-
corporates six prismatic actuators, or legs, all of them

connected simultaneously to a fixed base and a moving platform
through spherical joints, or attachments. It triggered the research
on parallel manipulators and continues to be the focus of many
research works because, despite its simple geometry, its analy-
sis translates into challenging mathematical problems [1]. One
of these problems is to determine the configurations in which
the moving platform becomes uncontrollable, i.e., the singular-
ities. Very large joint forces can occur in the neighborhood of
a singularity that may even lead to the breakdown of the robot.
Although singularities are usually avoided for obvious reasons,
being close to them may be useful in some cases. Indeed, as
pointed out in [2], the large amplification factors between the
moving platform motion and the actuated joint motion arising
in a singularity may be interesting for fine-positioning devices
with a very small workspace or to improve the sensitivity along
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some measurement directions when a platform is used as a force
sensor [3]. Thus, having the geometric conditions that lead to a
singularity greatly simplifies the design phase of a Stewart plat-
form no matter if we want to avoid them or to take advantage of
them. It is also worth mentioning that one of the associated prob-
lems with the characterization of the singularities of a Stewart
platform is the definition of a performance index representing
the closeness to the singularities. Unfortunately, no mathemat-
ical sound metric measuring this closeness exists [4]. Hence, a
certain level of arbitrariness must be accepted in its definition
which is alleviated if we support it on a geometric meaningful
interpretation. This paper is about the problem of using the best
formulation for each Stewart platform instance that provides us
with the most simple and straightforward geometric interpreta-
tion of its singularities.

Different Stewart platform topologies are obtained by coa-
lescing, either on the base or the platform, some of the attach-
ments [5]. Then, a generic Stewart platform is usually referred
to as a 6-6 Stewart platform, while, on the other side of the spec-
trum, a 3-3 platform refers to any of the three possible topolo-
gies in which a Stewart platform has three attachments both in
the base and in the platform. Although coalescing attachments
lead to multiple spherical joints whose implementation is diffi-
cult [6], studying the singularities of all these possible topologies
is of great practical relevance because the singularities of 6-6
platforms with some particular arrangements of attachments [7]
and the singularities of some three-legged robots can be reduced
to study the singularities of some of these topologies [8], [9].

From the algebraic point of view, the singularities of a Stewart
platform arise when its 6 × 6 inverse Jacobian J (i.e., the matrix
that maps the twist of the platform into the velocities of the actu-
ators) is singular, i.e., when its determinant det(J) is equal to 0.
Unfortunately, computing this determinant is difficult even with
symbolic computation tools [10], [11]. The advantage of this
approach is that once the expression of the determinant is ob-
tained, the locus of singular configurations can be plotted in the
workspace. However, the determinant itself is usually a large
expression, even for simple topologies, that does not provide
insight into the geometric conditions associated with the singu-
larities. Nevertheless, a better understanding of these conditions
can be straightforwardly derived from this formulation by using
Line Geometry [12]. Since the rows of J are the Plücker vectors
of the lines supporting the robot legs, a singularity of J implies
a linear dependence between these vectors [13]–[15], a situation
that only occurs if the lines associated with the vectors satisfy
particular geometric constraints [16]. The singularity analysis
is, thus, reduced to determining conditions on the pose param-
eters for which these constraints are satisfied, giving geometric
information on the singularity variety [17].
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Recently, the use of Grassman–Cayley algebra to study the
singularities of Stewart platforms has received a lot of atten-
tion [8], [18], [19]. Using this algebra, the determinant of the
Jacobian equated to zero can be rewritten as an expression
known as the pure condition [20]. It is formed by 24 adding
terms of three multiplying brackets each. Each bracket is a
4 × 4 determinant whose rows correspond to the homogeneous
coordinates of an attachment. Thus, each bracket can be inter-
preted as the oriented volume of the tetrahedron formed by four
attachments. The pure condition is unique up to syzygies, a term
borrowed from the literature on classic invariant theory, which
refers to the three-term Grassmann–Plücker relations (see [21]
for a gentle introduction to these relations). This means that
there are different equivalent pure conditions that vary in their
number of terms which somewhat complicates things. For those
topologies for which any of these equivalent expressions simpli-
fies to a single term, a straightforward geometric interpretation
of the singularities is obtained as degeneracies of three tetra-
hedra whose vertices coincide with attachments. When such
simplification cannot be achieved, the geometric interpretation
becomes much more complex. The octahedral topology (one of
the three possible 3-3 topologies) was analyzed in [18], where
it was shown that its pure condition cannot be simplified to a
single term, but a further analysis still using Grassmann–Cayley
algebra permitted to characterize its singularity condition as the
intersection of four planes. More recently, a similar result has
been obtained for six more topologies [22]. In all these cases,
the singularities could also be interpreted as degeneracies of
tetrahedra with the difference that their vertices are no longer
defined by attachments. Instead, the faces of these tetrahedra are
defined by sets of three attachments. Thus, some sort of duality
seems to surface from these results. This paper deepens on this
duality and, as a result, derives a new singularity condition for
the generic 6-6 Stewart platform in terms of the latter kind of
tetrahedra.

