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Singularity-Invariant Families of Line-Plane
5-SPU Platforms

Júlia Borràs, Federico Thomas, Member, IEEE, and Carme Torras, Senior Member, IEEE

Abstract—A 5-SPU robot with collinear universal joints is well
suited to handle an axisymmetric tool, since it has five controllable
degrees of freedom, and the remaining one is a free rotation around
the tool. The kinematics of such a robot also having coplanar spher-
ical joints has previously been studied as a rigid subassembly of
a Stewart–Gough platform, which has been denoted a line-plane
component. Here, we investigate how to move the leg attachments
in the base and the platform without altering the robot’s singu-
larity locus. By introducing the so-called 3-D space of leg attach-
ments, we prove that there are only three general topologies for the
singularity locus corresponding to the families of quartically, cu-
bically, and quadratically solvable 5-SPU robots. The members of
the last family have only four assembly modes, which are obtained
by solving two quadratic equations. Two practical features of these
quadratically solvable robots are the large manipulability within
each connected component and the fact that, for a fixed orientation
of the tool, the singularity locus reduces to a plane.

Index Terms—Gough–Stewart platforms, kinematics singulari-
ties, manipulator design, parallel manipulators, robot kinematics.

I. INTRODUCTION

OVER the past half-century, the Stewart–Gough platform
has been applied extensively to automate many different

tasks due to its well-known advantages in terms of speed, rigid-
ity, dynamic bandwidth, accuracy, cost, etc. [1], [2]. There are
many important industrial tasks that require a tool to be per-
pendicular to a 3-D free-from surface along a given trajectory.
They include 5-axis milling, laser engraving, spray-based paint-
ing, water-jet cutting, and, in general, any manipulation task in
which the tool is axisymmetric. These tasks can be performed
by robots with only three translations and two rotations, i.e., five
degrees of freedom (DOF). Since the Stewart–Gough platform
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Fig. 1. 5-SPU parallel robot with aligned universal joints. While the axis
defined by these universal joints is rigidly linked to the base for fixed leg
lengths, any tool attached to it can freely rotate.

has 6 DOF, some limited-DOF parallel robots have been de-
signed for this kind of applications with the aim to simplify the
structure and the control of the general Stewart–Gough platform
but without losing its aforementioned advantages [3]–[7].

The Stewart–Gough platform consists of a base and a moving
platform that is connected by six universal-prismatic-spherical
(UPS) legs, where the underline indicates that the prismatic
joint is actuated. Thus, it is usually referenced to as a 6-UPS,
or equivalently as a 6-SPU, parallel mechanism. If one of these
legs is eliminated to obtain a 5-DOF parallel robot, two alterna-
tives arise to make the moving platform location controllable,
namely, 1) adding an extra passive leg or 2) restraining the mo-
bility of one of the five remaining legs. Then, the challenge
consists in how to perform any of these two operations so that
the resulting robot has three translations and two rotations. Zhao
and colleagues beat the challenge for the first alternative. They
proposed to introduce a prismatic-revolute-prismatic-revolute
(PRPU) passive leg. The properties of the resulting mechanism,
which is technically referenced to as a 5-UPS + PRPU mech-
anism for obvious reasons, have been analyzed in a series of
papers [8]–[10]. More recently, Lu and colleagues have opted
for the second alternative. They proposed a 4-UPS + SPR par-
allel platform whose static and dynamic properties are studied
in [11] and [12], respectively. Many other examples of 5-DOF
parallel robots can be found in the literature, but they greatly
depart from the basic 6-UPS design in the sense that they do not
contain at least four UPS legs.

A parallel robot that consists of a base and a moving platform
that is connected by five SPU legs is clearly uncontrollable.
For example, if the universal joints are aligned as in Fig. 1,
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the moving platform can freely rotate around the axis that is
defined by the five aligned revolute joints. If this rotation axis
is made coincident with the symmetry axis of the tool, the un-
controlled motion becomes irrelevant in most cases, and the
five leg actuators control the remaining five DOF. Alternatively,
this uncontrolled motion can always be eliminated by blocking
one of the five aligned revolute joints. The presented analysis
is valid irrespective of this choice. Kong and Gosselin refer
to the aforementioned arrangement of five SPU legs as a line-
plane component, since it can always be considered as a rigid
subassembly in a standard Stewart–Gough platform [13], [14].

In 1991, Zhang and Song solved, for the first time, the forward
kinematics of a general Stewart–Gough platform that contains
a line-plane component [15], [16]. They showed how the line
in the line-plane component of such a platform can have up to
eight configurations with respect to the plane, and as a conse-
quence, the platform can have up to 16 assembly modes. The
eight configurations of the line correspond to the roots of a
biquartic polynomial. Therefore, the existence of an algebraic
expression for these configurations as a function of the five leg
lengths was proved. Later on, in 2000, Husty and Karger studied
the conditions for this subassembly to be architecturally singular
and found two algebraic conditions that must be simultaneously
satisfied [17]. More recently, Borràs and Thomas have analyzed
the role of cross ratios between the location coordinates of the
spherical and universal joints centers—which will be referred
to as attachments in what follows—in the characterization of
architectural singularities, and in singularity-invariant architec-
tural changes, in line-plane components [18].

