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Fusing Monocular Information in
Multicamera SLAM

Joan Solà, André Monin, Michel Devy, and Teresa Vidal-Calleja

Abstract—This paper explores the possibilities of using monocu-
lar simultaneous localization and mapping (SLAM) algorithms in
systems with more than one camera. The idea is to combine in a sin-
gle system the advantages of both monocular vision (bearings-only,
infinite range observations but no 3-D instantaneous information)
and stereovision (3-D information up to a limited range). Such a
system should be able to instantaneously map nearby objects while
still considering the bearing information provided by the observa-
tion of remote ones. We do this by considering each camera as an
independent sensor rather than the entire set as a monolithic su-
persensor. The visual data are treated by monocular methods and
fused by the SLAM filter. Several advantages naturally arise as
interesting possibilities, such as the desynchronization of the firing
of the sensors, the use of several unequal cameras, self-calibration,
and cooperative SLAM with several independently moving cam-
eras. We validate the approach with two different applications: a
stereovision SLAM system with automatic self-calibration of the
rig’s main extrinsic parameters and a cooperative SLAM system
with two independent free-moving cameras in an outdoor setting.

Index Terms—Calibration, image sequence analysis, Kalman fil-
tering, machine vision, robot vision systems, stereovision.

I. INTRODUCTION

THE SIMULTANEOUS localization and mapping (SLAM)
problem, as formulated by the robotics community, is that

of creating a map of the perceived environment while localiz-
ing oneself in it. The two tasks are coupled in such a way so
as to benefit each other; a good localization is crucial to create
good maps, and a good map is necessary for localization. For
this reason, the two tasks must be performed simultaneously,
and hence, the full acronym SLAM. In recent years, the ma-
turity of both online SLAM algorithms, together with fast and
reliable image processing tools from the computer vision liter-
ature, has crystallized into a considerable quantity of real-time
demonstrations of visual SLAM.

In this paper, we insist on the quality of the achieved localiza-
tion, which will impact in turn the map quality. The key to good
localization is to ensure the correct processing of the geometrical
information gathered by the cameras. In this long introduction,
we present an overview of visual SLAM and related techniques
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to show that visual SLAM systems have historically discarded
precious sensory information. We present a novel approach that
uses the SLAM filter as a classical fusion engine that incor-
porates the full monocular information coming from multiple
cameras.

A. Monocular SLAM

Possibly, the best example of the aforementioned technolog-
ical crystallization is monocular SLAM, a particular case of
bearings-only (BO) SLAM (where the sensor does not provide
any range or depth). It is well known that the reduction in system
observability due to BO measurements has two main drawbacks:
the loss of the scale factor and the delay in obtaining good 3-D
estimates. Previous works either added some metric measure-
ment to observe the scale factor, such as odometry [1] or the
size of known perceived objects [2], [3], or have considered it
irrelevant [4]. The delay in getting good 3-D estimates comes
from the fact that such estimates require several BO observations
from different viewpoints. This makes landmark initialization
in BO-SLAM difficult, to the point that satisfactory methods
able to exploit all the geometrical information provided by the
cameras have only recently become available. We have wit-
nessed an evolution of the algorithms as follows. First, delayed
landmark initialization methods attempted to obtain a full 3-D
estimate before initialization via several observations from dif-
ferent viewpoints. Davison [3] showed real-time feasibility of
monocular SLAM with affordable hardware, using the original
extended Kalman filter (EKF) SLAM algorithm for all but the
unmeasured landmark’s depth, and a separate particle filter to
estimate this depth. Initialization was deferred to the moment
when the depth estimate was good enough. The consequence
of a delayed scheme is that we can only initialize landmarks
with enough parallax, i.e., those that are close to the camera
and situated perpendicularly to its trajectory, and therefore, the
need to operate in room-size scenarios with lateral motions.
Second, Solà et al. [1] showed that undelayed landmark initial-
ization (mapping the landmarks from their first, partial observa-
tion) was needed when considering low parallax landmarks, i.e.,
those that are remote and/or situated close to the motion axis.
This permits mapping larger scenes while performing frontal
trajectories. Third, Civera et al. [5] have recently achieved the
mapping of landmarks up to infinity, due to an undelayed ini-
tialization via an inverse depth parameterization (IDP). IDP
has also been developed by Eade et al. [6] in a FastSLAM2.0
context. Today, the monocular SLAM systems exploit the geo-
metrical information in its entirety: from the first observation,
independently of the sensor’s trajectory, and up to the infinity
range.
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B. Structure From Motion (SFM)

Monocular SLAM compares to a similar problem solved
by the vision community: the structure from motion problem
(SFM). In SFM, the goal is to determine, from a collection of
images and up to an unrecoverable scale factor, the 3-D structure
of the perceived scene and all 6-D camera poses from where the
images were captured. When compared to SLAM, the structure
plays the role of the map, while the set of camera poses defines
all the successive observer’s localizations.

Roboticists often claim that the main difference between
SFM and SLAM is that the former is solved offline via
the iterative nonlinear optimization method known as bun-
dle adjustment (BA) [7], while the latter must be incremen-
tally solved online, thus making use of stochastic estimators
or filters that naturally provide incremental operation. This
has been true for some years (today, SLAM is also solved
online with iterative optimization [8]), but does not tell the
whole story. The differences between SFM and SLAM are
not only in the methods but also in the objectives, meaning
that similar aspects of similar problems are given different
priorities.