Certainly, there have been other approaches besides the two
aforementioned ones to obtain the geometric conditions asso-
ciated with the singularities. For example, the one presented
in [23] is based on a convenient expansion of the determinant of
the Jacobian matrix into 3 × 3 minors. The obtained singularity
condition has 20 terms, each one being the product of two 3 × 3
determinants, which can be rewritten as triple products. The
resulting expression depends on two types of vectors: one rep-
resenting director vectors of the leg lines and the other moments
of these lines. Such an expression is used to obtain the analytical
expression of the singularity polynomial of the general Stewart
platform and to show one topology for which this expression
simplifies to a single term.

This paper is organized as follows. First, Section II briefly
reviews some basic concepts on the duality of points and planes
and introduces the definitions that will be used throughout this
paper. Section III briefly reviews the primal form of the pure
condition. Section IV introduces the concept of dual form of
the pure condition and presents it for the generic 6-6 Stewart
platform. Section V discusses the pros and cons of using the
pure condition either in its primal or dual form to obtain the
geometric interpretation of the singularities of a given topology.
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Fig. 1. The 6-6 Stewart platform and adopted labeling for its leg attachments.

Section VI presents two examples. Finally, Section VII summa-
rizes the main results and give prospects for further work. An
important effort has been done to make the presentation self-
contained and understandable without any previous knowledge
on Grassmann–Caley algebra.

II. NOT(AT)IONS

The location of the 12 center points of the leg attachments
of a 6-6 Stewart platform will be represented by a, b, c, . . ., l,
as shown in Fig. 1. Nongeneric Stewart platforms are obtained
by making some leg attachments coplanar, aligned, or simply
coincident. In what follows, our analysis will only consider
coincidences which can be extended to consider colinearities
and coplanarities as described in [24].

To lighten the notation, lowercase Latin letters will represent
both points and their position vectors in homogeneous coordi-
nates in a given global reference frame, and lowercase Greek
letters, scalars.

As already mentioned in Section I, the singularities of a
Stewart platform correspond to those configurations in which the
determinant of the Plücker coordinates of its leg lines is zero, i.e.,
det(J) = 0. Now, without loss of generality, let us suppose that
a = α1p + α2q. That is, the first attachment is known to lie on
the line defined by p and q. Then, due to the multilinearity of the
Jacobian determinant, det(J) = α1det(J|a=p) + α2det(J|a=q ).
This property will be useful later.

Since points will be represented by their homogeneous co-
ordinates, i.e., p = (px, py , pz , pw )T , they are considered to
belong to the projective space P

3 . Thus, a point in P
3 corre-

sponds to a vector in the standard 4-D vector space V. In P
3 ,

duality refers to geometric transformations that replace points
by planes and planes by points, while preserving incidence
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properties between the transformed objects [25]. The existence
of such transformations leads to a general principle, i.e., the du-
ality principle, which states that any theorem about incidences
between points and planes may be transformed into another
theorem about planes and points, by the substitution of the ap-
propriate words [26].

The duality between points and planes is defined by the cor-
respondence cxx + cy y + cz z + cw w = 0 ↔ (cx, cy , cz , cw ).
That is, the dual point to the plane with implicit equation
cxx + cy y + cz z + cw w = 0 is c = (cx, cy , cz , cw )T . Thus, a
plane can be seen as a point and vice versa.

Definition 1 (Cross-product of three vectors): The cross-
product of three vectors a, b, and c is defined as

�abc� =

∣
∣
∣
∣
∣
∣
∣

x y z w
ax ay az aw

bx by bz bw

cx cy cz cw

∣
∣
∣
∣
∣
∣
∣

(1)

where x = (1, 0, 0, 0)T , y = (0, 1, 0, 0)T , z = (0, 0, 1, 0)T , and
w = (0, 0, 0, 1)T [27].

According to this definition, the plane that is defined by the
three points a, b, and c is given by the dual to the point �abc�.
Then, we also have by duality that the intersection of the dual
planes to the points a, b, and c is given by �abc� [28].

Observe that the cross-product of three vectors is antisymmet-
ric and distributive over addition, i.e., �abc� = −�bac� = �bca�,
and �ab(α1c + α2d)� = α1�abc� + α2�abd�.

Definition 2 (Bracket): The bracket of four vectors a, b, c, and
d is defined as

[abcd] = a · �bcd� =

∣
∣
∣
∣
∣
∣
∣

ax ay az aw

bx by bz bw

cx cy cz cw

dx dy dz dw

∣
∣
∣
∣
∣
∣
∣

. (2)

According to this definition, four points, say a, b, c, and d,
are coplanar if, and only if, [abcd] = 0. Then, we also have by
duality that the four planes dual to points a, b, c, and d, intersect
in a point if, and only if, [abcd] = 0.

Now, let the set of platform attachments be partitioned in
three sets involving a couple of legs each: A = {a, b, c, d}, B =
{e, f, g, h}, and C = {i, j, k, l}.