The parallel singularities of the Stewart–Gough platform
have been extensively studied, mainly from an analytic view-
point [19], [20]. A few works have attained a geometric charac-
terization of the singularity locus for particular platform archi-
tectures [21], [22], such as 6-4 platforms [23] and the octahedral
manipulator [24], [25]. Similarly, we derive, here, a simple ge-
ometric condition that completely characterizes the singularity
locus of 5-SPU robots that have a line-plane structure. Moreover,
in our search for transformations of robot designs that leave the
singularity locus invariant, we introduce the 3-D space of leg re-
arrangements, which turns out to be a useful tool to characterize
all robot instances that have exactly the same locus. Moreover,
this space permits us to further group robot instances into fam-
ilies that have topologically equivalent singularity structures. It
is proved that there are only three such families, corresponding
to robots whose forward kinematics have a quartic, cubic, or
quadratic solutions, respectively.

Then, quadratically solvable 5-SPU robots are studied in de-
tail. We show that this family is characterized by a simple alge-
braic relation between the base and the platform attachment co-
ordinates, which makes the number of possible assembly modes
drop to 4 so that they can be computed by solving two quadratic
polynomials. In addition, the singularity locus becomes so sim-
ple that, for a fixed orientation, it reduces to a plane.

The rest of this paper is organized as follows. Section II
presents the kinematics and singularity analysis of the general
5-SPU platform, yielding the eight assembly modes. Next, leg
rearrangements that preserve the singularity locus are studied

Fig. 2. Schematic representation of the 5-SPU parallel robot that is shown in
Fig. 1.

in Section III and then proceed to the classification of 5-SPU
platforms according to their singularity structure in Section IV.
The family of quadratically solvable robots is studied in detail in
Section V, showing that the number of assembly modes drops to
4, and the singularity structure is greatly simplified, as presented
in Section V-C. Finally, Section VI points out the implications
of the results that are obtained for the study of 6-UPS Stewart–
Gough platforms that contain a line-plane component.

II. 5-SPU ROBOT WITH PLANAR BASE

AND LINEAR PLATFORM

Let us consider the five-leg parallel platform that is shown
in Fig. 2, whose base and platform attachments lie on plane Π
and line Λ, respectively. We assume that no four attachments in
the base plane are collinear; otherwise, the mechanism would
contain a four-leg rigid subassembly, which has been studied
separately [26]. Let Π coincide with the xy-plane of the base
reference frame. Thus, the leg attachments in the base have
coordinates ai = (xi, yi , 0)T , for i = 1, . . . , 5. The pose of Λ
with respect to Π can be described by the position vector p =
(px, py , pz )T and the unit vector i = (u, v, w)T in the direction
of Λ. Thus, the coordinates of the leg attachments in Λ, which
are expressed in the base reference frame, can be written as
bi = p + zii.

It is worth emphasizing that the attachments of the ith leg
can be determined by a single point in R

3 with coordinates
(xi, yi , zi). This 3-D space of leg attachments will play an im-
portant role later in Sections III and IV-B.

A. Singularity Analysis

It has previously been shown [18] that the Jacobian deter-
minant of a general Gough–Stewart platform that contains a
five-leg line-plane component factorizes into two terms: one
that vanishes when the sixth leg lies on the platform plane and
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the other being the determinant of the following matrix:

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

wpz w(pzu − pxw) w(pz v − pyw)

z1 x1 y1

z2 x2 y2

z3 x3 y3

z4 x4 y4

z5 x5 y5

pz (pxw − pzu) pz (pyw − pz v) −w2

x1z1 y1z1 1

x2z2 y2z2 1

x3z3 y3z3 1

x4z4 y4z4 1

x5z5 y5z5 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

which depends exclusively on the five-leg 5-DOF component.
Thus, the singularity locus of the 5-SPU manipulator that

is studied in this paper corresponds to the root locus of the
polynomial that results from expanding such determinant, i.e.,

C1wpz + C2w(pzu − pxw) + C3w(pz v − pyw)

+C4pz (pxw − pzu) + C5pz (pyw − pz v) − C6w
2 = 0 (2)

where Ci , for i = 1, . . . 6 is the cofactor of the (1, i) entry of
T, which depends only on leg attachments. In what follows,
we assume that not all Ci are equal to zero since, in this case,
det(T) would be identically zero, irrespective of the pose of the
platform, which would, thus, be architecturally singular.

B. Forward Kinematics

Similar to [16], the forward kinematics of our five-leg parallel
robot can be solved by writing the leg lengths as li = ‖bi − ai‖,
for i = 1, . . . , 5. Then, subtracting from the expression for l2i ,
i = 1, . . . , 5, the equation ‖i‖ = u2 + v2 + w2 = 1, quadratic
terms in u, v, and w cancel out, yielding

zit − xipx − yipy − xiziu − yiziv

+
1
2
(p2

x + p2
y + p2

z + x2
i + y2

i + z2
i − l2i ) = 0 (3)

for i = 1, . . . , 5, where t = p · i.
Subtracting the first equation from the others, quadratic terms

in px , py , and pz cancel out as well. Then, the resulting system
of equations can be written in matrix form as
⎛
⎜⎜⎜⎜⎝

x2 − x1 y2 − y1 x2z2 − x1z1 y2z2 − y1z1

x3 − x1 y3 − y1 x3z3 − x1z1 y3z3 − y1z1

x4 − x1 y4 − y1 x4z4 − x1z1 y4z4 − y1z1

x5 − x1 y5 − y1 x5z5 − x1z1 y5z5 − y1z1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

px

py

u

v

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

(z2 − z1)t + N2

(z3 − z1)t + N3

(z4 − z1)t + N4

(z5 − z1)t + N5

⎞
⎟⎟⎟⎟⎠

(4)

where

Ni =
1
2
(x2

i + y2
i + z2

i − l2i − x2
1 − y2

1 − z2
1 + l21 ). (5)

