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The challenge in the DARPA Learning Applied to Ground Robots (LAGR) project is to
autonomously navigate a small robot using stereo vision as the main sensor. During
this project, we demonstrated a complete autonomous system for off-road navigation in
unstructured environments, using stereo vision as the main sensor. The system is very
robust—we can typically give it a goal position several hundred meters away and expect
it to get there. In this paper we describe the main components that comprise the system,
including stereo processing, obstacle and free space interpretation, long-range perception,
online terrain traversability learning, visual odometry, map registration, planning, and
control. At the end of 3 years, the system we developed outperformed all nine other teams
in final blind tests over previously unseen terrain. C© 2008 Wiley Periodicals, Inc.

1. INTRODUCTION

The DARPA Learning Applied to Ground Robots
(LAGR) project began in spring 2005 with the am-
bitious goal of achieving vision-only autonomous
traversal of off-road terrain. Further, the participating
teams were to be tested “blind”—sending in code to
be run on a robot at a remote, unseen site. The hope
was that by using learning algorithms developed by
the teams, significant progress could be made in ro-
bust navigation in difficult off-road environments,
where tall grass, shadows, deadfall, and other obsta-
cles predominate. The ultimate goal was to achieve
better than 2 × performance over a Baseline system
already developed at the National Robotics Engineer-
ing Center (NREC) in Pittsburgh, Pennsylvania. All
participant teams used the same robotic hardware
provided by NREC [Figure 1(a)]; testing was per-
formed by an independent team on a monthly basis
at sites in Florida, New Hampshire, Maryland, and
Texas.

Figure 1. (a) LAGR robot with two stereo sensors. (b) Typical outdoor scene as a montage from the left cameras of the two
stereo devices.

Although work in outdoor navigation has prefer-
entially used laser range finders (Bellutta, Manduchi,
Matthies, Owens, & Rankin, 2000; Guivant, Nebot, &
Baiker, 2000; Montemerlo & Thrun, 2004), LAGR uses
stereo vision as the main sensor. One characteristic of
the vision hardware is that depth perception is good
only at fairly short range: its precision deteriorates
rapidly after 7 m or so. Even when good stereo in-
formation is available, it is often impossible to judge
traversability on the basis of three-dimensional (3D)
form. For example, tall grass that is compressible
can be traversed, but small bushes cannot, and they
might have similar 3D signatures. The robots would
often slip on sand or leaves and be unable to climb
even small grades if they were slippery. These con-
ditions could not be determined even at close range
with stereo vision.

Another area that the testing team was keen on
developing was the ability of the robots to make de-
cisions at a distance. Many of the tests had extensive
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cul-de-sacs, dead ends, or paths that initially led to-
ward the goal but then turned away. Here, the robot
could not rely on local information to find a good way
out. The expectation was that the teams would cope
with such situations using long-range vision sensing,
that is, be able to tell from the appearance of the ter-
rain whether it was traversable.

Throughout the life of the project, we evaluated
the potential of learning methods and appearance-
based recognition. The emphasis was always on gen-
eral methods that would work well in all situations,
not just artificial ones designed to test a particular
ability, like bright orange fencing that could easily
be recognized by its distinctive color. In the end, the
most useful and novel technique we developed was
an online method for path finding based on color and
texture. Although we also developed algorithms for
classifying obstacles at a distance, they did not work
reliably enough to be included in a final system.

In addition to appearance-based learning, we
had to build improved algorithms for many differ-
ent aspects of vision-based off-road navigation. The
paragraphs below summarize the methods that dis-
tinguished the SRI system and contributed to its over-
all performance.

Online Color and Texture Segmentation
It became clear from the early stages of the project
that color-only methods for recognizing vegetation or
terrain were not sufficient. We concentrated on de-
veloping fast combined color/texture methods that
could be used online to learn segmentations of the
image. These methods advance the state of the art
in appearance-based segmentation and are the key
to our online path-finding method. They reliably find
paths such as the one in Figure 1(b), even when the
particular appearance of the path is new.

Precisely Registered Maps
If the robot’s reconstruction of the global environ-
ment is faulty, the robot cannot make good plans
to get to its goal. After noticing navigation fail-
ures from the very noisy registration provided by
global positioning system (GPS), we decided to give
high priority to precise registration of local map
information into a global map. Here, we developed
real-time visual odometry (VO) methods that are
more precise than existing ones while still being
computable at frame rates. To our knowledge, this is
the first use of VO as the main registration method
in an autonomous navigation system. VO enabled

us to learn precise maps during a run and so escape
efficiently from cul-de-sacs. In the last stage of the
project, we also discovered that the precision of VO
made it possible to reuse maps from a previous run,
thereby avoiding problem areas completely. This
run-to-run learning, or map reuse, was unique among
the teams and on average halved the time it took to
complete a course.

Efficient Planner and Controller
The LAGR robot was provided with a “Baseline” sys-
tem that used implementations of D* (Stentz, 1994)
for global planning and the Dynamic Window Ap-
proach (DWA) (Fox, Burgard, & Thrun, 1997) for local
control. These proved inadequate for real-time con-
trol: for example, the planner could take several sec-
onds to compute a path. We developed an efficient
global planner based on previous gradient techniques
(Konolige, 2000), as well as a novel local controller
that takes into account robot dynamics and searches
a large space of robot motions. These technqiues en-
abled the robot to compute optimal global paths at
frame rates and to average 85% of its top speed over
most courses.

1.1. Performance

It is hard to overemphasize the contribution of consis-
tent map construction and map reuse. Without well-
registered maps, the robot would often spend large
amounts of time getting cornered as badly remem-
bered obstacles filled in open spaces, or it would reen-
ter dead-end areas that had shifted in the map. Be-
cause the testing team emphasized cul-de-sacs and
garden path scenarios, it was critical to have accurate
representations of areas that were no longer within
the short stereo range. As it turned out, an accurate
map was a more robust way to deal with these scenar-
ios than unreliable long-range sensing. Further, once
the map was constructed, map reuse led to very effi-
cient runs: if you memorize the route, there is no need
to repeat your mistakes. Although the idea is simple,
the execution was difficult, requiring very precise lo-
calization based on VO.

At the end of the project, the teams were tested
in a series of courses (Tests 25–27) with a variety of
challenges (see Section 6.2). We chose these last tests
for inclusion here because our system was complete,
having just added the map reuse feature. Over these
tests, we averaged about 4 × the score of Baseline, the
best of any team. In each of these tests, our score beat
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or tied that of the best other team, and in the aggre-
gate, we scored 60% higher than the best other team.
These results validate the applicability of our tech-
niques to autonomous navigation.

In this paper we show how we built a system for
autonomous off-road navigation that embodies the
methods described above and in particular performs
online path learning and run-to-run map learning to
increase its performance. In the following sections,
we first discuss local map creation from visual input,
with a separate section on learning color models for
paths and traversable regions. Then we examine VO
and registration in detail and show how consistent
global maps are created and reused. The next section
discusses the global planner and local controller. Fi-
nally, we present performance results for the last se-
ries of tests at the end of the project.

1.2. Related Work

There has been an explosion of work in simultane-
ous localization and mapping (SLAM), most of it
concentrating on indoor environments (Gutmann &
Konolige, 1999; Leonard & Newman, 2003). Much
of the recent research on outdoor navigation has
been driven by DARPA projects on mobile vehicles
(Bellutta et al., 2000). The sensor of choice is a laser
range finder, augmented with monocular or stereo
vision. In much of this work, high-accuracy GPS is
used to register sensor scans; exceptions are Guivant
et al. (2000) and Montemerlo and Thrun (2004). In
contrast, we forgo laser range finders and explicitly
use image-based registration to build accurate maps.
Other approaches to mapping with vision are those
of Rankin, Huertas, and Matthies (2005) and Spero
and Jarvis (2002), although they are not oriented
toward real-time implementations. Obstacle detec-
tion using stereo has also received some attention
(Rankin et al., 2005).

VO systems use structure-from-motion methods
to estimate the relative position of two or more
camera frames, based on matching features between
those frames. There have been a number of recent
approaches to VO (Johnson, Goldberg, Cheng, &
Matthies, 2008; Maimone, Cheng, & Matthies, 2007;
Nister, Naroditsky, & Bergen, 2006), including mo-
tion estimation on the Mars vehicles (Matthies et
al., 2007). Other teams in LAGR also developed VO
systems to aid in navigation (Howard, 2008). Our
system (Agrawal & Konolige, 2006, 2007; Konolige,
Agrawal, & Solà, 2007) is most similar to the recent

work of Mouragnon, Lhuillier, Dhome, Dekeyser,
and Sayd (2006) and Sunderhauf, Konolige, Lacroix,
and Protzel (2005), which exploits bundle adjust-
ment techniques to obtain increased precision. One
difference is the introduction of a new, more sta-
ble keypoint detector and the integration of an iner-
tial measurement unit (IMU) to maintain global pose
consistency. Our system is also distinguished by real-
time implementation and high accuracy using a small
baseline in realistic terrain. It has been in regular use
in demonstrations for more then 2 years as the pri-
mary mode of localization and map registration. In
addition, the system has been tested over trajectories
of up to 9 km with a ground truth RTK-GPS data set
and has achieved accuraces of under 1% error (see
Section 3.4).