Definition 3 (Stewart Bracket): The Stewart bracket 〈p, q, r〉,
where p ∈ A, q ∈ B, and r ∈ C, is defined as the bracket of the
dual points to the four planes defined by the points in the setsA \
{p},B \ {q},C \ {r}, and{p, q, r}. To avoid ambiguities, points
will always be sorted in lexicographic order in all operations.

For example, according to the definition mentioned previ-
ously

〈dei〉 = [�abc��dei��fgh��jkl�]. (3)

Observe that the total number of Stewart brackets for the
partition of the set of attachments given by A, B, and C is 64,
and the total number of possible partitions is 15.

III. PRIMAL FORM OF THE PURE CONDITION

Theorem 1 (Primal Form of the Pure Condition): The deter-
minant of the geometric Jacobian of a Stewart platform with the

labeling of attachments shown in Fig. 1 can be expressed as

[abcd][efgi][hjkl] − [abcd][efhi][gjkl] − [abcd][efgj][hikl]

+[abcd][efhj][gikl]−[abce][dfgh][ijkl]+[abde][cfgh][ijkl]

−[abdf ][cegh][ijkl]+[abcf ][degh][ijkl]−[abce][dghi][fjkl]

+[abde][cghi][fjkl]−[abdf ][cghi][ejkl]+[abcf ][dghi][ejkl]

+[abce][dghj][fikl]−[abde][cghj][fikl]+[abdf ][cghj][eikl]

−[abcf ][dghj][eikl]+[abcg][defi][hjkl]−[abch][defi][gjkl]

−[abdg][cefi][hjkl]+[abdh][cefi][gjkl]−[abcg][defj][hikl]

+[abch][defj][gikl]+[abdg][cefj][hikl]−[abdh][cefj][gikl]

= 0. (4)

Proof: See [8]. �
As mentioned in Section I, the primal form of the pure condi-

tion is unique up to syzygies. This means that there are different
equivalent pure conditions that might vary in their number of
terms. Up to our knowledge, the 16-term pure condition pre-
sented in [18] is the one with the lowest number of terms. The
one given above has 24 terms but, although it is not the short-
est one, it usually leads to the simplest results when applied to
platforms with coincident attachments.

IV. DUAL FORM OF THE PURE CONDITION

Lemma 1: The pure condition of a Stewart platform with
topology

a e i

b d f h j l

can expressed as −[abde][aehi][fijl] + [abdf ][aehi][eijl] +
[abde][aefi][hijl] − [abdh][aefi][eijl] = 0. This condition
can be rewritten as [�abd��aei��efh��ijl�] = 0, which will be
called the pure condition in dual form for the above topology.

Proof: After some algebraic manipulations, this result follows
from the analysis for this topology presented in [22]. �

Note that the condition in the aforementioned Lemma can
be expressed, using Stewart brackets, simply as 〈aei〉 = 0, after
setting c = a, g = e, and k = i.

Lemma 2: The pure condition of a Stewart platform with
topology

a e i k

b d f h j

can expressed as [abde][aehj][fijk] − [abdf ][aehj][eijk] −
[abde][aefj][hijk] + [abdh][aefj][eijk] = 0. This condition
can be rewritten as [�abd��aej��efh��ijk�] = 0 which will
be called the pure condition in dual form of the above topology.

Proof: After some algebraic manipulations, this result follows
from the analysis for this topology presented in [22]. �
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Using Stewart brackets, the condition in the aforementioned
Lemma can be simply expressed as 〈aej〉 = 0, after setting
c = a, g = e, and l = j.

Theorem 2 (Dual Form of the Pure Condition): The determi-
nant of the geometric Jacobian of a Stewart platform with the
labeling of attachments shown in Fig. 1 can be expressed as

− 〈aei〉 + 〈aej〉 + 〈aek〉 − 〈ael〉 + 〈afi〉 − 〈afj〉
− 〈afk〉 + 〈afl〉 + 〈agi〉 − 〈agj〉 − 〈agk〉 + 〈agl〉
− 〈ahi〉 + 〈ahj〉 + 〈ahk〉 − 〈ahl〉 + 〈bei〉 − 〈bej〉
− 〈bek〉 + 〈bel〉 − 〈bfi〉 + 〈bfj〉 + 〈bfk〉 − 〈bfl〉
− 〈bgi〉 + 〈bgj〉 + 〈bgk〉 − 〈bgl〉 + 〈bhi〉 − 〈bhj〉
− 〈bhk〉 + 〈bhl〉 + 〈cei〉 − 〈cej〉 − 〈cek〉 + 〈cel〉
− 〈cfi〉 + 〈cfj〉 + 〈cfk〉 − 〈cfl〉 − 〈cgi〉 + 〈cgj〉
+ 〈cgk〉 − 〈cgl〉 + 〈chi〉 − 〈chj〉 − 〈chk〉 + 〈chl〉
− 〈dei〉 + 〈dej〉 + 〈dek〉 − 〈del〉 + 〈dfi〉 − 〈dfj〉
− 〈dfk〉 + 〈dfl〉 + 〈dgi〉 − 〈dgj〉 − 〈dgk〉 + 〈dgl〉
− 〈dhi〉 + 〈dhj〉 + 〈dhk〉 − 〈dhl〉 = 0. (5)

Proof: The proof of this theorem can be graphically summa-
rized as indicated in Fig. 2. Starting from the dual pure condi-
tions for the topologies in the top row, the dual pure condition
for the generic 6-6 Stewart platform is obtained.

