
Matlab Programming Guidelines

Joan Solà
LAAS-CNRS

November 15, 2011

Contents

1 Matlab Help 1

2 Code readability 3
2.1 Aligned code reads well! . 3
2.2 Line grouping and commenting 4
2.3 Line breaking “...” . 5
2.4 Function APIs . 5

3 Names of variables 6

4 Jacobians and the chain rule 7

5 Vectorizing structure arrays 8

6 Error messages 10

1 Matlab Help

Prepare your help headers to look really Matlab-like!

% FUN One line description with one space between % and FUN.
% FUN(X,Y) Longer description, with explanation of function
% inputs X and Y and the output. There are 4 spaces between
% % and FUN(). The function name is in CAPITAL LETTERS.
% Preferably, the input variables X and Y are also in
% capital letters.
%
% If the paragraph above is too complex, break it into

1

% different paragraphs.
%
% If the list of input arguments is too complex, make a
% list here. Explain ALL input arguments. The list is
% indented another 4 spaces:
% X: one Bourbon
% Y: one Scotch
%
% FUN(X,Y,Z) explain extra inputs Z here and what they do.
% Explain if they have a default value. If you need to
% make a new list, remember the 4 spaces!
% Z: one beer.
%
% [out, OUT x, OUT y] = FUN(...) returns the Jacobians
% wrt X and Y. Maybe you have to explain something else.
% You do not need to repeat the input parameters so you
% can use the form [out, OUT x] = FUN(...), with the (...).
%
% Before saving, select entire paragraphs and do RIGHT
% CLICK, "Wrap selected comments". This equals all line
% lengths to approximately the page width.
%
% See also FUN2, FUN3. Use it exactly like this, "See also "
% + function names in CAPITAL LETTERS. Matlab parses this line
% and will create links to the functions' helps ONLY IF YOU
% FOLLOW THESE GUIDELINE STRICTLY.

% (c) 2009 You @ LAAS−CNRS. Make yourself famous. See that
% this comment line is disconnected from the Help body (the
% previous line has no % sign).

Here is an example of the use of ‘Warp selected comments’:

BEFORE:
% FUN this is not really a function.
% FUN(X,Y) is a function that does not do anything special. It is here just to show
% how it is to
% use 'Warp selected comments'. Just select all the
% paragraph starting at FUN(X,Y). Then do RIGHT CLICK
% and select 'Warp selected comments'.

AFTER:
% FUN this is not really a function.
% FUN(X,Y) is a function that does not do anything special.
% It is here just to show how it is to use 'Warp selected
% comments'. Just select all the paragraph starting at FUN(X,Y).
% Then do RIGHT CLICK and select 'Warp selected comments'.

2

2 Code readability

2.1 Aligned code reads well!

1. Regularly do CNTRL+A, CNTRL+I to make all the indents look nice.
Example:

% BEFORE:
if a == 1

b = 4;
end

% AFTER CTRL+A CTRL+I:
if a == 1

b = 4;
end

2. When using consecutive lines of code, try to vertically align all EQUAL
signs. Examples:

% GOOD: code reads easy
x = f(y);
variable = fun(z);
JAC x = JAC y*Y x;

% BAD: code is a pack
x = f(y);
variable = fun(z);
JAC x = JAC y*Y x;

3. Similarly, when commenting multiple lines on the right margin, align
comments. Examples:

% GOOD: comments read well
x = f(y); % these lines
variable = fun(z); % are all easy
JAC x = JAC y*Y x; % to read

% BAD: comments are packed within the code
x = f(y); %these lines
variable = fun(z); % are not easy
JAC x = JAC y*Y x; % to read

3

4. Exceptions are accepted, but use common sense. Examples

% GOOD: all possible alignments coincide
x = f(y); % these comments are aligned
variable = g(z); % with the fourth line.
JAC x = JAC y*Y x + JAC a*A variable*VARIABLE x; % Oops!
output = JAC x*P*JAC x'; % this defines the alignment above.
extra = I*dont*know; % over all it is easy to read.

% NOT SO GOOD, BUT OK: alignments come in groups
x = f(y); % these comments are NOT aligned
variable = g(z); % with the fourth and fifth lines.
JAC x = JAC y*Y x + Z a*A variable*VARIABLE x; % Oops!
output = JAC x*P*JAC x'; % this margin is new
extra = I*dont*know; % over all it is easy to read.

5. Still, you can try to align consecutive groups of lines. Example

x = f(y); % these comments aligned,
variable = g(z); % and the alignment
output = JAC x*P*JAC x'; % continues in next group

y = 4; % this follows the same alignment
extra = 5*eye(3); % over all it is easy to read.