Our segmentation algorithm uses a compact de-
scriptor to represent color and texture. In a seminal
paper, Leung and Malik (2001) showed that many
textures could be represented and recreated using
a small number of basis vectors extracted from the
local descriptors; they called the basis vectors tex-
tons. Whereas Leung and Malik used a filter bank,
Varma and Zisserman (2003) later showed that small
local texture neighborhoods may be better than us-
ing large filter banks. In addition, a small local neigh-
borhood vector can be much faster to compute than
multichannel filtering such as Gabor filters over large
neighborhoods.

Our planning approach is an enhanced reimple-
mentation of the gradient technique (Konolige, 2000),
which computes a global navigation function over
the cost map. A similar approach is used in wave-
front planning (Latombe, 1991), although wavefront
planners usually minimize Manhattan or diagonal
distance, whereas we minimize Euclidean distance.
Level sets (Kimmel & Sethian 1998) offer an equiva-
lent method for computing paths that minimize Eu-
clidean distance. The underlying computation for all
such planners is a variation on dynamic program-
ming (Bellman, 1957). For reasons of efficiency, our
planner treats the robot as a holonomic cylinder with
no kinodynamic constraints. These constraints could
be incorporated into the planner by use of sampling-
based algorithms such as rapidly exploring random
trees (RRTs) (LaValle, 2006).

We enforce kinodynamic constraints in our lo-
cal controller. Control algorithms such as DWA (Fox
et al., 1997) compute local controls by first determin-
ing a target trajectory in position or velocity space
(usually a circular arc or other simple curve) and then
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inverting the robot’s dynamics to find the desired
velocity commands that will produce that trajectory.
We instead explore the control space directly and
simulate and evaluate the resulting trajectories, in a
manner reminiscent of the controller used in the
RANGER system (Kelly, 1994), with the key differ-
ences being the definition of the state space and
the trajectory evaluation function. The Stanley con-
troller (Thrun et al., 2006) also rolls out and evaluates
possible trajectories but divides them into two cate-
gories (“nudges” and “swerves”), based on their ex-
pected lateral acceleration. Howard, Green, and Kelly
(2007) present a more general approach to constrain-
ing the search for controls by first sampling directly
in the vehicle’s state space.

2. LOCAL MAP CONSTRUCTION

The object of the local map algorithms is to deter-
mine, from the visual information, which areas are
free space and which are obstacles for the robot: the
local map. Note that this is not simply a matter of geo-

metric analysis: for example, a log and a row of grass
may have similar geometric shapes, but the robot can
traverse the grass but not the log.

Figure 2(a) is an outline of visual processing,
from image to local map. There are four basic trajecto-
ries. From the stereo disparity, we compute a nominal
ground plane, which yields free space near the robot.
We also analyze height differences from the ground to
find obstacles. Via the technique of sight lines we can
infer free space to more distant points. Finally, from
color, texture, and path analysis, coupled with the
ground plane, we determine paths and traversability
of the terrain.

All of the processing of local cost maps, with the
exception of the color/texture learning, takes place
very efficiently. We can run the full algorithm, includ-
ing stereo computation and obstacle detection, in un-
der 70 ms (15 Hz), enabling very quick response to
new features in the environment. Each stereo pair had
an associated computer with dual 2 GHz core proces-
sors; we used one processor for stereo and cost map
analysis, another for visual odometry.

Points for estimating
ground plane

Space declared empty
based on sight line

"Sight line" marking clear space
along azimuth

Distant points
above ground plane

Fitted ground plane

(b) Stereo point interpretation 

analysis
color

(1/d) image
disparity

points
3D

lines
sight

plane
ground

analysis
height

analysis
path

3Dimage

traversibility

obstacles

freespace

local map

(a) Processing Diagram

Figure 2. Visual processing. In (a), the paths from visual input depict the processing flow in constructing the local map.
The interpretation of stereo data points is in (b): nearby points (out to 6 m) contribute to the ground plane and obstacle
detection; farther points can be analyzed to yield probable free space (“sight lines”) and extended ground planes.
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Figure 3. (a) Disparity image from the left stereo pair of the robot in Figure 1. Closer pixels are lighter. (b) Extracted ground
plane, in green overlay. Limit of ground plane is shown by green bar; sight line has a red bar. (c) Ground plane overlaid on
original image, in green. Obstacles are indicated in purple.

2.1. Stereo Analysis and Ground
Plane Extraction

We use a fast stereo algorithm (Konolige, 1997) to
compute a disparity image at 512 × 384 resolution
in less than 40 ms1 [Figure 3(a)]. In typical outdoor
scenes, it should be possible to achieve very dense
stereo results, The high resolution gives very de-
tailed 3D information for finding the ground plane
and obstacles. Each disparity image point [u, v, d]�

corresponds to a 3D point in the robot’s frame
([x, y, z,w]� = R[u, v, d, 1]� in homogenous coordi-
nates, where R is the reprojection matrix) (Konolige
& Beymer, 2007). The matrix multiplication is done
for each disparity point as part of stereo processing.

Output from the stereo process is used in a num-
ber of ways: the diagram in Figure 2(b) summarizes
them. Most of our analysis is biased toward finding
free space, especially in areas that are farther from the
robot. This strategy stems from the high cost of see-
ing false obstacles, closing off promising paths for the
robot.

The most important geometric analysis is finding
the ground plane. Although it is possible to detect
obstacles using local variation in height (Happold,
Ollis, & Johnson, 2006), using a ground plane sim-
plifies processing and yields more stable results. To
extract a ground plane, we use a RANSAC technique
(Fischler & Bolles, 1981), choosing sets of three
noncollinear points. Hypothesized planes are ranked
by the number of points that are close to the plane.
Figure 3 shows an example, with a green overlay in-
dicating the inliers. Points that lie too high above the

1All processing times referenced in this paper are on a 2-GHz Intel
CPU.

ground plane, but lower than the robot’s height, are
labeled as obstacles. This method is extremely simple
but has proven to work well in practice, even when
the ground has modest dips and rises; one reason
is that it looks out only to 6 m around the robot. A
more sophisticated analysis would break the ground
plane into several segments or model more complex
shapes. To compute the ground plane efficiently, we
subsample the image to 10,000 points and apply the
RANSAC algorithm above. Hypothesizing a plane
and finding inliers are simple matrix operations, and
typical running time is 5 ms.

To find obstacles, a typical algorithm would clus-
ter the 3D points into grid cells on the ground plane.
Then, by analyzing the points in each cell, it would
be declared ground, obstacle, or unknown. The prob-
lem is that there is a geometric mismatch between the
3D cells and the image point density: as the points
projected on farther cells become sparse, it is diffi-
cult to determine obstacle boundaries. Instead, we
find obstacles using algorithms in the disparity plane.
The ground plane is projected back onto the dispar-
ity points, which are shown in green in Figure 3(b).
The disparity image is divided into thin columns, and
each column is traversed from the bottom of the im-
age (red line in the image). When the ground plane
ends and enough disparity points are found, there
must be an obstacle at that endpoint in the ground
plane. In practice this technique is much faster and
more reliable than ground plane projection, typically
consuming only 5 ms.

2.2. Sight Lines

Although we cannot precisely locate obstacles past
6–8 m, we can determine whether there is free

Journal of Field Robotics DOI 10.1002/rob



94 • Journal of Field Robotics—2009

space, using the following observation. Consider the
interpreted image of Figure 3(c). There is a path that
goes around the bushes and extends out a good dis-
tance. The ground plane extends over most of this
area and then ends in a distant line of trees. The trees
are too far to place with any precision, but we can
say that there is no obstacle along the line of sight to the
trees. Given a conservative estimate for the distance
of the trees, we can add free space up to this estimate;
typically we would add free space to at most 25 m.
The computation of sight lines is most efficiently ac-
complished in disparity space, by finding columns of
ground plane pixels that lead up to a distant obsta-
cle [red vertical line in Figure 3(b)]. Note that the ex-
ample sight line follows the obvious path out of the
bushes.

2.3. Learning Color and Texture Models

Our learning algorithm uses an online unsupervised
segmentation algorithm that uses color and texture
to group and cluster similar regions. This segmented
image is then used to learn a color and texture model
for path-like regions in outdoor images. Our segmen-
tation algorithm is based on textons (Leung & Malik,
2001) and is accomplished in two stages. The main
design issues have been speed (for real-time segmen-
tation) and robustness (to minimize false-positives).

In the first stage, we cluster color and texture vec-
tors over small local neighborhoods to find a small
set of basis vectors (also known as textons) that char-
acterize different scene textures. For reasons of speed,
this vector should be as compact as possible without
losing appearance characteristics of the region.
Angelova, Matthies, Helmick, and Perona (2007)
use the three color components over a 5 × 5 re-
gion centered on each pixel. This results in a large
75-dimensional feature vector for each pixel. For
speed, we use a 3 × 3 neighborhood and use the
pixel intensity gradients between the surrounding
pixels relative to the center pixel to represent texture
compactly. We also augment this eight-dimensional
feature vector with the 3D color vector of the center
pixel in the CIELAB color space. CIELAB has the
property that colors are perceptually uniform. The
resulting 11-dimensional color/texture feature vector
is very compact, and we have found that it still
retains the crucial appearance properties to discrim-
inate and segment regions. A detailed comparison
with other representations can be found in Blas,
Agrawal, Konolige, and Sundaresan (2008).