Using Lemmas 1 and 2, the dual pure conditions of the
following two topologies:

a e q1

b d f h j l

a e i k

b d f h q2

are

℘1 = [�abd��aeq1��efh��q1jl�] (6)

and

℘2 = [�abd��aeq2��efh��iq2k�] (7)

respectively.
Now, let q1 and q2 be collinear with i and k, and with j and

l, respectively, i.e.,
q1 = α1i + α2k

q2 = α3j + α4 l.
Then

℘1 = α2
1 [�abd��aei��efh��ijl�]

− α1α2 [�abd��aei��efh��jkl�]
+ α1α2 [�abd��aek��efh��ijl�]
− α2

2 [�abd��aek��efh��jkl�] (8)
and

℘2 = −α2
3 [�abd��aej��efh��ijk�]

+ α3α4 [�abd��aej��efh��ikl�]
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1
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1
4 ( aei aek aej + ael

agi + agk + agj agl
afi + afk + afj afl

+ ahi ahk ahj + ahl )

1
4 ( bek bei + bej bel

bgk + bgi bgj + bgl
bfk + bfi bfj + bfl

+ bhk bhi + bhj bhl )

Left-hand side of (5)

Fig. 2. Sequence of generalizations used to prove Theorem 2.

− α3α4 [�abd��ael��efh��ijk�]
+ α2

4 [�abd��ael��efh��ikl�]. (9)

On the other hand, using the multilinearity property of the
Jacobian determinants for the aforementioned two topologies,
we also have that

℘1 = α2
1℘3 + α1α2℘4 − α1α2℘5 + α2

2℘6

℘2 = α2
3℘7 + α3α4℘4 + α3α4℘5 + α2

4℘8

}

(10)
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where ℘3 ,. . ., ℘8 are the pure conditions of the following
topologies:

a e

b d f h

i

j l

a e

b d f h

i k

j l

a e

b d f h

i k

j l

a e

b d f h

k

j l

a e

b d f h

i k

j

a e

b d f h

i k

l

respectively. Since according to Lemma 1 and Lemma 2

℘3 = [�abd��aei��efh��ijl�]
℘6 = −[�abd��aek��efh��jkl�]
℘7 = −[�abd��aej��efh��ijk�]
℘8 = [�abd��ael��efh��ikl�]

then

℘1 = α2
1 [�abd��aei��efh��ijl�]

+ α1α2℘4

− α1α2℘5

− α2
2 [�abd��aek��efh��jkl�] (11)

and

℘2 = −α2
3 [�abd��aej��efh��ijk�]

+ α3α4℘4

+ α3α4℘5

+ α2
4 [�abd��ael��efh��ikl�]. (12)

Now, equating the right-hand sides of (8) and (11), we get

[�abd��aek��efh��ijl�]−[�abd��aei��efh��jkl�]=℘4−℘5

and equating the right-hand sides of (9) and (12), we get

[�abd��aej��efh��ikl�]−[�abd��ael��efh��ijk�]=℘4 +℘5 .

Using Stewart brackets, after setting c = a and g = e, the
aforementioned two equations can be written as follows:

〈aek〉 − 〈aei〉 = ℘4 − ℘5
〈aej〉 − 〈ael〉 = ℘4 + ℘5

}

This linear system, when solved for ℘4 and ℘5 , yields

℘4 =
1
2
(〈aek〉 − 〈aei〉 + 〈aej〉 − 〈ael〉)

℘5 =
1
2
(−〈aek〉 + 〈aei〉 + 〈aej〉 − 〈ael〉).

Proceeding in a similar way from the pure conditions in dual
form of the topologies ( ) and ( ), it is obtained
that of ( ). Likewise, the pure conditions in dual form of
( ) and ( ) can be used to obtain that of ( ).
The obtained expression, by simply renaming labels, also leads

to the dual pure condition of ( ). Then, the pure condi-
tions for the last two topologies can be used to finally obtain the
general dual pure condition in equation (5). �

Corollary 1: The dual pure condition is the result of equating
to zero the addition of all different Stewart brackets that can be
formed for the partition of the set of attachments given by A, B,
and C. If A, B, and C are chosen so that they involve different
couples of legs, a different but equivalent condition with the
same number of terms is obtained. Thus, there are 15 equivalent
pure conditions in dual form with the same number of terms.

Analogously to what happened to the pure condition in pri-
mal form, applying the dual pure condition to platforms where
some of the attachments coincide leads to simplifications. In
all cases, the appropriate pure condition must be chosen, from
all possible equivalent pure conditions, to obtain the maximum
simplification. The situation is quite complicated when dealing
with the pure condition in primal form because this involves the
use of syzygies. Nevertheless, when dealing with the pure con-
dition in dual form, this task is simplified because the number of
equivalent conditions is 15. As a general rule, it is advisable to
minimize the number of legs sharing one attachment that appear
in different partitions of the set of attachments.