In particular, SFM exploits the visual information in its en-
tirety without the difficulties encountered in monocular SLAM.
Let us try to understand this curious fact. SFM puts the struc-
ture as a final objective, i.e., as a result of the whole process,
and the emphasis is placed on minimizing the errors in the
measurement space, thus using all the measured information.
On the other hand, the SLAM map has a central role, with
some of the operations (and particularly landmark initializa-
tion) being performed in map space, which is the system’s state
space. The fact that this state space is not statically observable,
because it is of higher dimension than the observation space,
leads to the difficulties exposed before. As an informal attempt
to fill this gap, we could say that modern undelayed methods
for monocular SLAM, with partial landmark initialization and
partial updates, are almost equivalent to an operation in the
measurement space: the information is initialized in the map
space partially, i.e., exactly as it comes from the measurement
space. A similar point of view over this concept can be found
in [9].

C. Stereovision SLAM

Stereovision SLAM has also received considerable attention.
The ability of a stereo assembly to directly and immediately pro-
vide 3-D landmark estimates allows us to use the best available
SLAM algorithms and rapidly obtain good results with little
effort in the conceptual parts. Such SLAM systems consider
the stereo assembly as being a single monolithic sensor, capa-
ble of gathering 3-D geometrical information from the robot’s
surroundings, e.g. [10]. This fact, which appears perfectly rea-
sonable, is the main paradigm that this paper questions. By
considering two linked cameras as a single 3-D sensor, SLAM
is unable to face the following two issues.

1) Limited 3-D Estimability Range: While cameras are ca-
pable of sensing visible objects that are potentially at infinity,
a stereo rig provides only reasonably good 3-D estimates up

to a limited range, typically from 3 m to a few tens of meters
depending on the baseline. Because classical, nonmonocular
SLAM algorithms expect full 3-D estimates for landmark ini-
tialization (i.e., they are reasoned in the map space), information
belonging to only this limited region can be used for SLAM.
This is really a pity; it is like if, having our two eyes, we were
obliged to neglect everything outside a certain range from us,
what we could call “walking inside dense fog.” Without remote
landmarks, it is easy to lose spacial references, to become disori-
ented, and finally, find ourselves lost. Therefore, stereovision,
as it is classically conceived, is a bad starting point for visual
SLAM.

2) Mechanical Fragility: If we aim at extending the 3-D
estimability range beyond these few tens of meters, we need
to increase the stereo baseline while keeping or improving the
overall sensor precision. This is obviously a contradiction: larger
assemblies are less precise when using the same mechanical
solutions. In order to maintain accuracy with a larger assembly,
we must use more complex structures that will be either heavier
or more expensive, if not both. The result for moderately large
baselines (>1 m) is a sensor that is very easily decalibrated,
and therefore, almost useless. Large rigs, however, are very
interesting in outdoor applications because they allow farther
objects to be positioned, thus making them contribute to the
observability of the overall scale factor. This is especially true
in aerial and underwater settings where, without nearby objects
to observe, a small stereo rig provides no significant gain with
respect to a single camera. Self-calibration can compensate for
the inherent lack of stability of large camera rigs. It also allows
multicamera platforms to start operation without undergoing a
previous calibration phase, making on-field system deployment
and maintenance easier.

To our knowledge, the only SLAM work that goes beyond the
current stereoparadigm (apart from our conference paper [11])
is the one by Paz et al. [12], which uses a small-baseline, fully
calibrated stereo rig. Matched features presenting significant
disparity are initialized as classical Euclidean landmarks, while
those presenting low disparities are treated with the inverse
depth algorithm.

D. Visual Odometry (VO)

One could say that, in terms of methodology, visual odom-
etry (VO) is to stereovision SLAM what SFM is to monocular
SLAM. VO is conceived to obtain the robot’s ego motion from
a sequence of stereo images [13]. Visual features are matched
across two or more pairs of stereo images taken during the robot
motion. An iterative minimization algorithm, usually based on
BA, is run to recover the stereo rig motion, which is then trans-
formed into robot motion. For this, the algorithm needs to re-
cover the structure of the 3-D points that correspond to the
matched features. This structure is not exploited for other tasks
and can be usually discarded. Remarkably, when the structure
is coded in the measurement space (u, v, d), a disparity d → 0
allows points at infinity to be properly handled [14]. This is also
accomplished by using homogeneous coordinates [7]. VO must
work in real time because robot localization is needed online.
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Advanced VO solutions achieve very low drift levels after long
distances by making use of: 1) hardware-based image process-
ing with real-time construction and querying of large feature
databases [15]; 2) dense image information matching via planar
homographies and the use of the quadrifocal tensor [16]; or 3)
bundle adjusting the set of N recent key frames together with
additional fusion with an inertial measurement unit (IMU) [14].

E. Sensor Fusion in SLAM

The fact of SLAM being solved by filters allows us to envision
SLAM systems as sensor fusion engines. Let us highlight some
of the assets of filtering in sensor fusion.

1) Multisensor operation: Any number of differing sensors
can be operated together in a consistent framework.

2) Sensors self-calibration: Unknown biases, gains, and
other sensor’s parameters can be estimated provided that
they are observable [17].

3) Desynchronized operation: The data rates of all these sen-
sors do not need to be synchronized.

4) Decentralized operation: Advanced filter formulations
such as those using channel filters [18] achieve a decen-
tralized operation that should permit live connection and
disconnection of sensors without the need for filter repro-
gramming or reparameterization.

This paper explores the first three points for the case of mul-
tiple cameras.

SLAM systems naturally fuse information from both propri-
oceptive (odometry, GPS, and IMU) and exteroceptive (range
scanners, sonar, and vision) sensors into the map. But our in-
terest here is in fusing several exteroceptive sensors. We can
distinguish two cases.