Now, notice that the determinant that is associated with the
linear system (4) can be written as∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 y1 x1z1 y1z1 1

x2 y2 x2z2 y2z2 1

x3 y3 x3z3 y3z3 1

x4 y4 x4z4 y4z4 1

x5 y5 x5z5 y5z5 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

(6)

which coincides with C1 in (2). If (6) vanishes, either px , py , u,
or v can be chosen as parameter, instead of t, to reformulate the
linear system (4). Since for a non-architecturally singular robot
not all cofactors are zero, it can be shown that a non-singular
linear system of the form (4) can always be found by choosing
either t, px , py , u, or v as parameter.

Solving (4) by Cramer’s rule, and applying the multilinearity
property of determinants, yields

px = (−C2t + E2)/C1

py = (−C3t + E3)/C1

u = (−C4t + E4)/C1

v = (−C5t + E5)/C1 (7)

where Ei results from substituting the (i − 1)th column vector
of the matrix in the system (4) by (N2 , . . . , N5)T and computing
its determinant.

From equation u2 + v2 + w2 = 1 and (3) for i = 1, it can be
concluded that

p2
zw

2 = (1 − u2 − v2)

× [2(−z1t + x1px + y1py + z1y1v + z1x1u)

−p2
x − p2

y − x2
1 − y2

1 − z2
1
]
. (8)

On the other hand, from t = p · i
(pzw)2 = (t − pxu − py v)2 . (9)

Equating the right-hand sides of (8) and (9), the following poly-
nomial in t is finally obtained:

n4t
4 + n3t

3 + n2t
2 + n1t + n0 = 0 (10)

where

n4 = − (C4C3 − C2C5)2

C4
1

n3 = − 2
C4

1
(C2

1 (C5C3 + C4C2)

+ C1(C2
5 +C2

4 )(C2x1 +(C1 +C4x1 +C5y1)z1 +y1C3)

+ (C4C3 −C5C2)(E5C2 +E2C5 −E4C3 −E3C4))

(11)

and n2 , n1 , and n0 also depend on constant parameters but are
not provided for space reasons.
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Each of the four roots of (10) determines a single value for
px , py , u, and v through (7) and two sets of values for pz and
w by simultaneously solving ‖i‖ = 1 and t = p · i. Thus, up to
eight assembly modes are obtained for a given set of leg lengths.

The polynomial in (10) is the maximum degree polynomial
that we have to solve to obtain the forward kinematics solu-
tions; therefore, we say that the general solution for the 5-SPU
manipulator with planar base and linear platform is quartic.

III. SINGULARITY-INVARIANT LEG REARRANGEMENTS

Now, we want to explore possible changes of leg attachments
in both the planar base Π and the linear platform Λ that leave
the robot’s singularity locus invariant. To this aim, we first in-
terpret the singularity equation (2) as an unfolding of a surface
in the 3-D space of leg attachments, whose simple character-
ization in terms of a distinguished point (which is denoted B
in what follows) and a single line through it (which is denoted
B∞) permits us to derive geometric rules to perform the sought
singularity-invariant leg rearrangements.

A. Algebraic Formulation

Consider the following 2-D surface in R
3 :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z x y xz yz 1
z1 x1 y1 x1z1 y1z1 1
z2 x2 y2 x2z2 y2z2 1
z3 x3 y3 x3z3 y3z3 1
z4 x4 y4 x4z4 y4z4 1
z5 x5 y5 x5z5 y5z5 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (12)

which can be interpreted as the hypersurface defined by points
(xi, yi , zi), i = 1, . . . 5 in the 3-D space of leg attachments that
are introduced in the preceding section. The Laplace expansion
by the elements of the first row of such determinant leads to

C1z + C2x + C3y + C4xz + C5yz + C6 = 0 (13)

where Ci are the cofactors of the elements of the first row,
for i = 1, . . . , 5. Note that these are the same coefficients as
those in the singularity polynomial (2). If any leg is substituted
by a new one going from the base attachment a = (x, y, 0)
to the platform attachment b = p + zi, for any (x, y, z) that
satisfy (13), the values of the coefficients Ci for i = 1, . . . , 6 will
remain the same up to a constant multiple. Hence, the points with
the coordinates of the five leg attachments belong to the surface
that is defined by (13), and we can freely move them within this
surface without altering the platform’s singularity locus. This
is because the coefficients of the singularity polynomial in (2)
remain the same up to a scalar multiple and, as a consequence,
its root locus remains invariant. The only caution required is
that this scalar multiple be different from zero, as otherwise the
platform would be architecturally singular. It is worth noting
that, in this case, the coordinates of the resulting five legs would
not define a surface in implicit form through (12).

Fig. 3. Representation of surface (13) with the origin placed at point (16) and
the y-axis that is placed at line (15).