V. CHOICE OF PRIMAL VERSUS DUAL

In Table I, a list of all possible topologies for the Stewart
platform with the resulting pure conditions in primal and dual
form is shown. Two main families of topologies can be drawn
from this table.

1) A family of 21 topologies whose pure conditions, either
in primal or in dual form, simplify to a single term. This
family can be subdivided in three nondisjoint sets:

a) A set of 13 topologies whose primal pure condition
simplifies to a single term. For all members of this
family, the geometric conditions associated with
their singularities can be expressed as the degen-
eracy of three tetrahedra. For example, a Stewart
platform with topology

a e k

db j l

is in a singularity if, and only if, any of the three
sets of points {a, b, d, e}, {a, e, k, l}, or {b, d, e, j}
lies on a plane.

b) A set of 15 topologies whose dual pure condition
simplifies to a single term. Observe how this fam-
ily includes the three 3-3 topologies and six of the
seven 4-3 topologies. For all members of this fam-
ily, the geometric conditions associated with their
singularities can be expressed as the degeneracy
of a single tetrahedron. For example, a Stewart
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TABLE 1
ALL STEWART PLATFORM TOPOLOGIES AND THEIR PURE CONDITIONS IN PRIMAL AND DUAL FORMS

a, c e, g i, k

b, l d, f h, j

k

b

g, i

d, h

a, c, e

f, j, l l

a, c e, g i, k

b, f d, h, j b j l

a, c e, g i, k

d, f, h

g i k

b d j, lf, h

a, c, e

[abdh][abei][dehi]
−[abeh][adei][bdhi]

[abdf ][adfg][afgk] −[abde][adei][bdil]
[abdh][adei][deil]
−[abde][adei][dhil]

[abdf ][afgj][aijk]

aei adf aei aei afj

j l

a, c e, g i, k

d, hb, f

i k

b h

a, c e, g

j, ld, f

g

b d l

i, ka, c, e

f, h, j

g

b d j l

i, k

f, h

a, c, e

b l

a, c e, g i, k

d, f h, j

[abde][adei][bijl]
−[abde][abei][dijl]

[abde][aehj][dijk]
+[abde][adej][hijk]
−[abdh][adej][eijk]

[abdf ][afgi][afil] −[abdf ][afgi][aijl]
[abde][aehi][dhil]
−[abdh][adei][ehil]

aei aej afi afi aei

b h j l

a, c e, g i, k

d, f

a

f l

i, k

b, d h, j

c, e, g i k

b d f h

a, c e, g

j, l

k

b d

g, i

j, lf, h

a, c, e

kb d f h j

a, c e, g i, k

−[abde][aehi][dijl]
−[abde][adei][hijl]
+[abdh][adei][eijl]

[bcfh][chil][abci]

[abde][aehj][fijk]
−[abdf ][aehj][eijk]
−[abde][aefj][hijk]
+[abdh][aefj][eijk]

[abdf ][afgj][agjk]

−[abde][aehi][fijl]
+[abdf ][aehi][eijl]
+[abde][aefi][hijl]
−[abdh][aefi][eijl]

aei bci aej afg aei
k

j l

a, c

d, hb, f

e, g, i
g i k

b d l

a, c, e

f, h, j

k

b d f h

g, i

j, l

a, c, e k

b d j l

g, i

f, h

a, c, e e g k

b d j lf, h

a, c, i

[abde][aekl][bdej] [abdf ][afgi][afkl] −[abdf ][aghj][agjk] −[abdf ][afgj][agkl] −[abdj][aefg][afkl]
1
2 ( aek ael + aej ) 1

2 ( afl afk afi ) 1
2 ( agj afj ahj ) 1

2 ( afk + afj afl ) 1
2 ( afl afj afk )

k

b d f hj l

e, ga, c, i a i k

f lb, d h, j

c, e, g i k

j l

a, c e, g

d, hb, f

e k

b h

a, c g, i

j, ld, f

i k

b l

a, c e, g

d, f h, j

[abdj][aefh][aekl]
[abcf ][bchi][chkl]
−[abch][bcfi][chkl]
+[abch][bcfh][cikl]

−[abdi][aekl][bdej]
+[abdj][aekl][bdei]
+[abdk][aeij][bdel]
−[abdl][aeij][bdek]

[abde][aghj][dgjk]
−[abdg][adej][ghjk]

[abdh][aekl][dehi]
−[abdk][aehi][dehl]
+[abdl][aehi][dehk]

1
2 ( aej ael + aek )

1
2 ( bcl + bci

bch + bck )

1
2 ( aej + aei

aek + ael )

1
2 ( adj + agj

ahj + aej )

1
2 ( aei + aek

ael aeh )
i k

b f h l

a, c e, g

d, j

g i k

b d j lf, h

a, c, e ii k

b h j l

a, c e, g

d, f

e g ii k

b d j l

a, c

f, h

ii k

b d f h j l

a, c e, g

−[abdi][aekl][defh]
−[abdk][adei][efhl]
+[abdl][adei][efhk]

[abdf ][afgi][ajkl]
−[abdf ][afgj][aikl]

