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Abstract: Avirtual legin a 6-SPSparallel robot is defined as a
leg whose length is determined by the lengths of a subset of the
actual legs of the robot. This necessarily implies that this subset
of legs defines a rigid subassembly. In this paper, we consider
four different rigid subassemblies, and show how the singulari-
ties of a robot containing one or several of these subassemblies
are modified when substituting its actual legs by virtual legs.

1 Introduction

In general, substituting one leg in a 6-SPS parallel robot by an-
other arbitrary leg modifies the location of the platform singular-
ities in a rather unexpected way. Nevertheless, in those casesin
which the considered platform containsrigid subassemblies, legs
can be substituted so that the singularity locus is modified in a
controlled way.

In this paper we will consider the four rigid subassemblies
appearingin Fig. 1. They can be seen as subassembliesinvolving
(a) apoint and aline, (b) a point and a plane, (c) two lines, and
(d) aline and a plane, attached either to the base or the platform.
Inwhat follows, we will refer tothemas PtL, PtP, LL,and LP
subassemblies, respectively.

This work studies the effect of substituting one leg in the
above subassemblies by another leg, so that the involved points,
lines or planes remain invariant. We show how this operation ei-
ther renders the platform singularity locus invariant, introduce
non-obvious architectural singularities, or even introduce new
singularities without altering the existing ones. The proposed
leg substitutions include the possibility of splitting the multiple
spherical joints and hence their practical interest.

The classification of 6-SPS parallel manipulators on the ba-
sis of the rigid subassemblies they contain was addressed in
[Kong and Gosselin(2000)]. Each class consists of al the ma-
nipulators obtained by adding to a given rigid subassembly the
remaining legs up to 6 in al possible topological configurations.
Note that the manipulators in a class have neither the same for-
ward kinematics nor the same singularity structure. The current

Figure 1: The four considered rigid subassemblies.

work, on the contrary, tries to come up with transformations of
manipulators that preserve their singularities, thus opening up
the possihility of classifying manipulatorsin families sharing the
same singularity structure.

The paper is organized as follows. Section 2 presents how
the Jacobian matrix of a 6-SPS paralle platform is modified by
changing thelocation of onelegin those casesin whichthelength
of thisleg, in its new location, can be expressed in terms of the
lengths of asubset of legsin their original locations. To make the
presentation self-contained, Section 3 describes some basic facts
concerning Cayley-Menger determinants and some of their prop-
erties needed in the subsequent sections. Sections 4, 5, 6, and 7
deal with the particular analysis of leg substitutionsin each of the
four considered rigid subassemblies. Section 8 presents an exam-
ple showing how a 3-3 parallel robot has the same singularities
as a 6-6 parallel robot by applying a sequence of the presented
substitutions. Finally, Section 9 presents the conclusions.



2 Substituting actual legs by virtual legs

Let us consider a 6-SPS parallel platform whose six leg lengths
aregiven by 4, ..., ls. Now, let us introduce a virtual leg whose
length, say d, isimplicitly determined by afunction of the form:
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then singularities arise either when det(.J) = 0 or det(J) = cc.

Now, let us assume, without loss of generdlity, that leg 1 is
substituted by the virtual leg. Then,
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We conclude that the singularities of the parallel robot in
which leg 1 has been substituted by the virtual leg are those con-
figurationsin which the term:
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is either 0 or co. This result has important consequences. For

example, if in the working space of the robot £ ‘3’;//‘372 isaways

different from 0 and oo, the introduced substitution leaves the
singularities of the original robot invariant. On the contrary, if
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architectural singularity.

In practice, we will beinterested in repeating this kind of sub-
gtitution a number of times. Then, a sequence of terms of the

form 4 (3;;//?;72 will appear multiplying the determinant of the

origi nal robot Jacobian. In what follows, each of these terms will
be called singularity factor. Since polesand zerosin theresulting
sequence of singularity factors may cancel, singularities may be
added and removed at each step.