B. Geometric Rules to Perform Leg Rearrangements

We like to study what leg rearrangements leave the surface
that is defined by (13) unchanged and, thus, keep the platform
singularity locus invariant. To this aim, let us rewrite (13) in
matrix form as

[(C2 C3 C6) + z(C4 C5 C1)]

⎛
⎝

x

y

1

⎞
⎠ = 0. (14)

For each pair (x, y), there is a unique corresponding z through
(14), provided (C4x + C5y + C1) �= 0. Conversely, for each
value of z, (14) defines a unique line in variables x and y. This
also holds for z = ∞, whose corresponding line is

B∞ = {(x, y) | C4x + C5y + C1 = 0} . (15)

Equation (14) has the form of a projective pencil of lines, where
each line of the pencil is formed by a linear combination of the
line (15) and the line C2x + C3y + C6 = 0. Then, the vertex of
the pencil is the point that belong to both lines, i.e.

B =
(

C3C1 − C6C5

C2C5 − C4C3
,−C2C1 − C4C6

C2C5 − C4C3

)
(16)

for which any value of z satisfies (14).
Fig. 3 shows that the surface that is defined by (13) has the

shape of a spiral-like ruled surface around a vertical axis that
passes through point B (16) in the xy-plane and approaching
a line that is parallel to (15) as z tends to ∞. This can be
recognized as a hyperbolic paraboloid with two directing lines
at infinity, which are obtained by intersecting the planes z = 0
and C4x + C5y + C1 = 0 with the plane at infinity.

Interpreting this surface in the 3-D space of leg attachments—
where (x, y) and z are the coordinates of the attachments in the
base plane Π and the platform line Λ, respectively—we note
that (14) defines a one-to-one correspondence between points
in Λ and lines of a pencil in Π, with vertex at B (see Fig. 4).

In what follows, any line in Π that passes through point B
will be called a B-line. The B-line that is associated with the
attachment in Λ with local coordinate zi will be denoted Bzi

.
Of particular interest is B∞, which that is given in (15), because
in practice, no attachment in Π can be located on it (with the
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Fig. 4. One-to-one correspondence between the attachments in the platform
line and the lines of the pencil centered at B. Each value of zi defines a point in
the platform line bi = p + zi i and a line in the plane Bz i .

exception of B), as the corresponding attachment on Λ should
have to be moved to infinity. Moreover, the surface that is defined
by (13) will be called B-surface when interpreted in the 3-D
space of leg attachments.

Summarizing, we can state two simple rules to move the leg
attachments without altering the singularity locus of a given 5-
SPU platform with planar base and linear platform as follows:

1) For fixed platform attachments, all attachments in the base
plane can be freely moved along their B-lines.

2) For fixed base attachments, an attachment in the linear
platform can be freely moved if, and only if, the corre-
sponding attachment in the base is located at B.

Again, the only caution required is to avoid falling into archi-
tecturally singular designs, which can be easily detected because
all Ci’s, i = 1 . . . 6, would be zero. These architecturally singu-
lar designs that are originated by degeneracies, such as placing
three attachments on the same B-line or having four collinear
attachments on the base, were already characterized in [18],
[29].

C. Geometric Interpretation of Parallel Singularities

Let us rewrite (2) in vector form as

[w(C2 C3 C6) − pz (C4 C5 C1)]

⎛
⎝

pxw − pzu

pyw − pz v

w

⎞
⎠ = 0. (17)

The parallel singularities of the analyzed 5-SPS robot cor-
respond to those configurations, which are defined by p =
(px, py , pz ) and i = (u, v, w), that satisfy the aforementioned
equation. Then, two situations arise.

1) If w �= 0, (17) yields

[(C2 C3 C6) + μ(C4 C5 C1)]

⎛
⎝

px + μu

py + μv

1

⎞
⎠ = 0 (18)

where μ = −pz/w. The first term of the equation defines
a pencil of lines, which is the same pencil obtained in the

previous section. Now, observe that Λ intersects Π at

A = (px + μu, py + μv, 0). (19)

Then, according to (18), the singularity occurs when point
A lies on the line that is defined by B0 + μB∞, i.e., the
line of the pencil corresponding to z = −pz/w. Note that,
if A coincides with B, i.e., the focus of the pencil, the
manipulator would be singular for any value of pz and w,
because A would simultaneously lay on all lines of the
pencil.

2) If w = 0, (17) yields

(C4 C5)
(

pzu

pz v

)
= 0. (20)

In this case, the manipulator is singular when Λ is parallel
to B∞, i.e., when i = ± 1√

C 2
4 +C 2

5

(C5 ,−C4 , 0).

If, in addition, pz = 0, Λ necessarily lies on Π, which is a
trivial singularity.

In sum, the 5-SPU manipulator is in a singular configuration
iff the platform point p + zi that intersects the base does so pre-
cisely at its corresponding B-line Bz (see Fig. 5 for an example).
Note that this includes the cases in which w = 0.

The aforementioned geometric interpretation has two very
interesting implications. First, a configuration is singular iff a
leg can attain zero length through a singularity-invariant leg
rearrangement. The attachments of such a leg will both coincide
with the point where the platform intersects the base. Second,
this zero-length leg condition that holds at singularities permits
us to equate the coordinates of attachments in the base a =
(x, y, 0)T and platform b = p + zi at point A, leading to the
following change of variables:

xw = pxw − pzu

yw = pyw − pz v

zw = pz

(21)

which, if applied to (2), yields

(−w2)(C1z + C2x + C3y + C4zx + C5zy + C6) = 0. (22)

When w �= 0, this reduces to (13). Therefore, except for con-
figurations in which the platform lies parallel to the base, the
B-surface (13) in the 3-D space of leg attachments provides a
characterization of singularities that are equivalent to the hyper-
surface (2) in the 5-D robot configuration space.