1) Sensors of different kind: When using differing sensors
(e.g., laser plus vision), the main problem is in finding a
map representation well adapted to the different kinds of
sensory data (i.e., the data association problem).

2) Sensors of the same kind: The perceived information is of
the same nature. This makes appearance-based matching
possible, and therefore, makes map building easier. Nev-
ertheless, most of such SLAM systems do not take advan-
tage of fusion. Instead, the extrinsic parameters linking
the sensors are calibrated offline, and the set of sensors
is treated as a single supersensor. This is the case for
two 180◦ range scanners simulating a 360◦ one, and for
the previously mentioned stereo rig simulating a 3-D sen-
sor. A sensor-fusion approach in these cases should nat-
urally bring the aforementioned advantages to the SLAM
system.

F. Multicamera SLAM and the Aim of This Paper

The key idea of this paper is very simple: by employing
the SLAM filter as a fusion engine, we will be able to use
any number of cameras in any configuration. And, by treating
them as BO sensors with the modern undelayed initialization
methods, we will extract the entire geometrical information
provided by the images. The filter—not the sensor—will be

responsible for making the 3-D properties of the perceived world
arise.

Applications may vary from the simplest stereo system,
through robots with several differing cameras (e.g., a panoramic
one for localization and a perspective one looking forward
for reactive navigation), to multirobot cooperative SLAM
where BO observations from different robots are used to
determine the 3-D locations of very distant landmarks. Al-
though there certainly exist issues concerning multicamera
management, the main ideas we want to convey may be
demonstrated with systems of just two cameras. In this pa-
per, we will illustrate two cases: first, the case of a robot
equipped with a stereo rig, with its cameras being treated
as two individual monocular sensors and second, two cam-
eras moving independently and mapping together an outdoors
scene.

This paper draws on previous work published in the confer-
ence paper [11] and the author’s Ph.D. thesis [19]. These two
works use the federated information sharing algorithm (FIS)
in [1] to initialize the landmarks, which has been surpassed by
the inverse depth methods (IDP) [5]. The present paper takes
and extends all this research by developing a better founded jus-
tification (providing a wider scope to the proposed concepts), by
improving on the implementation with the incorporation of IDP
in the algorithms, and by extending the experimental validation
to a cooperative monocular SLAM setup.

This paper is organized as follows. Section II presents the
main ideas that will be exploited later and revises some back-
ground material for monocular SLAM. Section III explains how
to set up multicamera SLAM, an application for stereo benches
with self-calibration, and an application for two collaborative
cameras. Section IV presents the perception and map manage-
ment techniques used. Sections V and VI show the experimen-
tal results, and finally, Section VII gives conclusions and future
directions.

II. 3-D ESTIMABILITY IN VISUAL SLAM

In this section, we present the ideas that support our approach
to visual SLAM. We make use of the concept of estimability,
which will help understand the abilities of vision for observing
3-D structure in the presence of uncertainty. We clarify the key
properties of undelayed initialization in monocular SLAM, and
remark its importance in multicamera SLAM. We also remind
the key aspects of IDP-SLAM.

A. Geometrical Approach to 3-D Estimability

We are interested in finding the shape and dimensions of the
3-D-estimable region defined by two monocular views.

For this, we start with a couple of ideas to help understand-
ing the concept of estimability used. When a new feature is
detected in an image, the backprojection of its noisy-measured
position defines a conic-shaped pdf for the landmark position,
called ray, which extends to infinity (see Fig. 1). Let us con-
sider two features extracted and matched from a pair of images,
corresponding to the same landmark: their backprojections are
two conic rays A and B that extend to infinity. The angular
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Fig. 1. Conic ray backprojects the elliptic representation of the Gaussian 2-D
measure. It extends to infinity.

Fig. 2. Different regions of intersection for (solid) 4σ, (dashed) 3σ, and
(dotted) 2σ ray widths when the outer 4σ bounds are, parallel. (Shaded) The
parallax or angle between rays axes A and B is ψ = 4 σA + 4 σB .

widths of these rays can be defined as a multiple of the stan-
dard deviations σA and σB of the angular errors (a composi-
tion of the cameras extrinsic and intrinsic parameters errors,
and of the image processing algorithms accuracy). Informally
speaking, we may say that the landmark’s depth is fully esti-
mated if the region of intersection of these rays is both closed
and sufficiently small. If we consider, for example, the case
where the two external 4σ bounds of the rays are parallel
(see Fig. 2), then we can assure that the 3σ intersection re-
gion (which covers 98% probability) is closed and that the 2σ
one (covering 74%) is closed and small. The ratio between the
depth’s standard deviation and its mean (a measure of linearity
in monocular EKF-SLAM [1], [3]) is then better than 0.25. The
parallax angle ψ between the two rays axes is therefore ψ =
4(σA + σB ) = constant. This is the minimum parallax for full
estimability.

In 2-D, we can plot the locus of constant estimability.
In the case, where σA and σB can be considered con-
stant, ψ is constant too, and from the inscribed angle theo-
rem, the locus is then circular (Fig. 3, see also [19]). Land-
marks inside this circle are considered fully estimable—and
partially outside. In 3-D, the fully 3-D estimable region is
obtained by revolution of this circle around the axis join-
ing both cameras, producing a torus-shaped region with a
degenerated central hole. This shape admits the following
interpretations.