3 Cayley-Menger deter minants

Let us define
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withs? ; = |[p;—p;||*. Thisdeterminant isknown asthe Cayley-
Menger bi-determinant of the point sequencesp;,, ..., p;, , ad
Pjis---,Pj,- When the two point sequences are the same,
it will be convenient to abbreviate D(i1,...,in;1,-..,9,) by
D(iy,...,i,), which is simply caled the Cayley-Menger deter-
minant of the involved points.

The square volume V2(py,...,px) of the k—dimensional
simplex defined by the k£ + 1 pointspy, . . ., px can be expressed
asfollows:

_1)k+1

WD(O,...,IC). )

VQ(p07 .- 'apk') =

Two properties of these determinants that will be useful later are
[Thomas and Ros (2005)]:

D(p1,p2,P3;41,92,d3) =
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and
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4 Legsubstitutionsin PtL subassemblies

Let us consider the Pt L subassembly and the virtual leg shown
inFig. 2.

Since the tetrahedron defined by pointsp 1, p2, p3 and p4 has
null volume, then
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In other words,
nl3 +mis — (m+n)d* — mn(m +n) = 0. (12)
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Figure 2: A PtL subassembly. Theleg in light grey represents a
virtual leg.

Thus, using (3), the time derivative of the virtua leg length
can be expressed as:
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Due to the fact that m + n # 0, since otherwise the two legsin
the original robot would be coincident, asingularity isintroduced
only if n = 0.

Note that the above derivation can be greatly simplified by
directly analysing the zeros of the partia derivativesin (6). We
will proceed in thisway in the following sections.

5 Legsubstitutionsin PtP subassemblies

Let us consider the Pt P subassembly and the virtual leg appear-
inginFig. 3.

The five points pi,.., ps define a smplex in R* but,
since it is embedded in R3, its volume is null. The equation
D(1,2,3,4,5) = 0 can be simplified by applying Jacobi’s theo-
rem to the following partition of D(1, 2, 3, 4, 5)

o 1 1 1 | 1 1
1 0 mi mj | I pi
1L mi 0 mj | I3 p3
1L ms m3 0 | I3 p3|
I 2 B 2 | 0 &
1 pt p3 p3 | & 0

wherep; = d(p;, ps). Then, D(1,2,3,4,5) = 0 yields

D(1,2,3,4)D(1,2,3,5) — D(1,2,3,4:1,2,3,5)
D(1,2,3)
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Figure 3: An PtP subassembly. Theleg in light gray represents
avirtua leg.

but D(1,2,3,5) = 0 because the four pointsp1, p2, ps and ps
are in the same plane. Thus, we get the following linear equation
ind?:

D(1,2,3,4;1,2,3,5) = 0. (15)

Now, deriving D(1,2,3,4;1,2,3,5) with respect to d* and
12, using (6), we get:
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Note that, using (8) and (9), such determinants can be ex-
pressed as.

D(1,2,3) = 4A(1,2,3)? and an
D(1,2,3;2,3,5) = 2A(1,2,3)2A(2,3,4),
where A(4, j, k) stands for the area of the triangle defined by p;,
p; and py.
Then, the singularity factor is:

d A(1,2,3)

I A(2,3,5) (18)

that is, the area of the old triangular base divided by the area of
the new triangular base, which is a constant value. Thus, factor
(18) does not introduce any singularity provided that p 2, p3, and
ps arenot collinear (assuming that theinitia p1, p2, and ps were
not collinear either).

It can be proved that this leg substitution can be reduced to
two consecutive leg substitutionsin Pt L subassemblies.

6 Legsubstitutionsin LL subassemblies

Let usconsider the L L subassembly and the virtual leg appearing
inFig. 4.

Points p1, p2, . . ., ps define asimplex in R® but, since it is
embedded in R3, its volumeis null. Hence, D(1,2,3,4,5,6) =
0. This defines a quadratic equation in s5 ¢, the length of the
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Figure 4: An LL subassembly. Thelegin light gray represents a
virtual leg.

virtual leg. This equation can be simplified by applying Jacobi’s
theorem to the following partition of D(1, 2, 3, 4, 5, 6)