−[abdi][aekl][dehj]
+[abdj][aekl][dehi]
+[abdk][aeij][dehl]
−[abdl][aeij][dehk]

−[abdi][afkl][efgj]
+[abdj][afkl][efgi]
+[abdk][afij][efgl]
−[abdl][afij][efgk]

[abdi][aekl][efhj]
−[abdj][aekl][efhi]
−[abdk][aeij][efhl]
+[abdl][aeij][efhk]

1
2 ( aei aed

ael + aek )

1
2 ( afl + afk

afi + afj )

1
2 ( aei aej

aek + ael )

1
2 ( afj afk,
+ afl + afi )

1
2 ( aek ael
+ aej aei )

g ii k

b d f h j l

a, c, e e g ii k

b h j l

a, c

d, f

e g ii k

b d f h j l

a, c

−[abdf ][aghi][ajkl] + [abdf ][aghj][aikl]

[abde][adgh][ijkl] + [abde][aghi][djkl]
−[abde][aghj][dikl] + [abdg][adei][hjkl]
−[abdh][adei][gjkl] − [abdg][adej][hikl]

+[abdh][adej][gikl]

[abde][afgh][ijkl] − [abdf ][aegh][ijkl]
+[abde][aghi][fjkl] − [abdf ][aghi][ejkl]
−[abde][aghj][fikl] + [abdf ][aghj][eikl]
−[abdg][aefi][hjkl] + [abdh][aefi][gjkl]
+[abdg][aefj][hikl] − [abdh][aefj][gikl]

1
4 ( agi afl ahl ahi
+ afk agj + agl afi

+ afj + ahj agk + ahk )

1
4 ( agk + ahk + adk + adj

agj aek adl + ael
+ agi + agl + aei ahl

adi + ahj aej ahi )

1
4 ( agk + ahi + ahl + afj

ahj ahk agl + ael
aek + agj afi aej

+ aei agi afl + afk )



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
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platform with topology

a e i

db j l

is in a singularity if, and only if, the tetrahedron
with plane faces defined by the four sets of three
points {a, b, d}, {d, e, j}, {d, i, l}, and {a, e, i} has
null volume (i.e., the four planes are either coplanar,
or intersect in a single line, or in a point).

c) A set of seven topologies whose pure condition,
both in pure and dual form, simplifies to a sin-
gle term. For example, a Stewart platform with
topology

a e i

b d l

is in a singularity if, and only if, any of the three sets
of points in {a, b, d, e}, {a, d, e, i}, or {b, d, i, l}
lies on a plane, or if, and only if, the tetrahedron
with plane faces defined by the four sets of three
points {a, b, d}, {b, d, e}, {d, i, l}, and {a, e, i} has
null volume.

2) A family of 12 topologies whose pure conditions, neither
in primal nor in dual form, simplify. This family can be
further subdivided into two sets:

a) A set of nine topologies whose dual pure condition
contains four terms. In all these cases, two planes
are common to all four terms which simplify the
geometric interpretation of their singularities. This
represents an important family of platforms which,
thanks to the derived pure condition in dual form,
can be treated in a unified way. The first example in
the next section analyzes one of these topologies.
The same analysis is valid for all other members of
this set.

b) A set of three topologies (see the last row in Table I)
whose dual pure condition contains more than four
terms. While the analysis, using the pure condition
in its primal form, of these topologies seems to re-
quire a case-by-case treatment, the use of the dual
form permits a unified analysis which becomes ev-
ident after analyzing the set of topologies. This is
discussed at the end of the next section.

A particular set of seven different topologies, with common
geometric interpretation for their singularities, was analyzed
in [29] using Grassmann–Cayley algebra. It can be checked
that this set is a subfamily of the nine topologies whose pure
condition in dual form has four terms and that we have just
identified.

a, c

b

d

e, g

f
h

i

k

j

l

l 0 -4 1
b 2

√
3 -2 0

d 2
√

3 2 0
j 0 4 1
f −2

√
3 2 0

h −2
√

3 -2 0

a , c 2 0 0
e , g -2 0 0

i 0 2 1
k 0 -2 1

Fig. 3. The 4-6 Stewart platform and coordinates of the base and platform
attachments in their local reference frames. The two coincident attachments on
the moving platform can be implemented using double gimbals, as explained
in [30].

VI. EXAMPLES: SINGULARITY ANALYSIS OF TWO 4-6
STEWART PLATFORMS

Consider the Stewart platform in Fig. 3. It has the following
topology:

a, c e, g i k

b d f h j l

According to Table I, the primal pure condition for this topol-
ogy can be expressed as

[abdi][aekl][efhj] − [abdj][aekl][efhi]

− [abdk][aeij][efhl] + [abdl][aeij][efhk] = 0. (13)

This topology was analyzed in [29], where it was shown that
(13), after nontrivial manipulations using syzygies, reduces to

[aeij][pqkl] − [aekl][pqij] = 0

where p and q are points on the line given by the intersection of
the planes abd and efh.
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This topology was also studied in [31] where the singularity
condition was expressed as the addition of four terms, each of
them being the product of two 3 × 3 determinants, which can be
rewritten in terms of dot and cross products of several vectors
related to the geometry of the robot and then to the eigenvectors
of a certain matrix.