1) In a stereo configuration or for a lateral motion of a
moving camera (see Fig. 3, left), the estimable region
is located in front of the sensor. Beyond the region’s
border stereo provides no profit: if we want to consider
distant landmarks, we have to use undelayed monocular
techniques.

2) Depth recovery is impossible in the motion axis of a sin-
gle camera moving forward (Fig. 3, right). Close to this
axis, estimability is possible only if the region’s radius
becomes very large. This implies the necessity of very
large displacements of the camera during the initialization

Fig. 3. Simplified depth estimability regions in a (left) stereo rig and (right)
a camera traveling forward. The angle ψ is the one that assures estima-
bility via triangulation from different viewpoints. The maximum range is
2R = b/sin(ψ/2).

Fig. 4. Simplified depth estimability for a stereo rig moving forward. On both
sides, estimability depends on the baseline gained by motion. In front, by stereo.
Out of these bounds and up to infinity, landmarks are mapped partially. SLAM
keeps incorporating the visual information due to the undelayed monocular
methods, i.e., IDP in our case.

process. Again, this can be accomplished only with unde-
layed initializations.

3) By combining both monocular and stereovision, we get
an instant estimability of close frontal objects while still
utilizing the information of distant ones (see Fig. 4). Land-
marks lying outside the estimability regions are not 3-D-
estimable but, when initialized using undelayed monocu-
lar methods, they will contribute to constrain the camera
orientation. Ideally, long-term observations of stable dis-
tant landmarks would completely cancel orientation drift
(visual compass).

B. Monocular IDP-SLAM

The core algorithm of this paper is an EKF-SLAM with an
IDP of landmarks during the initialization phase, as described
in [5]. In IDP-SLAM, partially observed landmarks are coded
as a 6-D-vector,

i = [x0 , θ, ψ, ρ] (1)

where x0 is the 3-D position of the camera at initialization time,
(θ, ψ) are the elevation and azimuth angles in global frame
defining the direction of the landmark’s ray, and ρ is the inverse
of the Euclidean distance from x0 to the landmark’s position
(notice that ρ is usually known as inverse depth but it is rather
an inverse distance). After the first observation, all parameters
of i except ρ are immediately observable, and their values and
covariances are obtained by proper inversion and linearization
of the observation functions. The inverse depth ρ is initialized
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with a Gaussian N (ρ − ρ̄;σ2
ρ ) such that in the depth dimension

s = 1/ρ, we have

s(−nσ ) =
1

ρ̄ − nσρ
= ∞ (2)

s(+nσ ) =
1

ρ̄ + nσρ
= smin (3)

with smin the minimum considered depth and n the inverse depth
shape factor. This gives ρ̄ = 1/(2smin) and, more remarkably

nσρ = ρ̄. (4)

Importantly, values of 1 ≤ n ≤ 2 assure from (2) that the infinity
range is included in the parametrization with ample probability.

On subsequent updates, IDP achieves correct EKF operation
(i.e., quasi-linear behavior) along the whole ray as long as the
parallax shown by the new viewpoint is not too large. The lin-
earity test in [20] is regularly evaluated. If passed, the landmark
can be safely transformed into a 3-D Euclidean parametrization.

III. MULTICAMERA SLAM

The general scheme for the multicamera SLAM system is
presented in this section. This scheme is particularized to deal
with two different problems. The first one is the automatic self-
calibration of a stereo rig while performing SLAM. The second
one is a master–lave solution to cooperative monocular SLAM.
Both setups are explained here, and their corresponding experi-
ments are presented in Sections V and VI.

A. System Overview

We implement the multicamera SLAM system as follows. A
central EKF-SLAM will hold the stochastic representation of
the set of all cameras Ci plus the set of landmarks Lj

X� = [C�
1 · · · C�

N L�
1 · · · L�

M ] (5)

where the cameras states contain position and orientation quater-
nion [Ci = (ri ,qi) ∈ R

7 ], and landmarks can be coded either
in inverse depth (Lj = ij ∈ R

6) or in Euclidean coordinates
(Lj = pj ∈ R

3). Any number of cameras can be considered
this way. As each camera needs to remain localized properly,
it needs to observe a minimum number of landmarks at each
frame. The algorithm’s complexity increases linearly with the
number of cameras if this number is small with respect to the
map.

For camera motions, we consider two possible models. In
the first one, a simple odometer provides motion predictions
[∆x,∆y,∆ψ] in the robot’s local 2-D plane. Gaussian uncer-
tainties are added to the 6-DOF linear and angular components
[x, y, z, φ, θ, ψ] with a variance proportional to the measured
forward motion ∆x

{σ2
x , σ2

y , σ2
z } = k2

L · ∆x (6)

{σ2
φ , σ2

θ , σ2
ψ} = k2

A · ∆x. (7)

The variance in [φ, θ, ψ] is mapped to the quaternion space using
the corresponding Jacobians.

The second model is a 6-DOF constant velocity model

r+ = r + v ∆t

q+ = q × v2q(ω ∆t)

v+ = v + ηv

ω+ = ω + ηω

where ( )+ means the updated value, × is the quaternions prod-
uct, and v2q(ω ∆t) transforms the local incremental rotation
vector ω ∆t into a quaternion (quaternions are systematically
normalized). This way, the camera state vector Ci is augmented
to Ci = (ri ,qi ,vi , ωi) ∈ R

13 . At each time step, perturbations
{ηv , ηω} ∼ N (0; {σ2

v , σ2
ω}) add variances to the linear and an-

gular velocities proportionally to the elapsed time ∆t

σ2
v = k2

v · ∆t (8)

σ2
w = k2

ω · ∆t. (9)

The events of camera motion, landmark initialization, and
landmark observation are handled as in regular IDP-SLAM by
just selecting the appropriate block elements from the SLAM
state vector and covariances matrix, and applying the corre-
sponding motion or observation models. For example, at the
observation of landmark j from camera i, we would use the
function ui

j = h(Ci ,Lj ), which will be explained later for the
case of an IDP ray [see 11]. Before transforming IDP rays into
points, the linearity test in [20] needs to hold for all cameras.