0 1 1 1 1 | 1 1

1 0 3 m? 13 | p? s

1 3 0 3 m3 | sa5 p3

1 m? l% 0 2 | n? 536 |,
1 13 m% 13 0 | sa5 n3

1 p% 82,5 n% 85,4 | 0 d2

1 s61 P2 56,3 n: | d? 0

wherep; = m1 +ny and ps = mo + na. Then, we conclude that
D(1,2,3,4,5,6) = 0 yields

D(1,2,3,4,5)D(1,2,3,5,6) — D?(1,2,3,4,5;1,2,3,5,6)
D(1,2,3,4)

Now, note that D(1,2,3,4,5) = 0 and D(1,2,3,5,6) = 0
because they correspond to the volumes of simplicesinR*. Thus,
assuming that the tetrahedrondefined by p 1, p2, p3 and p4 isnot
degenerate,

D(1,2,3,4,5:1,2,3,5,6) = 0, (19)

which is linear in d2. By deriving this implicit equation with
respect to d? and 17, we obtain
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where the unknown squared distances, s; ;, can be readily ob-
tained using substitutionsin Pt L subassemblies [equation (11)].

Since D(1,3,4,5;2,3,4,6) = 0 because the volume defined
by p1, p3, p4 and p5 isnull [equation (10)], it can be proved that
the second partial derivativein (20) is:
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so the singularity factor for the L L substitution is

d mimso
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Since the singularity factor is neither zero nor infinite, no new
singularity is introduced.

Notice that, by introducing leg substitutions in an LL sub-
assembly and leg substitutions in the PtL subassemblies con-
tained in it, we can obtain any configuration of legs connecting
arbitrary pointsin both lines.

7 Legsubstitutionsin L P subassemblies

Let usconsider the L P subassembly and the virtual leg shownin
Fig. 5.

Figure 5: A LP subassembly. The leg in light grey represents a
virtual leg.

In this case, let us consider points ps, . .., p7. These points
can be seen as two pyramids with known edge lengths sharing the
same triangular base so that the distance between their apexes,
ps and p~, isthe length of the virtual leg. Clearly, there are two
solutions for this length. These five points define a simplex in
R* but, since it is embedded in R3, its volume is null. Hence,
D(3,4,5,6,7) = 0. Thisdefinesaquadratic equationin s 7 that
can be simplified by applying Jacobi’s theorem to the following
partition of D(3,4,5,6,7)

o 1 1 1 | 1 1
1 0 l% l§ | q2 83,7
1 13 0 mi | sa6 pi
LB om0 | s gt |
1 ¢* sea S5 | 0 &2
1 osi3 pi p3 | & 0

where p, = d(p;,p7) and ¢ = (m1 + nq1), concluding that
D(3,4,5,6,7) = 0yields

D(3,4,5,6)D(3,4,5,7) — D*(3,4,5,6;3,4,5,6)
D(3,4,5)

Assuming that the triangle defined by ps, p4, and ps is not de-
generate, then

D(3,4,5,6;3,4,5,7) — D(3,4,5,6)D(3,4,5,7) = 0. (23)

=0.




Sincethis equation is quadratic in d2, there exist two possible
solutionsfor thelength of the virtual leg, as expected. Thismeans
that this substitution will necessarily introduce new singularities.

The partial derivative of (23) with respect to d? can be ex-
pressed as.

of
5F = 2D(3,4,5)D(3,4,5,6;3,4,5,7) (24)

The partia derivative of (23) with respect to [; is a bit more
complex. In (23), I; only appears in the computation of s3 7
which can be computed using a PtP substitution. To this end,
let us consider the PtP subassembly formed by points p1, ps,
p4 and p;. Distance s3 7 can be computed by expanding equa-
tion (15) by itsminorsyielding

13D(145;457) — 12D(145; 157) + 12D(145; 147)
D(145)

S3,7 =

(25)
where commas between indices have been removed to ease nota-

tion.
Now, applying the chain rule, we get

ﬁi 8f 853’7

= 26
61% 88377 81% ( )
where 5] D(145 457)
83,7 5
— = 27
81% D(145) ’ (27)
and
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+ D(3456) D(345; 457).