In the second stage, we cluster histograms of
these textons over larger 32 × 32 regions (which is
dependent on the scale of the image) to find more
coherent regions with the same mixture of textons
using k means as our clustering algorithm. These his-
tograms can be constructed efficiently (irrespective
of window size) using integral images (Viola & Jones,
2004). The algorithm is generally set to oversegment
the image slightly, as in our case oversegmentation
can be dealt with by a subsequent geometrical
analysis of the image. Undersegmentation is harder
to deal with, as considerable information is lost. The
number of clusters was set to eight in the second
stage. There are other ways of doing the second stage
that provide better results by specifically dealing
with boundary conditions, but they are much slower
and are thus currently ill-suited for our real-time
needs. [See graph-cut (Martin, Fowlkes, & Malik,
2004) and level-sets (Liapis, Sifakis, & Tziritas, 2004).]

2.3.1. Segmentation Results

The University of Southern California (USC) hosts
the Brodatz texture database and also provides
texture mosaics that are a number of Brodatz textures
stitched together in a jigsaw-type pattern. texmos3
was selected as the texture mosaic for benchmarking
our texton descriptors. Figure 4 shows this mosaic
along with the ground truth segmentation. This
mosaic has eight textures and does not contain color,
which tests the descriptors’ ability to discriminate
textures. Four basic descriptors are tested: a 48-
dimensional descriptor composed of the responses
from the Leung–Malik (Leung & Malik, 2001) filter
bank (LM, 32); a 75-dimensional descriptor of 5 × 5
raw red–green–blue (RGB, 5 × 5, 32) values as

Figure 4. Synthetic texture mosaic used (provided by USC
via its website). The left image is the texture mosaic. The
right image shows which texture regions belong to which
texture.
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Figure 5. Results for the synthetic texture segmentation. Each color represents a different histogram cluster. An overlay
shows which regions should have homogeneous colors. (a) LM filter, 32; (b) RGB 5 × 5, 32; (c) LBP 3 × 3, 32; (d) SRI 3 × 3,
32; and (e) SRI 5 × 5, 64.

used in Angelova et al. (2007) (which in effect is
25-dimensional on gray-scale images); the local
binary pattern (Mäenpää & Pietikäinen, 2005) (LBP)
in a 3 × 3 neighborhood (LBP, 3 × 3, 32); and two
versions of our descriptor: the 3 × 3 neighborhood
(11-dimensional with the L,a,b color components set
to zero) (SRI, 3 × 3, 32) and a 5 × 5 neighborhood
(SRI, 5 × 5, 64) with the descriptor components still
being the intensities minus the center intensity.

For the test, the LM filter bank is the only one in
which the descriptors are not learned on the image
itself. For all other descriptors, 32 textons are learned
from the image itself. Our 5 × 5 version used 64
textons illustrating our best possible result. The lack
of color information meant that more textons were
needed to discriminate the textures. The second stage
of clustering is then applied to give the segmentation
results. It is important to note that the underlying
segmentation algorithm is the same for each of these
descriptors.

The actual segmentations obtained for each de-
scriptor can be seen in Figure 5. Each descriptor is
then scored using two scores: the detection rate and
the confusion rate. The detection rate gives a measure
of how much of a given texture it managed to clas-
sify correctly. The confusion rate gives a measure of
how many correct versus false detections to expect.
A good segmentation will have a high detection rate
and a low confusion rate.

The total confusion and detection rates are shown
in Table I. The LM filter bank performs the worst, as it
has higher confusion and lower detection rates than
all the other descriptors. The raw intensity value de-
scriptor also performs poorly. LBP has problems dis-
criminating between textures 2 and 8 but is otherwise
clearly better than the raw intensities and LM filter

Table I. Total confusion and detection rates for different
types of descriptors.

LM, SRI, SRI,
% 32 RGB LBP 3 × 3 5 × 5

Total confusion rate 50 56 46 38 34
Total detection rate 40 53 68 79 68

bank. Our descriptors do a much better job at dis-
criminating between textures 2 and 8, which indicates
that the intensity gradients are necessary to do this
and that it is not enough to rely just on the gradient
direction. All the methods find it hard to discriminate
between textures 3 and 4 except the LBP, which aids it
greatly in the total scores. The results for our descrip-
tor are on average better than those of the other meth-
ods on this data set. Interestingly, for our descriptors
the 3 × 3 version actually gets a better total detection
rate than the 5 × 5 version at the cost of a higher total
confusion score.

2.3.2. Learning Paths

We use our segmentation algorithm to learn and
subsequently recognize both natural and man-made
paths in outdoor images. Paths are characterized by
their color, texture, and geometrical properties. Train-
ing samples for a path can come from teleoperation or
from a priori knowledge that the robot is starting on
a path. The robot can also search for paths by trying
to identify image clusters that have the geometry of
a path. We deal with oversegmentation of the path
(wherein a path is split into multiple segments due to
possibly differing textures) by grouping multiple seg-
ments based on their overall geometry. We compute
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geometrical properties of the path that could be com-
posed of a single or multiple segments. The prop-
erties include width, length, and spatial continuity
of the path in order to verify whether it geometri-
cally resembles a path. These geometrical properties
are computed in three dimensions using the ground
plane information available from the stereo cameras
and are hence not affected by the perspective projec-
tion. We assume a fixed path width (but allow a cer-
tain deviation from this assumption). Once a path is
identified, the robot learns the texton histograms of
the component segments as a model for the path. This
model can be used to identify even paths that are par-
tially outside the field of view (FOV) by allowing the
path to end prematurely at the image boundary.

For classification, each pixel is first labeled using
the shortest Euclidean distance on the color/texture
vector at this pixel to the clustered textons. Likewise
histograms of textons at each pixel are classified us-
ing Euclidean distance to the clustered histograms.
The texton histograms from our training provide pos-
itive examples (the histograms that belong to a path)
as well as negative examples (the histograms that
do not belong to a path). This helps prevent false-
positives. A final geometrical analysis of the labeled
histograms makes sure that potential path regions
have the right geometry.

The learning process runs at 1 Hz for training on
a single image and is typically performed at the be-
ginning of a run (although it could be performed at
regular intervals to update the path model). Classi-
fication based on the learned model runs at around
5 Hz. Figure 6 shows the various steps of our al-
gorithm on one of our test runs. The path between
bushes is identified in yellow in Figure 6(d). Details
on this algorithm can be found in Blas et al. (2008).

2.4. Results of Local Map Construction

The combined visual processing results in local maps
that represent traversability with a high degree of fi-
delity. Figure 7 shows the results of an autonomous
run of about 130 m, over a span of 150 s. We used
offline learning of mulch paths on a test site and then
used the learned models on the autonomous run. The
first part of the run was along a mulch path under
heavy tree cover, with mixed sunlight and deep shad-
ows. Cells categorized as path are shown in yellow;
black is free space. Obstacles are indicated by purple
(for absolute certainty) and white-to-gray for decreas-
ing certainty. We did not use sight lines for this run.

The path did not lead directly to the goal, and
there were many opportunities for the robot to head
cross country. About two-thirds of the way through
the run, no more paths were available, and the robot
went through heavy grass and brush to the goal. The
robot’s pose, as estimated from filtered VO (see Sec-
tion 3.2), is in green; the filtered GPS path is in yel-
low. Because of the tree cover, GPS suffered from high
variance at times.

A benefit of using VO is that wheel slips and
stalls are easily detected, with no false positives (Sec-
tion 5.4). For example, at the end of the run, the robot
was caught on a tree branch, spinning its wheels. The
filtered GPS, using wheel odometry, moved far off the
global pose, while the filtered visual odometry pose
stayed put.

3. CONSTRUCTING CONSISTENT
GLOBAL MAPS

In this section we provide solutions to two problems:
representing and fusing the information provided by
visual analysis, and registering local maps into a con-
sistent global map.

3.1. Map Representation

For indoor work, a standard map representation is
a two-dimensional (2D) occupancy grid (Moravec &
Elfes, 1985), which gives the probability of each cell in
the map being occupied by an obstacle. Alternatives
for outdoor environments include 2.5-dimensional
elevation maps and full 3D voxel maps (Iagnemma,
Genot, & Dubowsky, 1999). These representations
can be used to determine allowable kinematic and
dynamic paths for an outdoor robot in rough terrain.
We choose to keep the simpler 2D occupancy grid,
foregoing any complex calculation of the robot’s
interaction with the terrain. Instead, we abstract the
geometrical characteristics of terrain into a set of
categories and fuse information from these categories
to create a cost of movement.