B. Stereo SLAM With Extrinsic Self-Calibration

Our approach is relevant to fully calibrated stereo rigs if they
are small (10–20 cm, as in [12]) or if, having long baselines, their
main extrinsic parameters can be continuously self-calibrated.

Not all of the six extrinsic parameters of a stereo rig (three for
translation, three for orientation) need to be calibrated. In fact,
the notion of self-calibration inherently requires the system to
possess its own gauge. In our case, the metric dimensions or
scale factor of the whole world–robot system can only be ob-
tained either from the stereo rig baseline, which is one of the
extrinsic parameters (then, it makes no sense to self-calibrate
the gauge), or from odometry, which is often much less accurate
than any coarse measurement we could make of this baseline.
Additionally, as cameras are actually angular sensors, vision
measurements are much more sensitive to the cameras orienta-
tions than to any translation parameter. This means that vision
measurements will contain little information about these trans-
lation parameters. In consequence, self-calibration may concern
only orientation, and more precisely, the orientation of one cam-
era with respect to the other. The error of the reconstructed map’s
scale factor will be the same as the relative error of the baseline
measurement.

With these assumptions, our self-calibration solution is
straightforward: for the second camera, we just include its ori-
entation in the map and let EKF make the rest. The state vector
(5) is modified and written as

X� = [R� q�
R L�

1 · · · L�
M ]
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where R and L1 · · · LM are the robot pose and landmarks map.
The left camera pose CL has a fixed transformation with respect
to the robot, and qR is the orientation part of the right-hand
camera CR in the robot frame. The time-evolution function of
the angular extrinsic parameters is simply q+

R = qR + γ, where
γ is a white, Gaussian, low-energy process noise that accounts
for eventual decalibrations, e.g., due to vibrations. For short-
duration experiments, we set γ = 0. A coarse analysis of the
stereo structure’s mechanical precision will be enough to set the
initial uncertainty to a value of the order of 1◦ or 2◦ per axis.
This can be reduced to a few tenths of degree in cases where we
dispose of previous calibrated values about which we are not
confident anymore.

C. Cooperative Multicamera SLAM

The ideal, most general case of cooperative SLAM (5), corre-
sponds to a (not too large) number of cameras moving indepen-
dently. Each camera is able to manage its own measurements
and communicates directly with the map. The aim of this com-
munication is to obtain information about existing landmarks
to get localized, and provide information about new or reob-
served landmarks. This way, the algorithms to be executed by
each camera are absolutely symmetrical, without any kind of
hierarchy. A simplified implementation considers cameras with
different privileges.

In our particular case, the cooperative SLAM system consid-
ers two cameras. One of them takes the role of master, and
is responsible for all landmarks detection and initialization.
The second one acts as the slave. It follows the master at a
close distance and reobserves the SLAM map that is being
built by the master. By doing so, it provides a second view-
point to landmarks just initialized, accelerating the convergence
of the map. The master and slave trajectories are highly in-
dependent, and for instance, they can cross paths. The only
requirement is to look in the same direction. A trivial exten-
sion to more than two cameras consists in including additional
slaves.

IV. PERCEPTION AND MAP MANAGEMENT

Active search (AS, nicely described in [21] and also referred
to as top-down in [6]) is a powerful framework for real-time
image processing within SLAM. It has been successfully used in
several monocular SLAM works [3], [5], [11], using a diversity
of techniques for landmark initialization. The idea of AS is to
exploit the information contained in the map to predict a number
of characteristics of the landmarks to observe. AS is helpful in
solving the following issues:

1) selecting interesting image regions for initialization;
2) selecting the most informative landmarks to measure;
3) predicting where in the image they may be found, and with

which probability;
4) predicting the current landmark’s appearance to maximize

the chances of a successful match.

A. Feature Detection and Initialization

Based on the projection of the map information into the master
image, a heuristic strategy is used to select a region of interest
for a new initialization: we divide the image with a grid and
randomly select a grid element with no landmarks inside. We
extract the strongest Harris point [22] in this region and validate
it if its strength is above a predefined threshold. We store a small
rectangular region or patch of 15× 15 pixels around the point
as the landmark’s appearance descriptor, together with the pose
of the camera. Finally, we initialize the IDP ray in the SLAM
map.

B. Expectations: The Active Search Regions

Some considerations about AS can be made for its usage in
multicamera IDP–SLAM to improve performance. We use for
this the E1 and E∞ ellipses, defined and explained as follows.

1) E1 Ellipse: Expectation of the Inverse Depth Ray: The
inverse depth ray (1) is easily projected into a camera. We take
the transformation to camera frame given in [5]:

hC
1 = R(q)� (ρ (x0 − r) + m(θ, ψ)) (10)

where R( ) is the rotation matrix corresponding to the camera
orientation q and r is the current camera position. This value
is then projected into the camera, described by intrinsic and
distortion parametersk andd (we use a classical radial distortion
model of up to three parameters, which is inverted as explained
in [19]). Let us call K = (k,d) the camera parameters, C =
(r,q) the camera pose, and i = (x0 , θ, ψ, ρ) the IDP ray. The
observation function is

u = h1(C,K, i) + η = project(hC
1 ,K) + η (11)

where project () takes into account the camera model (we use
perspective cameras) and η is the pixel Gaussian noise, with
covariance R.