Then, multiplying and simplifying the result using (9) and
(10), we get

d 2D'/2(345)

11 2|3457|D1/2(456) cos(¢1) + |3456]| D1/2(457) cos(d)g)(’ )
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where ¢1 and ¢- are the dihedral angles between plane psp4ps

and planesp,psps and p4psp7, respectively, and |ijks| = |p;—
Ps,Pj — Ps; Pk — Ps|.

Note that this result would have been quite different if we had
substituted the second leg instead of the first one by the virtual
leg, as an L P subassembly is not symmetric. If we want to sub-
stitute the second leg, we must compute the partia derivative of
(23) with respect to I, which is much more complicated because
I appearsin the computation of s3 7, s4.6, and directly in theim-
plicit function. The result is not included here, but the derivation
unfolds analogously to the one presented above for the substitu-
tion of thefirst leg.

8 Example

Let us consider the 6-SPS parallel robot in Fig. 6(top). By apply-
ing severa leg substitutionsin the PtL and L L subassembliesit

contains, it will be shown that the Jacobian determinant of this
robot and that in Fig. 6(bottom) is the same except for a constant
factor that only depends on fixed metric distances between the
attachment points.

mq mo ms my
«>|

P4  au as g6 Ps
P2

Figure 6: A 3-3 parald robot containing eight Pt subassem-
blies and one L L subassembly (top), and the resulting robot after
performing four leg substitutionsin their Pt subassembliesand
two leg substitutionsin its L L subassembly (bottom).

Using Grassmann-Cayley agebra, it can be shown that the
determinant of the Jacobian of the 6-SPS parallel robot in Fig.
6(top) can be expressed as [Downing, Samuel and Hunt(2002)]:

l11513141515[1245)[1345] [1356]. (30)

where [ijkl] is a bracket, a mathematical entity that in this case
can be interpreted as the volume of the tetrahedron defined by
pointsi, 7, k and [ [Ben-Horin and Shoham(2007)].

Now, let usintroduce the following points:

qi =kip1 + (1 — k;)ps, for i =1,2,3

. (31
q; :kjp4 + (]- — kj)pSa for J= 47536

where

= =t Zomir ()

n ) ki+3 = Ta

n; and m; satistying >4, n; = nand 3.0, m; = m, as de-
picted in Fig. 6(bottom).

After performing four leg substitutionsin P¢ L subassemblies
and two leg substitutions in the L L subassembly, in the configu-
ration shownin 6(top), it is possible to obtain the configuration of
legs shown in Fig. 6(bottom). After multiplying and simplifying



all resulting singularity factors, the Jacobian determinant of the
resulting 6-6 platform can be expressed as:

lydadsdadsls-
<(n2 +n3)(ns + na)(m1 + ma + mg)ma
2 2
n<+m 33)
(n2 4+ ng + ng)ns(mi + me)(ma + ms) '
n? +m?2
[1245][1345][1356]
where d;,i = 2,---,5 are the lengths of the new legs. Notice

that legs 1 and 6 have not been changed. It can be checked that
the resulting product of singularity factors is zero if, and only
if, the cross-ratios of the upper and lower aligned pointsis equal
(see [Borras et a.(2008)] for details). Thus, the performed sub-
stitutions lead to an architectural singularity when this cross-ratio
relation is satisfied.

This architectural singularity is the one leading to the LL
singular subassembly studied in [Kong (1998)], and it also
appears as the fifth type of singularity in Theorem 1 of
[Husty and Karger (2000)].

9 Conclusions

We have shown how the singularities of a robot containing rigid
subassemblies are modified when substituting its actual legs by
virtual legsthat leave invariant one of these subassembliesat each
substitution.

Using the presented approach based on Cayley-Menger de-
terminants, it seems also feasible to accommodate the analysis of
leg substitutions in plane-plane subassemblies, that is, a whole
6-SPS parallel robot with planar base and platform. This cer-
tainly deserves further attention. The resulting symbolic expres-
sion for this general substitution will probably be quite complex,
but its attainment would provide the maximum generality to the
presented approach.

The idea of singularity-preserving transformations put
forth in this paper opens up the possibility of classify-
ing parale platforms in families sharing the same singu-
larity structure, as was done for flagged manipulators in
[Alberich-Carramifiana et al.(2007)].
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