D. Example I

Multiple spherical joints exist in most well-studied Gough–
Stewart platforms. Such joints simplify the kinematics and sin-
gularity analysis of parallel manipulators, but they are difficult
to construct and present small joint ranges, which make them
of little practical interest. In this example, it is shown how the
presented leg rearrangements can be used to eliminate multiple
spherical joints from a particular design, without losing the ad-
vantages of having simple kinematics and maintaining the same
singularity locus.

Consider the 5-SPU manipulator that is depicted in Fig. 6
(top), which is clearly of the line-plane type that is studied in
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Fig. 5. Non-singular pose of the manipulator, for the position p = (5, 8, 13),
i = (1/3,−2/3,−2/3) (top). A singular pose, p = (7

√
6 − 7, 4, 14) and i =

(
√

6
6 , −

√
6

6 , −
√

6
3 ) of the manipulator (bottom).

this paper. A set of leg rearrangements can be performed to
transform it into a platform with the same singularities but with
no multiple spherical joints. One of the possible sequences of leg
rearrangements to attain this goal appears in Fig. 6 (bottom).1

Two remarks may ease the practical application of the leg
rearrangement rules that are presented in the preceding section.

1) There can be at most two coincident attachments on the
base plane, which must lie on point B. Otherwise, the ma-
nipulator either would contain a four-leg rigid component
or it would be architecturally singular.

2) Along a design process, the location of point B may be
conveniently specified by placing two coincident attach-

1Check file 04_The_3-4_5-UPS.mw in the multimedia attached archive for a
numerical example.

Fig. 6. Singularity-invariant leg rearrangements can be used at the manipulator
design stage to eliminate multiple spherical joints.

Fig. 7. From a plane-line component in the top figure, an uncoupled manipu-
lator is obtained using singularity-invariant leg rearrangements.

ments, which can be separated later on using appropriate
leg rearrangements.

E. Example II

Consider the Stewart–Gough platform shown in Fig. 7 (top).
It contains an upside-down line-plane component. Hence, the
associated pencil of lines lies, in this case, in the platform plane.
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Fig. 8. Planar geometric construction that defines all the geometric parameters
in a 5-SPU manipulator with planar base and linear platform.

Moreover, the attachment in the platform of the leg that is not
included in the line-plane component is made to be coincident
with the focus of the pencil B.

According to the results that are presented in Section III-B,
two platform attachments can be moved along their B-lines to
meet at B without modifying the singularity locus of the con-
sidered platform. A point-plane component, thus, arises [see
Fig. 7 (left-bottom)]. It can be shown that the attachments in the
plane of a point-plane component can be arbitrarily relocated,
without changing the singularity locus of the whole platform,
provided that no architectural singularities are introduced [27].
As a consequence, it is possible to misalign two of the base at-
tachments [see Fig. 7 (right-bottom)]. The result is an uncoupled
parallel platform because the legs of the point-plane component
determine the location of a point in the moving platform and
the other three legs, the platform’s orientation. It can be said
that the resulting uncoupled manipulator contains a concealed
line-plane component. Thus, it is clear that the presented study
transcends that of 5-SPU platforms.

IV. CLASSIFYING 5-SPU PLATFORMS

BY THEIR SINGULARITIES

A. Platform Families With Identical Singularities

Once the leg rearrangements that preserve singularity loci
have been identified, we like to classify platforms in families
that share each such locus. To this end, we first identify the
geometric entities that fully describe the singularity locus.

It is interesting to realize that it is possible to locate a copy of
Λ onto Π, parallel to the line B∞

Λ+ =

{
(x, y)| C4x + C5y + C1 +

C2C5 − C3C4√
C2

4 + C2
5

= 0

}

(23)
so that each attachment in Λ+ lies on its associated B-line in Π
(see Fig. 8).

Let us denote the coordinates of the intersections of Λ+ with
Bzi

by b+
i . Notice that b+

i , i = 1, . . . , 5, are spaced at the
same distances in Λ+ as bi , i = 1, . . . , 5, in Λ. Then, Λ+ is
a privileged line in Π that represents a possible location for Λ
so that the attachments in it coincide with their corresponding
B-lines.

Given a particular manipulator, point B, line B∞, and line Λ+

can be computed using (16), (15), and (23), respectively. These
determine the fiveB-lines passing through the base attachments,
and their intersections with Λ+ , b+

i , i = 1, . . . , 5, determine
also the location of the attachments bi , i = 1, . . . , 5 in Λ (see
Fig. 8).

As a consequence, point B, line B∞, and line Λ+ characterize
a family of 5-SPU manipulators having exactly the same singu-
larity locus. Furthermore, assuming that point B is finite, we can
always apply a planar affine transformation that moves B to the
origin and line B∞ to the y-axis. Then, the B-surfaces associ-
ated with two non-architecturally singular 5-SPU manipulators
differ at most on a scaling factor, namely the distance of point
B to line Λ+ (which is named L in Fig. 8). This factor regulates
the attachments spacing in the platform line in relation to the
attachments spacing in the base plane.2

Therefore, all non-architecturally singular 5-SPU manipula-
tors with a finite point B have associated B-surfaces with the
same topology. Moreover, through the change of variables in
(21), we can conclude that the singularity loci of all these ma-
nipulators also have the same topology.