We define the E1 ellipse as the Gaussian expectation

E1(u) ∆= N (u − ē1 ;E1), with u being the pixel position, and
with mean and covariances matrix

ē1 = h1(C̄,K, ī) (12)

E1 = [HC Hi]PC,i [HC Hi]� + R. (13)

Here, HC and Hi are the Jacobians of h1 with respect to the
uncertain parameters C and i, •̄ are variable estimates from
the SLAM map, and PC,i is the joint covariances matrix (all
correlations and cross correlations) of C and i, also from the
map. In AS, E1 is usually gated at 3σ, giving place to an elliptic
region in the image where the landmark must project with 98%
probability. However, this is not necessarily true in cases of
noticeable parallax, as we examine now.

At landmark initialization, its inverse depth ρ is initialized
according to (2)–(4). When considering 3σ uncertainty regions,
(4) implies that ρ can go negative with a nonnegligible probabil-
ity, meaning that the coded landmarks might be situated behind
the camera. This becomes evident when projecting the IDP ray
into a second camera presenting some parallax: the projected
3σ E1 ellipse contains a region with negative disparity (see
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Fig. 5. 3σ search region defined by the E1 ellipse contains a significant part
that corresponds to negative disparities d < 0, where the feature should not
be searched. The final 3σ search region (shaded) is defined by the E1 and E∞
ellipses. The rightmost 3σ border of E∞ is where the probability to find the
projection of the infinity point has fallen below 2%.

Fig. 5). It is desirable to limit the search area to values of only
positive disparity for two reasons: the correlation-based search
(one of the most time-consuming processes) is faster and the
possibility of including false matches as outliers is diminished.
With nonrectified images and/or camera sets with uncertain ex-
trinsic parameters, determining the null disparity bound is not
straightforward. One solution is to use the E∞ ellipse, which we
introduce in the following paragraph.

2) E∞ Ellipse: Expectation of the Infinity Point: The infinity
point is easily projected by considering the transformation (10)
with ρ → 0

hC
∞ ≈ R(q)�m(θ, ψ) (14)

where only the camera orientation q and the ray’s direction
angles (θ, ψ) are present (the visual compass). Proceeding as

before, we obtain the definition of the ellipse E∞(u) ∆= N (u −
ē∞;E∞) as

ē∞ = h(q̄,K, θ̄, ψ̄) (15)

E∞ = [Hq Hθ Hψ ]P{q,θ ,ψ} [Hq Hθ Hψ ]� + R (16)

where P{q,θ ,ψ} is the joint covariances matrix of the uncertain
parameters. The E∞ 3σ region is composed of the previous E1
region, as indicated in Fig. 5, to define the search area.

C. Selection of the Best Map Updates

Following the AS approach in [23], a predefined number of
landmarks with the biggest E1 ellipse surfaces are selected in
each camera as those being the most interesting to be measured.
For each camera, we organize all candidates (visible landmarks)
in descending order of expectation surfaces, without caring if
they are points or rays. We update at each frame a predefined
number of them (usually around 10, and no more than 20).
Updates are processed sequentially, with all Jacobians being
recalculated each time to minimize the effect of linearization
errors.

D. Feature Matching: Affine Patch Warping

AS continues by warping the stored patch and searching for
a correlation peak inside the search area earlier. The objec-
tive of warping is to predict the landmark’s current appearance,
maximizing the chances for a good match. In the absence of dis-
tortion, a planar homography H ∈ R

3×3 , defined in the homo-
geneous spaces, would be desirable [24]. This type of warping
requires the online estimation of the patch normal in the 3-D

Fig. 6. Similarity and affine warping on a sample patch. From left to right:
original patch; similarity warped patch (∼180% scale, 10◦ rotation); best match
in a later image affected by distortion and its zero mean normalized cross
correlation (ZNCC) score (0.82); affine warped patch; best match and score
(0.97). The affine warping contains a significant skew component mainly due
to image distortion. The improvement in the ZNCC score is very important.

space, and may become very time-consuming. A good simplifi-
cation considers this normal fixed at the initial visual axis [23].
Further simplification applies just a similarity transformation
T = sR ∈ R

2×2 in the image Euclidean plane [19]. This ac-
counts only for scale changes s and rotations R obtained from
the stored information (landmark position, camera initial, and
current poses). However, in the presence of distortion, features
lying close to the image borders suffer from additional defor-
mations. We developed a warping approach that easily adds a
skew component to the operator T (thus achieving fully affine
warping, but not perspective warping; Fig. 6), based on the Ja-
cobian of the function linking the first observation to the current
one. Let us consider the backward observation model g( ) for a
camera A at initialization time t = 0, and the observation model
h( ) for a different camera B at current time t ≥ 0

p = g(CA (0),KA ,uA (0), sA )

uB (t) = h(CB (t),KB ,p).

Here, p is the landmark’s position, Ki = (ki ,di) are the intrin-
sic and distortion parameters of camera i, ui(t) is the measured
pixel, and sA is the landmark’s depth with respect to the initial
camera. We can compose these functions to obtain the expres-
sion linking the initial and the current pixels

uB (t) = h [CB (t),KB ,g(CA (0),KA ,uA (0), sA )] . (17)

When all but the pixel positions are fixed, this represents an
invertible mapping R

2 
→ R
2 from the pixels in the first image

to the pixels in the current one. The local linearization around
the initially measured pixel defines an affine warping expressed
by the Jacobian matrix

T =
∂uB

∂uA

∣
∣
∣
∣
(CA (0),CB (t),KA ,KB ,uA (0),sA )

. (18)

By defining ũi as the coordinates of the patch in camera i, with
the central pixel ui as the origin, we have ũB (t) = TũA (0).
Based on this mapping, we use linear interpolation of the pixels’
luminosity to construct the warped patch.