We use a grid of 20 × 20 cm cells to represent
the global map. Each cell has a probability of be-
longing to each of the four categories derived from
visual analysis (Section 2): obstacle, ground plane
free space, sight line free space, and path free space.
Note that these categories are not mutually exclusive
because, for example, a cell under an overhanging
branch could have both path and obstacle properties.
We are interested in converting these probabilities
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Figure 6. Various steps of our segmentation algorithm on a typical outdoor image. (a) The image from one of the stereo
cameras. (b) Each pixel assigned to a texton. (c) Each histogram of textons gets assigned to a histogram profile. In this
particular example, the path is composed of two segments (green and yellow). (d) A path is recognized (in yellow).

into a cost of traversing the cell. If the probabilities
were mutually exclusive, we would simply form the
cost function as a weighted sum. With nonexclusive
categories, we chose a simple prioritization sched-
ule to determine the cost. Obstacles have the highest
priority, followed by ground plane, sight lines, and
paths. Each category has its own threshold for sig-
nificance: for example, if the probability of an obsta-
cle is low enough, it will be ignored in favor of one
of the other categories. The combination of priorities
and thresholds yields a very flexible method for de-
termining costs. Figure 7 shows a color-coded version
of computed costs.

3.2. Registration and Visual Odometry

The LAGR robot is equipped with a GPS that is ac-
curate to within 3–10 m in good situations. GPS in-
formation is filtered by the IMU and wheel encoders
to produce a more stable position estimate. However,
because GPS drifts and jumps over time, it is impossi-
ble to differentiate GPS errors from other errors such
as wheel slippage, and the result is that local maps
cannot be reconstructed accurately. Consider the sit-
uation of Figure 8 and 9. Here the robot goes through
two loops of 10-m diameter. There is a long linear
feature (a low wall) that is seen as an obstacle at the
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Figure 7. Reconstruction on a 130-m autonomous run. Yellow is recognized path, black is free space, and white and gray
are obstacles.

Figure 8. Three stages during a run using GPS filtered
pose. Obstacle points are shown in white, free space in
black, and the yellow line is the robot’s path. The linear fea-
ture is marked by hand in red in all three maps, in its initial
pose. Map extent is 35 m on a side.

beginning and end of the loops. Using the filtered
GPS pose, the position of the wall shifts almost 2 m
during the run, and obstacles cover the robot’s previ-
ous tracks.

Figure 9. VO in the same sequence as Figure 8. GPS fil-
tered path in yellow; VO filtered path is in green.

Our solution to the registration problem is to use
VO to ensure local consistency in map registration.
Over larger regions, filtering VO with GPS informa-
tion provides the necessary corrections to keep er-
rors from growing without bounds. We describe these
techniques in the next two sections.
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The LAGR robot presents a challenging situa-
tion for visual odometry: wide FOV and short base-
line make distance errors large, and a small offset
from the ground plane makes it difficult to track
points over longer distances. We have developed a
robust VO solution that functions well under these
conditions. We briefly describe it here; for more
details consult Agrawal and Konolige (2006) and
Konolige et al. (2007).

For each new frame, we perform the following
process.

1. Distinctive features are extracted from each
new frame in the left image. Standard stereo
methods are used to find the corresponding
point in the right image.

2. Left-image features are matched to the fea-
tures extracted in the previous frame using
our descriptor. We use a large area, usually
around 1/5 of the image, to search for match-
ing features.

3. From these uncertain matches, we recover a
consensus pose estimate using a RANSAC
method (Fischler & Bolles, 1981). Several thou-
sand relative pose hypotheses are generated
by randomly selecting three matched non-
collinear features and then scored using pixel
reprojection errors.

4. If the motion estimate is small and the per-
centage of inliers is large enough, we discard
the frame, because composing such small mo-
tions increases error. A kept frame is called a
key frame. The larger the distance between key
frames, the better the estimate will be.

5. The pose estimate is refined further in a sparse
bundle adjustment (SBA) framework (Engels,
Stewnius, & Nister, 2006; Triggs, McLauchlan,
Hartley, & Fitzgibbon, 2000). SBA is a nonlin-

ear batch optimization over camera poses and
tracked features. An incremental form of SBA
can reduce the error in VO by a large factor at
very little computational overhead. A feature
that is long lived, that is, that can be tracked
over more frames, will give better results.

Precise VO depends on features that can be
tracked over longer sequences. Hence, the choice of
a feature detector can have a large impact in the per-
formance of such a VO system. Harris corner features
are widely used for VO. We have found that although
Harris corners give good results and are very efficient
to compute, they fail in many situations in outdoor
environments. In addition, these features are not very
stable, resulting in very short track lengths. Other
widely used feature detectors such as SIFT (Lowe,
2004) and SURF (Bay, Tuytelaars, & Gool, 2006) work
well but are not suitable for a real-time system. We
have developed a novel feature (named CenSurE)
(Agrawal, Konolige, & Blas, 2008) that has improved
stability and is inexpensive to compute. Whereas
the basic idea of CenSurE features is similar to that
of SIFT, the implementation is extremely efficient,
comparable to Harris. Just as SIFT approximates the
Laplacian of Gaussian with difference of Gaussians,
CenSurE features approximate the LOG with bilevel
center-surround filters. The extreme simplicity of
these filters makes them extremely fast to compute
but without sacrificing performance. Figure 10 shows
a progression of bilevel filters with various degrees
of symmetry. The circular filter is the most faithful
to the Laplacian but hardest to compute. The other
filters can be computed rapidly with integral images
with decreasing cost from octagon to hexagon to box
filter. Further details of our CenSurE feature detector
are described in Agrawal et al. (2008). Figure 11
shows the CenSurE features tracked over several
frames.

Figure 10. Progression of center-surround bilevel filters. (a) Circular symmetric BLOG (bilevel LOG) filter. Successive
filters (octagon, hexagon, box) have less symmetry.
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Figure 11. CenSurE features tracked over several frames.

The IMU and the wheel encoders are used to fill
in the relative poses when VO fails. This happens due
to sudden lighting changes, fast turns of the robot, or
lack of good features in the scene (e.g., blank wall).

3.3. Global Consistency

Bundle-adjusted incremental motions between con-
secutive frames are chained together to obtain the ab-
solute pose at each frame. Obviously, this is bound to
result in accumulation of errors and drifting. We use
GPS and the IMU to correct the pose of the vehicle.
We perform two types of filtering:

1. Gravity normal: The IMU’s accelerometers
measure the gravity normal in vehicle frame
together with vehicle accelerations. Vehicle ac-
celerations have zero mean in the long run and
can therefore be considered as white perturba-
tions of the gravity measurements. We apply
regular extended Kalman filter (EKF) correc-
tions to the tilt and roll angles. By assigning
very large noise values to the perturbing ac-
celerations (we used 10g standard deviation),
the effect is imperceptible in the short term
but sufficient to cancel the long-term angular
drifts, otherwise unbounded.

2. GPS yaw: The IMU yaw data are very bad
and cannot be used for filtering (for exam-
ple, over the 150-m run, they can be off by
60 deg). Instead, we used the yaw estimate
available from the LAGR GPS. These yaw esti-

mates are comparable to a good-quality IMU.
Over a very long run, the GPS yaw does not
have an unbounded error, as would an IMU,
because it is globally corrected.

To maintain globally consistent maps, we have
turned off any position filtering based on GPS. We
completely ignore position estimates from the GPS
in calculating our pose. In addition, to limit the ef-
fect of velocity noise from GPS on the heading esti-
mate, GPS yaw is used only when the GPS receiver
has at least a 3D position fix and the vehicle is travel-
ing 0.5 m/s or faster. Our filter is a simple linear filter
that nudges the tilt/roll (for gravity normal) and yaw
(for GPS yaw) toward global consistency, while main-
taining local consistency.

The quality of the registration from filtered VO,
shown in Figure 9, can be compared to the filtered
GPS of Figure 8. The low wall, which moved almost
2 m over the short loops when using GPS, is much
more consistent when VO is employed. And in cases
in which GPS is blocked or degraded, such as under
heavy tree cover in Figure 7, VO still produces maps
that are locally consistent. It also allows us to deter-
mine wheel slips and stalls with almost no false pos-
itives; note the end of the run in Figure 7, where the
robot was hung up and the wheels were slipping and
wheel odometry produced a large error.

3.4. Results of Visual Odometry

In Test 17, the testing team surveyed a course using
an accurate RTK-GPS receiver. The “Canopy Course”
was under tree cover, but the RTK GPS and the
LAGR robot GPS functioned well. Sixteen waypoints
were surveyed, all of which were within 10-cm er-
ror according to the RTK readout. (One waypoint
was deemed inaccurate and not included.) The total
length of the course was about 150 m. Subsequently,
the LAGR robot was joysticked over the course, stop-
ping at the surveyed points. The robot was run for-
ward over the course and then was turned around
and sent backward to the original starting position.

The course itself was flat, with many small
bushes, cacti, downed tree branches, and other small
obstacles. Notable for VO was the sun angle, which
was low and somewhat direct into the cameras on
several portions of the course. Figure 12 shows two
images acquired by the robot. The left image shows a
good scene in the shadow of the trees, and the right
image shows a poor image where the sun washes
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Figure 12. Images from the Canopy data set.

out a large percentage of the scene. (The lines in the
images are horizon lines taken from VO and from
ground plane analysis.) The uneven image quality
makes it a good test of the ability of VO under re-
alistic conditions.