B. Three Possible Topologies for the Singularity Locus

So far, we have assumed that pointB was finite. Now, suppose
we take it to infinity. According to (16), this implies that C2C5 −
C4C3 = 0. By introducing this constraint into (13), we obtain

(C4z + C2)x + (C3/C2)(C4z + C2)y + C1z + C6 = 0.
(24)

It turns out that all B-lines have now the same slope, C3/C2 =
C5/C4 , and, therefore, they are all parallel toB∞. Fig. 9 (center)
shows the correspondingB-surface with the y-axis that is placed
at line B∞. Note, thus, that the B-surface approaches asymp-
totically line B∞ as z tends to +/−∞. Moreover, the B-line
associated with the value of z for which C4z + C2 = 0 is the
line at infinity. This appears as the surface asymptotically ap-
proaches a horizontal plane C4z + C2 = 0 in the central graphic
in Fig. 9, which can be recognized as a hyperbolic cylinder.

Thus, it is worth remarking that, in the one-to-one correspon-
dence between points in Λ and lines in Π, we have here that a
finite point in Λ has its associated B-line at infinity, while the
point at infinity in Λ is associated with the finite B∞ line.

Next, let us explore what would happen if these two lines are
made to be coincident, i.e., B∞ is taken to infinity. Since point
B ∈ B∞,B also stays at infinity as earlier. This further condition
implies that C4 = C5 = 0, and (24) reduces to

C2x + C3y + C1z + C6 = 0. (25)

Of course, all B-lines continue to be parallel, but observe that
their spacing has now become a linear function of z, namely,
C1z + C6 . Thus, the B-surface is a plane in this case. Fig. 9
(right) shows this planar B-surface with B-lines parallel to the

2To visualize the effect of moving line Λ+ and point B on the geometry of
the manipulator, a video has been attached as multimedia material definingGe-
ometricElements.avi
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Fig. 9. Quartic, cubic, and quadratically solvable 5-SPU manipulators (from top-left to top-right) with their corresponding B-surfaces (bottom).

y-axis. Note that the B-surface approaches line B∞ linearly as
z tends to +/−∞.

In sum, there are only three possible topologies for the B-
surfaces associated with non-architecturally singular 5-SPU ma-
nipulators: one when point B is finite [see Fig. 9 (left)], another
when B is taken to infinity but B∞ remains finite [see Fig. 9
(center)], and the third when both point B and line B∞ are
taken to infinity [see Fig. 9 (right)]. Again, through the change
of variables in (21), we can conclude that the manipulators in
each of these three families have singularity loci with the same
topology.

C. Quartic, Cubic, and Quadratic Cases

At the end of Section II-B, we mentioned that the general
solution of the forward kinematics for the 5-SPU manipulator
with planar base and linear platform is quartic, since it entails
finding the roots of polynomial (10).

Now note that, when point B lies at infinity, C2C5 − C4C3 =
0, the leading coefficient n4 in (10) vanishes, and the forward
kinematic solution becomes cubic. Then, we only obtain six
assembly modes for the platform line Λ. Finally, if not only B
is at infinity, but also line B∞ (i.e., C4 = C5 = 0), it is easy to
see that the coefficient n3 in (10) also becomes zero, leading
to a quadratic solution. When this happens, the maximum sim-
plification of the kinematics is obtained: a platform with four
assembly modes.

Thus, let us remark that the three topologies of the singu-
larity locus derived in the preceding section correspond to the
quartically solvable 5-SPU robot family, the cubically solvable
family, and the quadratically solvable one (see Fig. 9).

D. Singularity Hypersurface Analysis

Let us briefly discuss what the slices of the singularity hyper-
surface for a fixed platform orientation would look like for each
topology.

For the quartic case, taking (u, v, w) = (0, 0,−1), which cor-
responds to the platform line Λ that is placed perpendicular to
the base plane Π, the 2-D slice will look exactly as the B-surface
that is displayed in Fig. 3, since (2) reduces to (13). Thus, every
neighboring point in the sphere of platform orientations will
correspond a slightly different 2-D slice, and we can visualize
the 4-D singularity hypersurface as the combination of these
spherically arranged 2-D slices.

Fig. 10 (top) illustrates the evolution of the singularity slice
when (u, v, w) moves from one pole (0,0,1) toward the equator
(u, v, 0) of the sphere of orientations. In general, the spiral-like
surface progressively flattens and, for the limiting case in which
w = 0, it becomes a plane. Note that this relates to the assump-
tion w �= 0 that we made in the change of variables (21). When
w = 0, the platform line Λ of the manipulator is parallel to the
base plane Π, and the equation of the singularity locus reduces
to p2

z (C4u + C5v) = 0. Two subcases need to be distinguished:
pz = 0 and C4u + C5v = 0. In the former, Λ lies on Π, and the
spiral surface becomes the plane pxpy , as previously mentioned.
In the latter subcase, i.e., when C4u + C5v = 0, Λ is parallel
to the B∞-line, and the singularity slice at these two equator
points covers the whole space R