V. EXPERIMENT 1: STEREO SLAM WITH SELF-CALIBRATION

The “White-board” indoor experiment aims at demonstrating
stereovision SLAM with self-calibration. A robot with a stereo
head looking forward is run for about 10 m in straight line inside
the robotics laboratory at the LAAS (see Fig. 7). Over 500 image
pairs are taken at approximately 5-Hz frequency. The robot
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Fig. 7. Laboratoire d’Analyse et d’Architecture des System (LAAS) robotics
laboratory. The robot will approach the scene in a straightforward trajectory.
We notice in the scene the presence of a robot ©1, a bin ©2, a box ©3, a trunk ©4,
a fence ©5, a table ©6 (hidden by the robot in this image), and the white board ©7
at the end wall.

TABLE I
STEREO RIG PARAMETERS IN THE “WHITE-BOARD” EXPERIMENT

moves towards the objects to be mapped at 0.15 m/s. The stereo
rig consists of two intrinsically calibrated cameras arranged
as indicated in Table I. The orientations of both cameras are
specified with respect to the robot frame. The left camera is taken
as reference, thus deterministically specified, and the orientation
of the right one is initialized with an uncertainty of 1◦ standard
deviation. We use the odometry model (Section III-A) with
kL = 0.1 m/

√
m and kA = 0.05 rad/

√
m.

We show details and results on the self-calibration procedure
and the metric accuracy of the resulting map. The mapping
process can be appreciated in the movie whiteboard.mov in
the multimedia section.

A. Self-Calibration

We plot in Fig. 8 left the evolution of the three self-calibrated
angles. We have also used the shape of the E∞ ellipses to pro-
vide additional qualitative evidence of the calibration process
(Fig. 9 and movie whiteboard− einf.mov). We observe the
following behavior.

1) Pitch θ: The pitch angle (cameras tilt, 5◦ nominal value) is
observable from the first matched landmark. It rapidly converges
to an angle of 4.77◦ and remains very stable during the whole
experiment.

2) Roll φ: Roll angle is observable after at least two land-
marks are observed from the right camera. Once this condition
holds, convergence occurs relatively fast.

3) Yaw ψ: Yaw angle is very weakly observable because
it is coupled with the landmarks depths: both yaw angle and
landmark depth variations produce a similar uncertainty growth
in the right image. For this reason, yaw converges slowly, only
showing reasonable convergence after some 50 frames.

Fig. 8. Extrinsic self-calibration. (Left) The three Euler angles of the right
camera orientation with respect to the robot during the first 60 frames. The 3σ
bounds are plotted in dotted line showing consistent estimation. (Right) Error
analysis after 100 MC runs using 200 frames per run (only the first 80 frames
are shown). The thick solid lines represent the means over the 100 runs. The
3σ bounds for each angle are plotted using thin solid lines. The dotted lines
represent the averaged 3σ bounds estimated by the EKF, showing consistent
calibration.

Fig. 9. Evolution of the E1 and E∞ ellipses during calibration. On the left
column, newly detected pixels in the left image. On the right, expectations in
the right image E1 and E∞ of the newly initialized IDP rays (i.e., still with the
full initial uncertainty in ρ). At frame 0, initial uncertainties of 1◦ result in a big,
round E∞ ellipse. After the first updated landmark from the left camera (frame
2), the uncertainty in pitch decreases and E∞ becomes flat. Successive updates
further refine the calibrated angles. The yaw angle takes longer to converge,
but the tiny E∞ in frame 39 shows that the calibration is already finished. The
portion of the E1 ellipse on the right side of the E∞ one corresponds to negative
disparities and is not searched for matches. This portion is larger as parallax
increases.

TABLE II
MC ANALYSIS OF THE SELF-CALIBRATION

In Fig. 8 right, we plot results of a Monte Carlo (MC) anal-
ysis, run over the data of this experiment, for the mean and
standard deviation of the Euler angles of the right camera. Be-
cause all MC runs are extracted from the same sequence, we
tried to maximize their independence by using a different ran-
dom seed in the algorithm (acting in the random selection of
the initialization region, Section IV-A), and by starting each run
at a different frame. The figure shows that the dynamic esti-
mation is consistent (the EKF estimated sigmas are larger than
the MC ones). After 200 frames, we compare these values with
those of the offline calibration [25]. Table II summarizes these
results, showing MC [(means and standard deviations (STD)]
and Kalman Filter (EKF, showing the estimated STD). All
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Fig. 10. Map produced during the “white board” experiment. We marked the
mapped robot ©1, the bin ©2, the box ©3, the trunk ©4, the fence ©5, the table ©6,
and the white board ©7 at the end wall.

Fig. 11. Metric mapping. The magnitudes of some segments in the real lab-
oratory are compared to those in the map (overlayed lines). Ground truth cor-
responds to metric measurements of the distances between landmarks that are
identified by zooming in the last image of the experiment (right) and translated
to the real world. Thirteen points on the end wall are tested for coplanarity.

TABLE III
WHITE BOARD: MAP TO GROUND TRUTH TOMPARISON

self-calibrated values lie within the 3σ bounds defined by the
offline mean and STD values.