Because the initial heading of the robot is un-
known, we used an alignment strategy that assumes
that there is an initial alignment error and corrects it
by rotating the forward VO path rigidly to align the
endpoint as best as possible. This strategy minimizes

VO errors on the forward path and may underesti-
mate them. However, for the return path, the errors
will be caused only by VO and can be taken as a more
accurate estimate of the error.

For this test, our CenSurE features were not
ready, and we were able to match frames along the
whole route using Harris corners. Figure 13(a) shows
the RMS error between VO (with different filters) and
the RTK waypoints, on the return path. As noted
above, the forward VO path of the robot has been

Figure 13. Results of VO on the Canopy data set. (a) RMS error between VO (with different filters) and the RTK waypoints,
on the return path. (b) Trajectory of bundle-adjusted VO (without any filtering) compared to RTK groundtruth.
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aligned with the RTK path. As can be seen, the best
results are obtained using bundle-adjusted VO with
gravity normal and GPS yaw filtering. In this case,
the errors between waypoints is very small, amount-
ing to <1% of distance traveled. Without filtering, the
results are worse [(Figure 13(b)], amounting to about
3% of distance traveled. At some points in the middle
of the return trip, the VO angle starts to drift, and at
the end of the backward trip there is about a 10-m
gap. Note that this effect is almost entirely caused
by the error in the yaw angle, which is corrected by
GPS yaw. It is also worth mentioning that the use of
CenSurE features substantially improves the perfor-
mance of VO, although we do not have results of us-
ing CenSurE on this data set.

We present results of VO with CenSurE features
on two other large outdoor data sets. These data sets
were collected using a larger tank-like vehicle called
Crusher [also developed by the National Robotics
Engineering Center (NREC), Pittsburgh, under
DARPA’s Unmanned Ground Vehicle–PerceptOR
Integration (UPI) program]. They have frame-
registered ground truth from RTK GPS, which is
accurate to several centimeters in XY and 10 cm in
Z. For these data sets, the camera FOV is 35 deg,
the baseline is 50 cm, and the frame rate is 10 Hz
(512 × 384), so there is often large image motion. We
took data sets from Little Bit (9-km trajectory, 47,000
frames) in Pennsylvania and Ft. Carson (4 km, 20,000
frames) in Colorado, to get variety in imagery. The
Ft. Carson data set is more difficult for matching,
with larger motions and less textured images. In the
experiments, we use only CenSurE features, which
failed the fewest times (0.17% for Little Bit, 4.0% for
Ft. Carson).

The VO angular errors contribute nonlinearly to
trajectory error. On the two data sets, we compared
RMS and max XYZ trajectory errors. In the case of
matching failure, we substituted IMU data for the an-
gles and set the distance to the previous value. In
Table II, the effects of bundle adjustment and IMU fil-
tering are compared.

In both data sets, IMU filtering plays the largest
role in bringing down error rates. This is not surpris-
ing, because angular drift leads to large errors over
distance. Even with a noisy IMU, global gravity nor-
mal will keep Z errors low. The extent of XY errors
depends on how much the IMU yaw angle drifts over
the trajectory: in our case, a navigation-grade IMU
has 1 deg/h of drift. Noisier IMU yaw data would
lead to higher XY errors.

Table II. Trajectory error statistics, in meters and percent
of trajectory.

RMS error Max error
in XYZ in XYZ

Little VO No SBA 97.41 (1.0%) 295.77 (3.2%)
Bit VO SBA 45.74 (0.49%) 137.76 (1.5%)
(9 km) VO No SBA + IMU 7.83 (0.08%) 13.89 (0.15%)

VO SBA + IMU 4.09 (0.04%) 7.06 (0.08%)
Ft. VO No SBA 263.70 (6.9%) 526.34 (13.8%)
Carson VO SBA 101.43 (2.7%) 176.99 (4.6%)
(4 km) VO No SBA + IMU 19.38 (0.50%) 28.72 (0.75%)

VO SBA + IMU 13.90 (0.36%) 20.48 (0.54%)

The secondary effect is from SBA. With or with-
out IMU filtering, SBA can lower error rates by one
half or more, especially in the Ft. Carson data set, in
which the matching is less certain.

3.5. Map Reuse

VO and IMU/GPS filtering enable us to construct
consistent maps on a single run. These maps are use-
ful for getting out of traps and cul-de-sacs in the envi-
ronment, which occurred quite frequently. In fact, the
testing team was interested in long-range sensing ca-
pabilities and would use natural or constructed traps
as a way of rewarding robots that could detect them
from a distance. Unfortunately, the vision sensors on
the robots were not very capable at a distance [see
Section 6 and Figure 18(a)]. So, our strategy was to
use map information learned in the first run to com-
pute an optimal path for the second and subsequent
runs. This type of learning, run-to-run learning, turned
out to be the most powerful form of learning for the
tests and the key to performing better than any other
LAGR team.

Our first successful test of map learning and
reuse was in Test 25 at the end of the project [Figure 14
and later in Figure 18(a)]. The direct line to the goal
was through a small copse of trees, where there were
barriers of deadfall and tall grass. In the first run, the
robot wandered through this area, eventually finding
a way out to the goal. In the second run, the robot
started with the map constructed on the first run and
headed around the problem area. Note that the robot
actually started into the cul-de-sac and then decided
to go around. The planner had a finite horizon of
about 40 m and recognized the blockage only at that
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Figure 14. Map reuse during Test 25. The global map in (a) shows the first run: black is free space (including long sight-
lines), and white and gray are obstacles. The robot path estimated from VO is the yellow line. The starting position of the
robot is the left side of the screen; the goal is on the right at about 80 m. Note the many extended concave obstacles and cul-
de-sacs. Image (b) shows the robot’s trajectory for the second run in green, bypassing the cul-de-sac obstacles and heading
around to the right. The original run is superimposed.

point. In subsequent tests we extended the horizon of
the planner to the goal.

Our map-reuse technique is simple: at the start
of a run, match the robot’s view to the start of the
previous run, using the same method as for match-
ing frames in VO. If a good match is found, the map
from the previous run is brought in and adjusted
to the robot’s current position. From this point the
robot’s position on the old map is “open loop,” that
is, there is no reregistration or localization of the robot
within the map. Because VO performance is generally
within 1% over 100 m, this strategy was overwhelm-

ingly successful during the tests. Still, a true visual
SLAM algorithm would work better in more difficult
conditions, and we have made significant progress
here, closing loops over 5-km data sets (Konolige &
Agrawal, 2008), but unfortunately this research was
done too late to incorporate into the LAGR system.

4. PLANNING

The LAGR robot was provided with a “Baseline” sys-
tem that used implementations of D* (Stentz, 1994)
for global planning DWA (Fox et al., 1997) for local
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control. Using this system, we (as well as other teams)
had frequent crashes and undesirable motion. The
main causes were the slowness of the planner and
the failure of the controller to sufficiently account
for the robot’s dynamics. The D* planner is opti-
mized for very large-scale environments. It uses dy-
namic programming to compute the minimum-cost
potential to the goal at each cell; it needs significant
resources to maintain the indices necessary to un-
ravel the minimum-cost computations incrementally.
In our environments (100 × 200 m, 20 cm2 cells) it
would take many seconds to compute a plan, even
when only a small portion of the map was filled.
For large-scale maps this may be acceptable, but we
need much faster response to tactical maneuvers over
smaller scales (e.g., cul-de-sacs).

Instead, we reimplemented a gradient planner
(Konolige, 2000; Philippsen & Siegwart, 2005) that
computes optimal paths from the goal to the robot,
given a cost map. The gradient planner is a wavefront
planner that computes the cost of getting to a goal or
goals at every cell in the workspace. It works by us-
ing a local neighborhood to update the cost of a cell.
If the cell’s cost is higher than the cost of a neighbor
cell plus the local transit cost, then it is updated with
the new cost. The overall algorithm starts by initializ-
ing the goal with a zero cost and everything else with
a very large cost. All goal cells are put onto an “open”
list. The algorithm runs by popping a cell of the open
list and updating each of the cell’s neighbors. Any
neighbor that has a lowered cost is put back onto the
open list. The algorithm finishes when the open list is
empty.

There are many variations on this algorithm that
lead to different performance efficiences. Our algo-
rithm has several unique modifications:

• Unlike other implementations, it uses a true
Euclidean metric, rather than a Manhattan
or diagonal metric, in performing the update
step (Kimmel & Sethian 1998). The update can
be performed on the four nearest neighbors of
a cell. Generally speaking, the two lowest-cost
neighbors can be used to determine the direc-
tion of propagation of the cost potential and
the cell updated with an appropriate distance
based on this direction.