3 of coordinates px, py , pz .
In sum, the singularity locus of a 5-SPU manipulator with

a finite point B is a 4-D hypersurface in S2 × R
3 that can be

parametrized by coordinates (u, v, px , py ) ∈ S2 × R
2 , except

at the great circle of S2 projecting to the B∞-line, where pz can
take any value.
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Fig. 10. Evolution of the singularity loci in the space of platform positions
(px , py , pz ) ∈ R

3 as the platform orientation varies in the sphere (u, v, w) ∈
S2 . (Top) Case in which point B is at the origin and line B∞ coincides with
the py -axis. (Center) Case in which point B is at infinity and line B∞ coincides
with the py -axis. Finally, in the case that line B∞ is at infinity, the slice of the
singularity locus for a each particular orientation is a plane. (Bottom) Normal
vector to this plane.

For the two cases with B at infinity, by fixing as before
(u, v, w) = (0, 0,−1), the 2-D slices obtained will look exactly
as the corresponding B-surfaces. Then, by making (u, v, w)
sweep the sphere of platform orientations, we can visualize each
of the three 4-D singularity hypersurfaces as the composition

of the spherically arranged 2-D slices. This is done in Fig. 10
(center) for the second topology (cubic case) and in Fig. 10
(bottom) for the third topology (quadratic case).

V. 5-SPU QUADRATICALLY SOLVABLE MANIPULATOR

A 5-DOF manipulator whose forward kinematics has a
quadratic solution is of interest by itself and as a component
to be included in a general 6-DOF Stewart–Gough platform.
Hence, we analyze it thoroughly in this section.

Let us consider a quadratically solvable manipulator whose
line B∞ coincides with the py -axis, and thus, its B-lines are
parallel to this axis. This implies that we can freely fix its leg
attachment coordinates ai = (xi, yi , 0) and bi = p + zii, with
p = (px, py , pz ) and i = (u, v, w) as before, subject to the only
constraint

zi = δxi (26)

where δ is, thus, a proportionality factor between platform at-
tachments and the x-coordinates of the base attachments. To
ease readability of the equations, we set x1 = y1 = 0 without
losing generality. Then, δ, xi , and yi , i = 2, 3, 4, 5, are left as
parameters that characterize the family of 5-SPU robots that are
analyzed in this section.

A. Forward Kinematics

With the attachment coordinates that are given in (26), the
cofactors of the elements of the first row of T are

C1 = δ2F

C2 = −δ3F

C3 = C4 = C5 = C6 = 0 (27)

where F can be written as

F =

∣∣∣∣∣∣∣∣∣

x2
2 x2y2 x2 y2

x2
3 x3y3 x3 y3

x2
4 x4y4 x4 y4

x2
5 x5y5 x5 y5

∣∣∣∣∣∣∣∣∣
(28)

and the coefficients of polynomial (10) are

n4 = n3 = 0

n2 =
(δ2 + 1)δ2F 2 − 2δFE4 − E2

5

δ2F 2

n1 = 2
E2δ

4F 2 − Fδ(E4E2 + E5E3) − E5(E2E5 − E3E4)
δ5F 3

n0 =
(E2

2 +E2
3 + l21 (E

2
4 +E2

5 ))F 2δ4 − (E2E5 −E4E3)2

δ8F 4 − l21 .

Then, polynomial (10) becomes quadratic, and as a conse-
quence, its two roots can be simply expressed as

t =
1

δ3F (2δFE4 + E2
5 − (δ2 + 1)δ2F 2)

· [δ4F 2E2 − δF (E2E4 + E5E3)

+ E5(E3E4 − E2E5) ±
√

Δ] (29)
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where the discriminant is

Δ = δF (E2
5 + E2

4 − δ4F 2)

× [2δ4F 2E4 l
2
1 + δ3F (E2

5 l21 + E2
3 ) + δF (E2

2 + E2
3 )

− (δ2 + 1)δ5F 3 l21 + 2E3(E2E5 − E4E3)]. (30)

Each of the two aforementioned roots, say t1 and t2 , deter-
mines a single value for px , py , u, and v through (7) and two
sets of values for pz and w by simultaneously solving ‖i‖ = 1
and t = p · i. The resulting four assembly modes are explicitly
given by

p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

δ3Fti + E2

δ2F

E3

δ2F

± (E4 − δF )δ3Fti + E4E2 + E5E3

δ2F
√

δ4F 2 − E2
5 − E2

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(31)

and

i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

E4

δ2F

E5

δ2F

±
√

δ4F 2 − E2
5 − E2

4

δ2F

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (32)

B. Singularity Analysis

Substituting the values of the cofactors (27) into (2), the
singular configurations of the studied 5-SPU platform are the
solutions of the following equation:

δ2wF [δpxw − (uδ − 1)pz ] = 0. (33)

Observe that, except for δ, all other design parameters are
embedded in F , whereas the robot pose appears only in the
remaining two factors. Thus, if F = 0, the manipulator is archi-
tecturally singular, i.e., it is always singular independent of its
leg lengths.

Let us now turn to the case F �= 0 and study the parallel
singularities of non-architecturally singular manipulators.

A singular configuration (p, i) ∈ R
3 × S2 , with p =

(px, py , pz ) and i = (u, v, w), is that satisfying either w = 0
or [δwpx − (δu − 1)pz ] = 0.