B. Metric Accuracy

We show in Fig. 10 a top view of the map generated during
this experiment. To contrast this map against reality, two tests
are performed: planarity and metric scale (see Fig. 11): 1) the
four corners of the white board are taken together with nine
other points at the end wall to test coplanarity: the 13 mapped
points are found to be coplanar within 4.9 cm STD; 2) the
lengths of the real and mapped segments marked in Fig. 11
are summarized in Table III. The white board has a physical
size of 120 cm× 90 cm, but we take real measurements from
the approximated corners where the features are detected. We
observe errors in the order of 1 cm for landmarks that are still
about 4 m away from the robot.

VI. EXPERIMENT 2: COOPERATIVE MONOCULAR SLAM

This experiment shows independent cameras collaborating to
build a 3-D map using exclusively bearings-only observations.
Two independent cameras are placed on top of two bicycles
looking forward, moving on different trajectories in the parking
of the LAAS (see Fig. 12). Over 1000 images are taken by each
camera at 15-Hz frequency, 512× 384 pixel resolution, 100◦

field of view (FOV), and are processed offline. The cameras

Fig. 12. Snapshots of master and slave sequences in cooperative SLAM.
Faraway landmarks (e.g., black arrowed), still initialized as rays, are the ones
fixing the orientation. Nearby landmarks, usually as Euclidean points, maintain
the metric. A virtual model of the master camera is visible from the slave camera
(white arrowed). See cooperativeSLAM.mov.

Fig. 13. Top view of the map produced by cooperative SLAM of two inde-
pendent cameras, and their crossing trajectories. The grid spacing is 2 m.

travel approximately 28 m observing landmarks beyond 60 m.
As in the previous experiment, the left camera is the master.
The two trajectories start parallel to each other, separated 75 cm
perpendicularly to the motion direction. The reference frame
is defined by the master camera initial position and orienta-
tion, which are initialized with null uncertainty. The scale factor
is determined by the initial baseline of 75 cm, meaning that
the position of the slave camera in the lateral Y -axis is also
initialized with null uncertainty. The orientations of the slave
camera start with an uncertainty of 2◦ STD, and its position in
the frontal Y - and vertical Z-axes with 75 cm·sin(2◦) = 2.6 cm
STD. With these uncertainties, the experiment’s initial configu-
ration can be set up manually by just observing the images and
centering the projections of some distant object. We use two
independent constant-velocity models with kv = 0.3 m/s ·

√
s

and kw = 0.3 rad/s ·
√

s. The measurement noise is 1 pixel.
Landmarks at infinity, illumination changes and few salient

features are some characteristics of this outdoors scene. It
presents relatively few stable landmarks, something that makes
the correct operation of the SLAM system difficult. In the case
of having crossing trajectories, the problem of one camera oc-
cluding the other could appear and severely affect the image
processing. To avoid this, we decided to take both image se-
quences shifted in time, i.e., one after the other, and make them
overlap for processing. The mapping process is presented in
the movie cooperativeSLAM.mov in the multimedia section.
Fig. 13 shows the top view of the map and the camera trajecto-
ries generated during this experiment.

A proper metrical evaluation of this experiment is difficult;
having a variable baseline does not allow us to compare the re-
sults, because there is no knowledge of the ground truth. In order
to evaluate this approach, we consider the setup in experiment 1
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Fig. 14. Final map in the “white board” setup using the cooperative monocular
SLAM algorithm. The cameras are modeled as being entirely independent using
the same data and initial configuration as in Experiment 1. The stereo rig on the
right shows (in parentheses) the final estimated relative position compared with
ground truth.

and apply the same algorithm. The new experiment consists of
recovering the full extrinsic calibration, which is fixed in re-
ality, considering both cameras as independent. Again, we use
a constant-velocity model for each camera. The initial setup
including uncertainties is as in experiment 1.

Fig. 14 shows the obtained map. We see that it compares
very well to the map obtained in experiment 1 (see Fig. 10),
where the motions of the two cameras were constrained by the
stereo rig and a common motion was predicted using odometry.
Fig. 14 bottom shows a detail of the cameras in their final relative
position. We measure an error along the baseline of less than
2 cm. The orientation errors are less than 0.7◦.

VII. CONCLUSION

We showed in this paper that fusing the visual information
with monocular methods while performing multicamera SLAM
provides several advantages: the ability to consider points at in-
finity, desynchronization of the different cameras, the use of any
number of cameras of different types, sensor self-calibration,
and the possibility to conceive decentralized schemes that will
make realistic multirobot monocular SLAM possible. Except for
decentralization, these advantages have been explored with the
inverse depth monocular SLAM algorithm, and applied to two
different problems: stereovision SLAM with an extrinsically
decalibrated stereo rig and cooperative SLAM of two indepen-
dently moving cameras.

Both demonstrations employed a master–slave approach,
which made solving some of the issues of map and image
management easier, and we are now improving on this by im-
plementing a fully symmetrical approach. This approach should
easily permit the extension of the presented applications to cases
with more than two cameras. In parallel to these activities, we
started new work on landmark parametrization to improve EKF
linearity in cases of increasing parallax. Also, as parallax in-
creases, landmarks appearances may change too much as to
guarantee a stable operation with the matching methods pre-
sented here. We believe that wide baseline feature matching
will be the bottleneck of visual SLAM for some time to come.
As for decentralization, we note that it demands a full reformu-
lation of the fusion engines we use in this paper (one central
EKF), for example, via channel filters, and is currently a subject
of intense research at LAAS and other laboratories.
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