• The algorithm computes the configuration
space for a circular robot and includes safety
distances to obstacles. This is one of the inter-
esting parts of the gradient method. Because

there is already a method for computing the
distance transform from a set of points, the
configuration space can be computed effi-
ciently. The obstacle points are entered as goal
points, and the update algorithm is run over
each of these points, generating a new open
list. Each open list is processed fully, leading
to a sequence of open lists. At the end of n

cycles, the distance to obstacles has been de-
termined up to n ∗ c, where c is the cell size.
Usually this is done to a distance of three or
four times the robot radius, enough to estab-
lish a safety cushion to the obstacle. Finally, a
cost is associated with the distance: an infinite
cost within the robot radius to an obstacle and
a decreasing cost moving away from this.

• The queue handling is extremely efficient,
using threshold-based queues, rather than a
best-first update, which has high overhead
for sorting. Instead, we use a two-priority-
queue method. A threshold shuttles new
cells to one queue or the other, depending
on whether their cost is greater or less than
the threshold. The low-cost queue is always
processed first. When no more cells remain
in it, the threshold is increased, the second
queue becomes the low-cost queue, and a
new high-cost queue is initialized. This queue
strategy is the key to the good performance
of the algorithm: each update step happens
very rapidly. Although the complexity of
the algorithm is the order of the area to be
covered, and there is no “best-first” search
from the goal to the robot position, still the
extreme rapidity of each step makes it possi-
ble to cover reasonable areas (e.g., 80 × 80 m)
in several tens of milliseconds.

• Rapid switching of global paths is avoided
by including hysteresis: lowering the cost
along the path. There is a trade-off between
sticking to the current path and exploring
some new path if current readings indicate
it might be better. We lower the cost enough
so that it takes a significant amount of new
information to turn the path aside.

Typically we run the global planner within a sub-
region of the whole map because the robot is con-
tinuously moving toward the goal and encounter-
ing new areas. On longer runs, up to 200 m, we use
an 80 × 80 m area; the global planner runs in about
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Figure 15. Line goals for a robot in a 200-m environment. The line goal is placed 60 m ahead of the robot, and its extent
varies with the distance to the goal.

30 ms in this region. Unless there is a large cul-de-sac,
longer than 80 m, this area is sufficient to maneuver
the robot tactically around obstacles. For more global
planning, which occurs when starting a run with a
previously made map, we run the planner over the
whole area, which can take up to 100 ms for a large
100 × 200 m map.

The global planner is optimistic in assuming the
robot to be circular, with a diameter equal to the
width of the robot. Also, it does not take into account
the nonholonomic nature of the robot’s motion. In-
stead, we rely on a local controller to produce feasible
driving motions (Section 5).

One of the problems encountered in directing the
robot toward a point goal is that the plans tend to con-
stantly urge the robot toward the center of the map.
This is not necessarily an efficient strategy because,
for example, the robot will prefer to run near vegeta-
tion on the side of a path that does not point directly
toward the goal. Instead, when the robot is far from
the goal, we posit a relaxed virtual goal line that al-
lows the robot to pursue more indirect paths to the
goal (Figure 15). In a line goal, any point on the line is
considered to be a goal, and the robot navigates to the
nearest (lowest-cost path) position on the line. For ex-
ample, in Figure 15 the robot is shown with the direc-
tion of travel straight ahead to its line goal, whereas
with the goal point at the end it would want to move
diagonally.

The line goal is easily implemented in the gradi-
ent planner by simply adding all points on the line as
goal points. The navigation function then computes

the lowest-cost path to any point on the line. The line
goal is always placed about 60 m ahead of the robot,
and its extent grows in the middle of the run and con-
tracts as it gets nearer to the goal. In experiments, the
robot is able to navigate more than 50 m off the center
line to the goal and consequently find easily traversed
paths that would have been difficult to find if it had
headed directly to the goal (Figure 7).

5. CONTROL

Given the global cost information produced by the
gradient planner, we must decide what local controls
to apply to the robot to drive it toward the goal.

5.1. Trajectory Generation

We take an approach that is opposite to techniques
such as DWA. Instead of searching the space of
feasible trajectories, we search the space of feasible
controls. As is the case with most differentially driven
platforms, the LAGR robot is commanded by a
pair (ẋ, θ̇ ) of desired translational and rotational
velocities.2 Thus we have a 2D space of possible
commands to consider.

This space is bounded in each dimension by ve-
locity limits that reflect the vehicle’s capabilities. Be-
cause we are seeking good, as opposed to optimal,

2We could instead work in terms of left and right wheel velocities;
the two velocity spaces are equivalent, being related by a simple
geometric transformation.
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control, we sample, rather than exhaustively search,
this rectangular region of allowed velocities. We take
a regular sampling (∼25 in each dimension, ∼625
total) and for each sample simulate the effect of
applying those controls to the robot over a short
time horizon (∼2 s). The simulation predicts the
robot’s trajectory as a sequence of five-dimensional
(x, y, θ, ẋ, θ̇ ) states with a discrete-time approxima-
tion of the vehicle’s dynamics.

Of significant importance in this simulation are
the vehicle’s acceleration limits. Although the LAGR
robot can achieve a speed of 1.3 m/s, its low-level
motor controller (which we cannot modify) follows
a trapezoidal velocity profile that limits the transla-
tional acceleration to approximately 0.5 m/s2 (we de-
termined this value empirically). Thus more than 2 s
may elapse between commanding and achieving a
desired velocity. We found that the ability to accu-
rately predict the LAGR robot’s future state depends
vitally on appropriate integration of these accelera-
tion limits. We expect this to be the case for any vehi-
cle with a similarly large ratio of maximum velocity
to maximum acceleration.

The generated trajectories, projected into the
(x, y) plane, are smooth, continuous 2D curves that,
depending on the acceleration limits, may not be eas-
ily parameterizable. For the LAGR robot, the trajecto-
ries are generally not circular arcs (Figure 16).

5.2. Trajectory Evaluation

Each simulated trajectory t is evaluated by the follow-
ing weighted cost:

C(t) = αObs + βGdist + γ Pdist + δ
1
ẋ2 , (1)

where Obs is the sum of grid cell costs through which
the trajectory passes (taking account of the robot’s
actual footprint in the grid); Gdist and Pdist are
the estimated shortest distances from the endpoint
of the trajectory to the goal and the optimal path,
respectively; and ẋ is the translational component of
the velocity command that produces the trajectory.
We choose the trajectory for which the cost (1) is min-
imized, which leads our controller to prefer trajecto-
ries that (a) remain far from obstacles, (b) go toward
the goal, (c) remain near the optimal path, and (d)
drive fast. Trajectories that bring any part of the robot
into collision with a lethal obstacle are discarded as
illegal.

Note that we can compute C(t) with minimal
overhead: Obs is a simple summation over grid cell
costs, Gdist and Pdist were already computed by the
planner for all map cells, and ẋ is a known constant
for each trajectory.

Figure 16. The controller generates trajectories by sampling feasible velocities and simulating their application over a
short time horizon. Generated trajectories are purple, the chosen trajectory is yellow, the desired global path is cyan, and
obstacles are white. As shown in (a) and (b), the trajectories are smooth but not easily parameterizable as they depend on
the vehicle’s current velocity and its acceleration limits. When forward motion is not possible, backward trajectories are
considered (c): robot is facing down toward obstacles.
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5.3. Supervisory Control

We could generate, evaluate, and compare all poten-
tial trajectories. However, given the kinematic design
(driven wheels in front, passive casters behind) and
sensor configuration (forward-facing cameras and
forward-mounted bumper) of the LAGR robot, we
found it useful to add supervisory logic to direct the
order in which candidate velocities are simulated and
evaluated.

All forward velocities (ẋ > 0) are tried first; if any
legal forward trajectory is found, the best one is se-
lected. If there are no legal forward velocities, then
the controller tries in-place rotations (ẋ = 0), and then
backward velocities (ẋ < 0). This preference order-
ing encourages the robot to make forward progress
whenever possible and discourages driving back-
ward (during which the robot is essentially blind). If
no legal trajectory is found, the default behavior of
the robot is to move slowly backward.

5.4. Slip Handling

Because the robot may have to traverse rough, steep
terrain, it is necessary to detect and react to condi-
tions in which the wheels slip or become stuck. We
employ two mechanisms to handle these situations.
In both cases, we are comparing the motion reported
by the wheels to the motion estimated by VO, which
is sufficiently accurate to be treated as ground truth
(Section 3.2).

First, the controller continuously compensates
for the slip in each wheel by reducing its maximum
speed. Our approach is similar to automotive trac-
tion control. For each wheel, we monitor the slip ratio
s, defined as (Angelova, Matthies, Helmick, Sibley, &
Perona, 2006):

s = ωr − v

ωr
∈ [0, 1], (2)

where ω is the measured angular velocity of the
wheel, r is the wheel radius, and v is the actual lin-
ear velocity of the wheel. We obtain ω directly from
the wheel encoders. To compute v, we difference se-
quential VO poses to produce translational and rota-
tional velocities for the vehicle and then use the ve-
hicle geometry to distribute these velocities between
the two wheels. When the slip ratio s for a wheel ex-
ceeds a minimum threshold (∼0.25), we compensate
by proportionally reducing the maximum allowable
speed for that wheel, which produces better traction

on most terrain. Importantly, the controller takes ac-
count of the current speed limits, ensuring that pre-
dicted trajectories will be achievable under these lim-
its. The slip ratios and speed limits are recomputed at
the frequency of VO pose estimation (∼15 Hz).