Now, as an alternative to the above formulations, we can di-
rectly use the pure condition in dual form. According to Table I,
it can be expressed as

(1/2)([�abd��aek��efh��ijl�] + [�abd��aej��efh��ikl�]
− [�abd��aei��efh��jkl�] − [�abd��ael��efh��ijk�]) = 0

(14)

which can be rewritten as

p1 · (�p2p3p4� + �p5p3p6� − �p7p3p8� − �p9p3p10�) = 0

or, equivalently, as

p3 · (�p1p2p4� + �p1p5p6� − �p1p7p8� − �p1p9p10�) = 0

where

p1 = �abd�, p2 = �aek�, p3 = �efh�, p4 = �ijl�
p5 = �aej�, p6 = �ikl�, p7 = �aei�, p8 = �jkl�
p9 = �ael�, p10 = �ijk�.

(15)
Since the sum of point/plane coordinates always corresponds

to the coordinates of a point/plane, both

r1 = �p2p3p4� + �p5p3p6� − �p7p3p8� − �p9p3p10�

and

r2 = �p1p2p4� + �p1p5p6� − �p1p7p8� − �p1p9p10�

also represent two points/planes. Then, the analyzed platform
will be in a singularity if point r1 lies on the plane defined
by p1 or, equivalently, if point r2 lies on plane p3 . Then, the
singularity condition can be simply expressed as r1 · p1 = 0 or,
equivalently, as r2 · p3 = 0. Moreover, observe that by construc-
tion, r1 · p3 = 0 and r2 · p1 = 0. Then, it can be concluded that
the analyzed robot is in a singularity if, and only if, both r1 and
r2 lie simultaneously on p1 and p3 .

Note that if any of the planes defined in (15) is degenerate,
it gives a null vector, but (14) is still well defined. If p1 or p3
are null vectors (i.e., if a, b, and d, or d, f , and h are aligned),
the manipulator will be in a singularity. The degeneracy of any
other plane in (15) does not imply that the condition (14) is
satisfied.

To get some practical insight, let us suppose that the co-
ordinates of the attachments for the analyzed robot, in their
local reference frames, are the ones in Fig. 3. Let us also
suppose that the orientation of the moving platform with
respect to be base is fixed to be Rot(z, π

6 )Rot(x, π
6 ). In

other words, according to the notation used in Fig. 3, aT =
Trans(px, py , pz )Rot(z, π

6 )Rot(x, π
6 )(a′)T and, similarly, for

the other platform attachments. Then, the moving platform is

only allowed to translate, and

p1 =

⎛

⎜
⎜
⎝

−2 − 4pz

0
4(px −

√
3)

4
√

3(1 + 2pz )

⎞

⎟
⎟
⎠

p3 =

⎛

⎜
⎜
⎝

−2 + 4pz

0
−4(px +

√
3)

4
√

3(2pz − 1)

⎞

⎟
⎟
⎠

r1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

16(px − 3.46pz + 3.46)(7.07px + 6.92pxpz

−1.73pz + 17.73 − 4pxpy − 3py )

−384p2
z py + 221.71p2

y pz − 203.42p2
z

+110.85pxpzpy + 331.16py pz − 64pxp2
y

−221.71p2
y − 1525.1pz − 604.71pxpz

+276.84py + 144.57pxpy + 1050.4px

+126.85p2
x + 1728.6

32(−1 + 2pz )
(3.46py pz − 3.46py − 6p2

z − 5.32pz

+18.32 − pxpy + 1.73pxpz + 3.26px)

−219.71p2
z + 62.85py pz − 32.573pxpz

+141.16pz − 18.143pxpy − 62.85py

+302.56 + 248.px + 27.714p2
x

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

r2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−16(px + 3.46pz )(7.07px + 6.92pxpz

−1.73pz + 17.73 − 4pxpy − 3py )

−384p2
z py + 221.71p2

y pz + 683.42p2
z

−110.85pxpzpy − 564.84py pz + 64.pxp2
y

−444.0pz + 383.00pxpz + 300.56py

−336.57pxpy + 302.15px − 588.0 + 1.15p2
x

−16(1 + 2pz )
(−6.92py pz + 3.92py + 12p2

z + 8.91pz

−18.91 − 2pxpy + 3.46pxpz + 0.53px)

−164.29p2
z + 158.85py pz − 78.28pxpz

−426.27pz + 82.143pxpy − 62.85py

+302.56 − 265.15px − 27.714p2
x

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Now, it can be verified, using a computer algebra system,
that det(J) = 1

2 r1 · p1 = 1
2 r2 · p3 , where the rows of J are the

Plücker coordinates of the leg lines.
As explained previously, r1 and r2 lie, by construction, on

planes p3 and p1 , respectively, but if r1 also lies on p3 or,
equivalently, r2 on p1 , the robot is in a singularity. This is the
situation depicted in Fig. 4.