Following the geometric interpretation that is given in
Section III-C, when w = 0, the manipulator is always in a sin-
gularity, because the line Λ is always parallel to the B∞ (any
line is parallel to a line at infinity, and for the quadratic case,
B∞ is at infinity). This last condition holds for configurations
where the platform is parallel to the base plane.

On the other hand, when w �= 0, (18) reads as

[(C2 0 0) + μ(0 0 C1)]

⎛
⎜⎝

px + μu

py + μv

1

⎞
⎟⎠ = 0

where μ = −pz/w. This condition holds when the intersection
point of Λ with Π, which is defined as A in (19), belongs to
the line C2x + μC1 = 0. In other words, when the point A is
at a distance (pz/w)(C1/C2) = −(pz/wδ) from the y-axis, the
manipulator is in a singularity.

Note that singularities can also be expressed in joint space
R

5 by using the discriminant (30), whose expression only de-
pends on the leg lengths li , i = 1, . . . , 5. When Δ = 0, the two
solutions (29) coincide, yielding a singularity. Note that Δ also
consists of two factors: The first one E2

5 + E2
4 − δ4F 2 = 0 cor-

responds to the condition w = 0, and the other is equivalent to
(δwpx − (δu − 1)pz ) = 0.

An interesting practical consideration is that, if we fix the
orientation of the tool, singularities define a plane in position
space [as shown in Fig. 10 (bottom)]

c1px + c2pz = 0 (34)

with c1 = δw2 and c2 = w(1 − uδ). For example, if the tool is
orthogonal to the base plane, i.e., (u, v, w) = (0, 0, 1), then the
robot will reach a singularity when its position, i.e., (px, py , pz ),
satisfies

δpx + pz = 0. (35)

It follows from the aforementioned singularity analysis that,
for a fixed value of δ, the whole family of non-architecturally
singular 5-SPU robots considered have exactly the same singu-
larity locus. In other words, given a member of the family, one
can freely move its leg attachments without modifying the sin-
gularity locus, provided two constraints are maintained, namely,
the proportionality between xi and zi , and F �= 0 in (28) pre-
cluding architecturally singular designs.

C. Structure of Configuration Space

The singularity locus of the 5-SPU robots studied consists of
two hypersurfaces in R

3 × S2—the robot configuration space
(or C-space, for short)—namely

w = 0 and wpx −
(

u − 1
δ

)
pz = 0. (36)

Note that since py and v do not appear in the hypersurface
equations, they do not need to be taken into account when
analyzing the topology of singularities. C-space can, thus, be
schematically represented by drawing the sphere of orientations
in each point of the plane pxpz . Furthermore, only the projec-
tion of the sphere in the direction of the v-axis needs to be
displayed. Fig. 11 shows such representation for eight positions
around the origin in the plane pxpz , for the case δ = 1 (the
cases δ < 1 and δ > 1 follow easily from this one, as detailed
in [28]). Observe that only the relation pz/px is relevant; there-
fore, each disk stands for all positions in the half-line starting
at the origin and having the same pz/px value. Color encodes
where the region lies in relation to the two hypersurfaces. For
example, yellow points (the brightest gray level ones) are those
where w < 0 and wpx − (u − 1/δ)pz < 0. Lines that separate
two colors correspond to the two hypersurfaces.
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Fig. 11. Sphere of orientations for eight positions around the origin. The four
connected components are marked with different colors.

Hence, the two singular hypersurfaces divide C-space into
four connected components, corresponding to the four assembly
modes in (31) and (32). Note that the symmetry in these equa-
tions shows up neatly in the figure. It is worth mentioning that for
platform positions in the first quadrant, namely, where px > 0
and pz > 0, all of the hemisphere of orientations with w > 0 is
reachable. Similarly, there is a whole hemisphere reachable in
the other quadrants.

Further details on the structure of C-space and its cell decom-
position induced by the singularity hypersurfaces can be found
in [28].

VI. CONCLUSION

The complete charting of the singular configurations of indi-
vidual parallel robots is important for motion planning and tra-
jectory control. To obtain rules to perform leg rearrangements
that leave the singularity locus unchanged has a more generic
interest in that it permits us to optimize robot designs within a
repertoire of them without having to care about collateral vari-
ations in their singularities. Even further, the establishment of
entire robot families with topologically equivalent singularity
structures permits us to have a global view of the design options
that are available and their associated kinematic complexities.

This paper has presented contributions at these three levels
for the case of 5-SPU robots with planar base and linear plat-
form, excluding only non-generic designs such as those with
four collinear attachments in the base [26] and architecturally
singular ones. It has been shown that there are only three families
with distinct topologies for the singularity locus, corresponding
to quartically, cubically, and quadratically solvable robot plat-
forms.

The presented analysis of 5-SPU robots is also useful for
the study of 6-UPS Stewart–Gough platforms that contain a
line-plane component, as has been shown for the decoupled

manipulator with three collinear attachments in Section III-E.
If such component is of the quadratically solvable type, the
kinematics of the 6-DOF platform becomes greatly simplified,
having a total of eight assembly modes. A cell decomposition
of its singularity locus can be readily derived from that obtained
in Section V-C by simply considering the additional singular
hypersurface corresponding to the platform attachment of the
sixth leg that lies on the base plane.
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