Although continuous slip compensation im-
proves performance, there are situations in which
the robot can become truly stuck and require ex-
plicit escape mechanisms. The robot usually becomes
stuck because of extremely slippery soil (e.g., sand) or
ground clutter (e.g., fallen branches). We detect these
conditions by looking for significant, time-extended
disparities among the velocities that are commanded
by the controller, reported by wheel odometry, and
estimated by VO (we maintain a running window of
each velocity). If a slip or stall is detected, or if the
front bumper is triggered, the robot enters a stochas-
tic finite state machine of preprogrammed escape
maneuvers (e.g., drive forward, turn in place, drive
backward). These maneuvers are executed blindly, on
the assumption that the vision system failed to iden-
tify the terrain as dangerous and so is unlikely to
yield good advice on how to escape it.

One indication of how well slip detection per-
formed was on Test 18, about 2 years into the pro-
gram. This was a difficult test around small sand
dunes, and the robots would spin easily on the sand
on small inclines. The slip detection code and es-
cape maneuvers, coupled with VO for localization,
allowed us to finish this challenging course, the only
team to do so.

6. PERFORMANCE

For the LAGR program, the government testing
group (LGT) ran monthly blind demos of the percep-
tion and control software developed by the teams and
compared their performance to that of a baseline sys-
tem. Teams were encouraged but not required to send
code for each test; they could also send the same code
on successive tests. In general the tests would change
each month, to expose the teams to different environ-
mental conditions.

There were two major checkpoints for all the
teams, the first at the end of Phase I of the program
after 1.5 years (Tests 12 and 13) and the second at the
end of the program (3 years, Test 27). The goal was to
beat the baseline system at the end of Phase I and to
do better by a factor of 2 for the second. In this section
we show results from all of these tests and addition-
ally the penultimate Tests 25 and 26. At this point, our
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system was essentially complete, and Tests 25 and 26
presented interesting terrain challenges, whereas Test
27 was somewhat artificial and designed to isolate
specific learning capabilities.

On each test, the robot was given four runs, and
the best three were taken to give a combined score.
The highest achievable score is 1.0, calculated by mea-
suring the shortest possible path to the goal and mea-
suring the time it took a skilled operator to manually
drive the robot. There were also penalties for not get-
ting to the goal within a cutoff time.

6.1. Phase I Tests

The tests at the end of Phase I were designed to test
the overall ability of the system to handle typical out-
door terrain (make a consistent map, recover from
slips, etc.), while focusing on perceptual skills and
learning. For these tests, we had completed a basic
VO system, the global planner, and the controller.
All of the main stereo interpretation algorithms were
also in place, including sightlines. However, our
appearance-based learning was only a simple super-
vised color classifier, and there was no map reuse, be-
cause the VO system was not precise enough.

In Test 12 [Figure 17(a)], a dark mulch path
formed the easiest way to the goal, and teams were

invited to submit automatic supervised learning code
that would be trained on a similar path from log files.
The minimum times for a skilled operator were 69 s
along the path (103 m) and 77 s through the maze
(distance not measured).

Several teams managed to follow the path af-
ter training and generally had good times. We did
not; the dark color of the path confused our color-
based learner and led us to develop the combined
color/texture model described in Section 2.3. We
completed the maze course three times, with times
of 106, 110, and 112 s. Our best time equaled that of
the best team following the mulch path, and our av-
erage score of 0.73 was the highest of any team, three
times the baseline score (which was also through the
maze). Although the LGT expected the maze to be a
significant problem for the teams (as it was for the
baseline), our combination of consistent map making,
fast global planning, and rollout controller combined
to make the robot zip through the maze with no hes-
itation.

In Test 13, the objective was to stay along an old
dirt and asphalt road for much of the course, until
there was an opening in brush to the left of the road
toward the goal [see Figure 17(b)]. The easiest way
(most open route) to the goal was along the third
route from the left, which required the robot to stray

Figure 17. Aerial views of the Phase I tests. In (a), the haybale maze is drawn in blue, and the mulch path leading to the
goal is in red. The tree copse leading directly to the goal was not traversable. In (b), four possible routes to the goal are
drawn, with the third from the left being the easiest (154 m).
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Figure 18. Views of three final tests. In (a), a robot’s-eye view of the beginning of Test 25. The copse in the distance could be
avoided on the right or left. The yellow line is the robot’s horizon from a noisy INS, and the green line is the VO-stabilized
horizon. In (b), a pipe corridor from Test 26b: note the blocked left corridor. In (c), Test 27a shows the Jersey barrier, with
the goal immediately behind.

far from the direct route to goal, following the open
road. The second route was actually the shortest, re-
quiring a skilled operator just 90 s, and the third route
took 95 s.

In all three scoring runs, we followed the third
route, utilizing sight lines (Section 2.2) to find open
space along the road and then the open space along
the third route. The times for the three runs were 132,
132, and 148 s. All of our times were faster than the
best time of any other team, and our overall score,
0.86, was just under 3× the score of the baseline. We
expect that the better online color/texture path learn-
ing of Section 2.3 would have found the second route,
and a shorter time, but we did not develop this tech-
nique until the end of the project.

6.2. End-of-Project Tests

The end-of-project tests were through different types
of terrain and with different degrees of difficulty. For
these tests, our full system was operational, including
online color/texture learning of paths and map reuse.
Here is a summary of the courses (Figure 18):

Test 25 83-m straight-line distance to the goal,
through a copse of trees with a cul-de-sac
and tall grass [Figure 18(a)]. Ideal behav-
ior was to go around the copse, following
a mulch path as in Test 12.

Test 26a (93 m) Narrow paths through tall bushes,
with several false turns that might lead
more directly to the goal. Desired behav-
ior was to avoid the false turns.

Test 26b (106 m) A challenging course with man-
made and natural obstacles, including a
cul-de-sac of parked cars, stacked pipes,
hay bales, and rock piles [Figure 18(b)].
The course to the goal was indirect and in-
volved narrow passageways, and finding
it was a challenge.

Test 27a (34 m) A simple course on a grassy
field with Jersey barriers stretched directly
across the route [Figure 18(c)]. Ideal be-
havior would be to avoid the barrier with-
out getting close.

Test 27b (34 m) Similar to 27a, but using low hay
bales for obstacles, with two gaps in the
barrier containing tall grass. The object
was to identify the tall grass and push
through it directly to the goal.

The first four tests were designed to reward be-
havior that could avoid routes that were temptingly
direct, but ultimately dead ends. There were two
methods of doing this: long-range perception (>10 m)
and map memorization and reuse. For Test 26a, the
narrow routes through the bushes were easily de-
tected by our online learning algorithms, and the
path planner moved the robot quickly along the cen-
ter of the path. On the first run, the robot turned twice
to look briefly at side paths that could have been
more direct but then turned back to the main route.
Figure 19 shows the scores for this run. The Baseline
score is 0.23, and SRI’s score is 0.83, which is better by
a factor of 3.6. In this test, because the long-range per-
ception of paths worked well, the first run was very
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Figure 19. Summary of results from the last three LAGR
tests. Raw scores are given for the Baseline software and
the SRI system, where 1 is a perfect score (as fast as the
robot can go). The other scores are presented as a factor
over Baseline; the target performance for the project was
2 × Baseline.

good (2.9 × Baseline), and subsequent map reuse con-
tributed only a modest amount, by not turning to ex-
amine the dead-end paths. In fact, our score could
have been higher, but the fourth run failed because
of a map registration error in the middle of the run,
closing off the narrow path.

In the other three tests (25, 26b, and 27a), map
reuse is the primary enabler of good performance: it
improved by almost a factor of 2 from the first run.
For example, in Test 25, after wandering through the
copse and encountering the cul-de-sac and tall grass
obstacles, the robot made its way to the goal. On
the second run, the robot avoided the copse entirely,
choosing a path around it as less costly.

Test 27b was a learning-by-example test. The
robots were shown samples of the hay bales and tall
grass. Operators would drive the robots into the hay
bales and over the grass, to give the robot an idea
of the traversability of each. Our online learning al-
gorithms correctly picked out the grass as drivable,
based primarily on its texture, because the color was
similar to that of the hay bales. We also learned that
hay bales were obstacles; however, we had set the
suppression of obstacles by drivable objects a little
too high, and the robot bumped the hay bales next to
the grass area. After a few bumps, it drove through
the grass and onto the goal. In subsequent runs, of
course, map reuse allowed an optimal plan directly
through the grass.

6.3. Analysis

There is no doubt that our system achieves both ro-
bustness and good performance on a wide variety of
outdoor, unstructured terrain. Map building relies on
VO to provide good localization, efficient real-time
stereo and robust ground-plane analysis for obstacle
detection, and sight lines to identify distant regions
that are likely to be navigable. Online path learning
helps in the very common situation of tracks through
vegetation, or man-made dirt and asphalt roads. To-
gether these techniques allow us to construct well-
registered, precise maps that serve well during the
first run to get the robot reliably to the goal. Even
more importantly, on subsequent runs, the path plan-
ner is able to construct an optimal path to the goal
from the start of the run.