The aforementioned analysis can be extended to the nine
topologies whose dual pure condition contains four terms be-
cause, in all these cases, two planes are common to all four
terms.
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p1 = abd

p3 = hfe

r1

r2

a

b
d

e

h

f

Fig. 4. Analyzed 4-6 Stewart platform in a singular configuration. In this case,
px = 0, py = 0.792, and pz = 5.

a, c, e

b

d

g

f

h

i

k

j

l

Fig. 5. Decoupled Stewart platform.

Now, consider the Stewart platform in Fig. 5. It has the fol-
lowing topology:

a, c, e g i k

b d f h j l

Here, we have chosen this topology, over the other two in the
same set of topologies identified in the previous section, because
it corresponds to the decoupled Stewart platform. Indeed, three
prismatic actuators control the location of point where three
attachments coincide, which can be seen as the center of the
robot, and the other three control the orientation of the moving
platform. Thus, if the first three actuators are blocked, we can
regard the result as a parallel spherical robot where two pyramid-
like rigid bodies are connected together by a spherical pair at
the common apex.

The forward kinematics of this robot was first solved by In-
nocenti and Parenti-Castelli [32], and Wohlhart [33]. Alici and
Shirinzadeh presented a method based on the determinant of the
Jacobian to plot the singularity locus in terms of the moving
platform orientation using Euler angles [34]. Later, Ben-Horin
and Shoham found a compact singularity condition for this robot
using Grassmann–Cayley algebra [35].

According to Table I, the dual pure condition for this topology
can be expressed as

− [�abd��afl��agh��ijk�] − [�abd��afi��agh��jkl�]
+ [�abd��afh��agi��jkl�] + [�abd��afk��agh��ijl�]
− [�abd��afh��agk��ijl�] + [�abd��afg��ahj��ikl�]
+ [�abd��afg��ahk��ijl�] − [�abd��afg��ahl��ijk�]
+ [�abd��afh��agl��ijk�] − [�abd��afh��agj��ikl�]
+ [�abd��afj��agh��ikl�] − [�abd��afg��ahi��jkl�] = 0

which can be rewritten as

p1 · (−�p2p3p4� − �p5p3p6� + �p7p8p6�
+ �p9p3p10� − �p7p11p10� + �p12p13p14�
+ �p12p15p10� − �p12p16p4� + �p7p17p4�
− �p7p18p14� + �p19p3p14� − �p12p20p6�) = 0 (16)

where

p1 = �abd�, p2 = �afl�, p3 = �agh�, p4 = �ijk�
p5 = �afi�, p6 = �jkl�, p7 = �afh�, p8 = �agi�
p9 = �afk�, p10 = �ijl�, p11 = �agk�, p12 = �afg�

p13 = �ahj�, p14 = �ikl�, p15 = �ahk�, p16 = �ahl�
p17 = �agl�, p18 = �agj�, p19 = �afj�, p20 = �ahi�.

Then, although these dual pure conditions have more than four
terms, they all have one plane as a common factor. Thus, the
singularities of this robot can also be geometrically interpreted
as the incidence of a point with a plane. This point is the result
of dualizing a plane resulting from adding 12 planes defined by
sets of three attachments, instead of only four planes, as in the
previous example.

Alternatively, according to Table I, the primal pure condition
for this topology can be expressed as

−[abdf ][aghi][ajkl] + [abdf ][aghj][aikl]

= [abdf ] ([aghj][aikl] − [aghi][ajkl]) = 0.
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This condition is more compact and easy to interpret geomet-
rically than (16) because it factors into two terms that can be
analyzed independently. Observe that the condition [abdf ] = 0
corresponds to the singularities of the translational part of the
robot. The other term can be simplified using Grassman–Cayley
algebra (see [35] for details) but, using the concepts that are in-
troduced in this paper as an alternative, we can rewrite it as

− [jagh][iakl] + [iagh][jakl]

= (−j · �agh�)(i · �akl�) + (i · �agh�)(j · �akl�) = 0.

Since (u × v) · (w × s) = (u · w)(v · s) − (u · s)(v · w),
this singularity condition can finally be expressed as

(i × j) · (�agh� × �akl�) = 0.

This condition constitutes a new convenient alternative to the
one derived in [35] as it can be readily interpreted geometrically
using no other tools than standard vector algebra. Then, although
the singularity analysis of the topologies in the last row of
Table I can be unified using the dual pure condition, its case-by-
case treatment based on the primal pure condition still seems
advantageous mainly when it is combined with the concepts
introduced in this paper.

VII. CONCLUSION

We have presented a new singularity condition for the generic
6-6 Stewart platform as a linear combination of 4 × 4 determi-
nants involving plane coordinates, which has been called pure
condition in dual form. This expression has been proved to be
of interest to obtain geometric interpretations of the singularity
conditions.

Finally, it is worth realizing that the pure condition, either in
its primal or dual forms, can be applied to any parallel manipula-
tor with line-based singularities, which is a type of manipulator
that was first characterized in [36]. This fact has been used in [9]
to analyze lower mobility platforms with three legs, first by using
screw algebra to obtain the governing lines and then applying
the pure condition in its primal form to the result. The interest
of using the dual form of the pure condition instead is certainly
a point that deserves further attention. In our opinion, this might
lead to a generalization of the results presented in [37].
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