Moving quickly is very important to achieving
good performance, especially because many small
obstacles such as branches could be traversed at
speed but might hang up the robot if it was moving
more slowly. As described in Section 5, the path plan-
ner and local controller combined to give the robot a
very agile feeling. Our average speed was more than
1.1 m/s, even while exploring unknown terrain (top
speed of the robot is 1.3 m/s).

The government team was very interested in cre-
ating scenarios to test the long-range perception of
the robot. Unfortunately, the robot’s vision sensors
had very little resolution at distance. Depth informa-
tion from stereo was very uncertain after about 7 m.
Even using monocular information, very few pixels
were available for long-range sensing. In Figure 18(a),
a high-resolution camera with a longer focal length
clearly shows routes around the copse of trees to the
left. But looking through the robot cameras, there is
very little to show that the copse of trees could be
avoided to the left: perhaps there are a few more ver-
tical pixels of brown-colored grass on that side. But
this information is insufficient to reliably navigate
from the robot’s perspective, and teams that tried to
do this would as often pick a bad way as a good one.

What we could reliably learn is the map structure
from the first run. With this in hand, subsequent runs
could be much more efficient. We had this technique
working reliably only in the last tests (25–27), and it
was difficult for the government team to react and set
up tests that would allow long-range perception to
do as well as map learning and reuse. It was also dif-
ficult for other teams to adopt our technique, because
it required very good map registration, and a badly

Journal of Field Robotics DOI 10.1002/rob



Konolige et al.: Mapping, Navigation, and Learning for Off-Road Traversal • 111

registered map is worse than no map at all. In Test
26a, the narrow paths (≈2 m wide) meant that even
small registration errors could cause a prior map to
close off the current path, which happened to us in
the fourth run. Note that the map reuse was run open
loop: after registering with an initial image at the be-
ginning of the run, we relied on VO to keep the robot
localized.

We compared our results with the published
results of the other teams, both the average and the
best for each test (Figure 19). In all these tests, we
had the best score (or tied for the best). Typically
we outperformed the average team by a factor of
two. In the most difficult test, 26b, even our first-run
score was almost as good as the best overall team
score; map reuse enabled us to do even better. The
controller, planner, and VO system were used in the
best-in-class NIST system, and in fact NIST was our
closest competition in two of the tests, including
the difficult Test 26b. We also surpassed the target
of 2 × baseline performance, achieving almost a
4× improvement, better than the 3× improvement of
the Phase I tests. There is no doubt that map reuse
was the primary enabler for this performance.

Whereas many teams concentrated on finding
obstacles at a distance using color-based learning, we
decided that the risk of using this technique in com-
plicated environments was not worth the results. In
some simple (and contrived) scenarios, such as Test
27a [Figure 27(c)], it could indeed help, but if it were
used all the time, it would be as likely to lead to bad
choices as good (dark green areas could be shadows
instead of trees) and cause poor overall behavior. Our
online path learning, by contrast, used both geomet-
ric and color/texture cues to reliably find good paths,
with almost no false positives.

7. CONCLUSION

We have demonstrated a complete autonomous sys-
tem for off-road navigation in unstructured environ-
ments, using stereo vision as the main sensor. The
system is very robust—we can typically give it a goal
position several hundred meters away and expect it
to get there. It is also one of the first to demonstrate
the practical use of VO as the primary method of reg-
istration, with extremely good results. The precision
of VO is such that maps can be reused on subsequent
runs, doubling the performance of the system.

To be sure, there are hazards that are not dealt
with by the methods discussed in this paper: water

and ditches are two robot killers. We also were re-
stricted to running open loop in reusing maps; we
would like to use visual landmarks to reregister the
position of the robot in the map, but this work was
not ready at the time of the last tests.

REFERENCES

Agrawal, M., & Konolige, K. (2006). Real-time localization
in outdoor environments using stereo vision and inex-
pensive GPS. In Proceedings of the International Con-
ference of Pattern Recognition (ICPR) (pp. 1063–1068).
Washington, DC: IEEE Computer Society.

Agrawal, M., & Konolige, K. (2007). Rough terrain visual
odometry. In Proceedings of the International Confer-
ence on Advanced Robotics (ICAR), Jeju Island, South
Korea.

Agrawal, M., Konolige, K., & Blas, M. R. (2008). Cen-
SurE: Center surround extremas for realtime fea-
ture detection and matching. In Proceedings of the
European Conference on Computer Vision (ECCV),
Marseille, France. Lecture Notes in Computer Science
5305 (pp. 102–115). Springer.

Angelova, A., Matthies, L., Helmick, D., & Perona, P. (2007).
Learning and prediction of slip from visual informa-
tion. Journal of Field Robotics, 24(3), 205–231.

Angelova, A., Matthies, L., Helmick, D., Sibley, G., &
Perona, P. (2006). Learning to predict slip for ground
robots. In Proceedings of the IEEE International Con-
ference on Robotics and Automation (ICRA), Orlando,
FL (pp. 3324–3331).

Bay, H., Tuytelaars, T., & Gool, L. V. (2006). SURF:
Speeded up robust features. In Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV), Graz,
Austria (pp. 404–417).

Bellman, R. (1957). Dynamic programming. Princeton, NJ:
Princeton University Press.

Bellutta, P., Manduchi, R., Matthies, L., Owens, K., &
Rankin, A. (2000). Terrain perception for DEMO III.
In Proceedings of the IEEE Intelligent Vehicles Sym-
posium, Dearborn, MI (pp. 326–331). IEEE Computer
Society.

Blas, M. R., Agrawal, M., Konolige, K., & Sundaresan, A.
(2008). Fast color/texture segmentation for outdoor
robots. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, Nice,
France (IROS) (pp. 4078–4085).

Engels, C., Stewnius, H., & Nister, D. (2006). Bundle ad-
justment rules. In Proceedings of the Conference on
Photogrammatic Computer Vision, Bom, Germany
(pp. 266–271).

Fischler, M., & Bolles, R. (1981). Random sample consensus:
A paradigm for model fitting with application to image
analysis and automated cartography. Communications
of the ACM, 24, 381–395.

Fox, D., Burgard, W., & Thrun, S. (1997). The dynamic win-
dow approach to collision avoidance. IEEE Robotics
and Automation Magazine, 4(1), 23–33.

Journal of Field Robotics DOI 10.1002/rob



112 • Journal of Field Robotics—2009

Guivant, J., Nebot, E., & Baiker, S. (2000). High accu-
racy navigation using laser range sensors in outdoor
applications. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), San
Francisco, CA (pp. 3817–3822).

Gutmann, J. S., & Konolige, K. (1999). Incremental map-
ping of large cyclic environments. In Proceedings
of the IEEE International Symposium on Computa-
tional Intelligence in Robotics and Automation (CIRA),
Monterey, CA (pp. 318–325).

Happold, M., Ollis, M., & Johnson, N. (2006). Enhancing
supervised terrain classification with predictive unsu-
pervised learning. In Proceedings of Robotics: Science
and Systems, Philadelphia, PA (RSS) (pp. 901–914).

Howard, A. (2008). Real-time stereo visual odometry
for autonomous ground vehicles. In Proceedings of
the IEEE/RSJ International Conference on Intelligent
Robots and Systems, Nice, France (IROS) (pp. 3946–
3952).

Howard, T., Green, C., & Kelly, A. (2007). State space sam-
pling of feasible motions for high performance mo-
bile robot navigation in highly constrained environ-
ments. In Proceedings of the International Conference
on Field and Service Robotics, Chamonix, France.

Iagnemma, K., Genot, F., & Dubowsky, S. (1999). Rapid
physics-based rough-terrain rover planning with sen-
sor and control uncertainty. In Proceedings of the IEEE
International Conference on Robotics and Automation
(ICRA), Detroit, MI (pp. 2286–2291).

Johnson, A. E., Goldberg, S. B., Cheng, Y., & Matthies, L.
H. (2008). Robust and efficient stereo feature tracking
for visual odometry. In Proceedings of the IEEE In-
ternational Conference on Robotics and Automation
(ICRA), Pasadena, CA (pp. 39–46).

Kelly, A. (1994). A feedforward control approach to the lo-
cal navigation problem for autonomous vehicles (Tech.
Rep. CMU-RI-TR-94-17). Pittsburgh, PA: Robotics In-
stitute, Carnegie Mellon University.

Kimmel, R., & Sethian, J. A. (1998). Computing geodesic
paths on manifolds. Proceedings of the National
Academy of Science, 95, 8431–8435.

Konolige, K. (1997). Small vision systems: Hardware and
implementation. In Proceedings of the International
Symposium on Robotics Research, Nagoya, Japan (pp.
111–116).

Konolige, K. (2000). A gradient method for realtime robot
control. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
Tokyo, Japan (pp. 639–646).

Konolige, K., & Agrawal, M. (2008). FrameSLAM: From
bundle adjustment to realtime visual mappping. IEEE
Transactions on Robotics, 24(5), 1066–1077.

Konolige, K., Agrawal, M., & Solà, J. (2007). Large scale
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