2.2 Line grouping and commenting

1. Comment every group of lines performing a coherent action before the
group. Example:

% get idps to delete
used = [Lmk.used];
idps = strcmp({Lmk.type},'idpPnt');
drawn = (strcmp((get([MapFig.estLmk.ellipse],'visible')),'on'))';
delIdps = drawn & idps & ∼used;

2. Comment individual lines on the right if more info is needed. Example:

% get idps to delete
used = [Lmk.used]; % used lmks
idps = strcmp({Lmk.type},'idpPnt'); % inverse−depth landmks
delIdps = drawn & idps & ∼used; % to be deleted

4

3. Separate small groups of lines with an empty line so that the code does
not look packed. As a rule, no more than 4 lines should go together.

2.3 Line breaking “...”

Make exceptional use of line breaking “...”, particularly when functions have
long names or many long parameters:

[out, OUT x, OUT y, OUT z, OUT par, OUT calibration] = ...
functionNameThatMightBeVeryLong(...

Lmk.state.x,... % you can put
Sen(4).par.y,... % comments here
Obs(sen,lmk).nom.N,... % if necessary
Sen(4).par.k,... % to explain the
Sen(4).par.cal); % input data

See userData.m, createMapFig.m to see examples of this.

2.4 Function APIs

Matlab functions accept multiple input, multiple output arguments. Please
follow these simple rules:

1. Order the input and output arguments according to this list:

Rob, Sen, Raw, Lmk, Obs, Tim, ...
SimRob, SimSen, SimObs, ...
MapFig, SenFig, ...
Opt, SimOpt, FigOpt, ...
other.

Remember that Map is global and it does not need to be given as
argument.

2. Use the same input and output names and scopes when calling func-
tions that update fields:

[Rob(rob),Sen(sen),Lmk,Obs(sen,:)] = ...
myFunction(Rob(rob),Sen(sen),Lmk,Obs(sen,:),Opt)

5

3 Names of variables

For convention, we are going to do the following:

1. Variables inside functions have short names in small letters normally.

2. Robot, sensor, landmark etc INDICES are always rob, sen, lmk: For
example,

Rob(rob).rob = rob;
Obs(sen,lmk).sen = sen;

3. Robot, sensor, landmark etc IDENTIFIERS are rid, sid, lid. For
example,

rid = Rob(rob).id;
sid = Sen(sen).id;

Obs(sen,lmk).sid = sid;

4. Jacobians are BIG small, where Y x = dy/dx.
Jacobians are not Yx, better Y x.

5. Gaussian variables have mean and covariances matrix. As a general
rule, we use small for the mean and BIG for the covariances. Examples

e % expectation
E % expectation covariance

z % innovation
Z % Innovation covariance

idp % inverse depth point
IDP % inverse depth point covariance

6. Known exceptions to the previous rule correspond to classic EKF no-
tations:

x % state vector
P % state covariance

6

y % measurement
R % measurement covariance

7. Cross-variances depend on two variables and cannot follow the previ-
ous rule. We switch then to this other {x,P} notation:

a % mean of a
idp % mean of idp
P AA % covariance of a
P IDPIDP % covariance of idp
P AIDP % cross−variance of a and idp

4 Jacobians and the chain rule

Systematically make use of the chain rule when constructing Jacobians.
While MAPLE code may be faster to compute in some cases, the chain rule
permits a modular organization and a better comprehension of the code.
Both features are crucial in a toolbox because they allow us to modify parts
of the code without compromising the rest.

Follow these guidelines:

1. Name all Jacobians as specified in the previous section, that is, if
y = f(x) then Y x = dy/dx

2. Build functions returning output variable and optional Jacobians. Here
is an example:

function [z, Z x, Z y] = f(x, y)

z = sin(x−y); % this is the output value
if nargout > 1 % Jacobians requested

Z x = cos(x−y); % this is dz/dx
Z y = −cos(x−y); % this is dz/dy

end

3. Use the chain rule for functions using other functions. Keep the Jaco-
bians optional. Example:

function [q, Q a, Q b, Q c] = g(a, b, c)

7

if nargout == 1 % No Jacobians requested
q = h(a, f(b,c)); % compose functions f() and h().

else % Jacobians requested
[p, P b, P c] = f(b, c); % This uses function f() above.
[q, Q a, Q p] = h(a, p); % This uses function h().

Q b = Q p*P b; % This is the chain rule
Q c = Q p*P c; % to compose Jacobians.

end

4. Observe how the chain rule ‘chains’ Jacobians by matching leading
and trailing name parts. The leading and trainling parts of the whole
chain define the resulting Jacobian name. Examples:

LEAD trail = LEAD x * X trail ;

FOURTH first = FOURTH third * THIRD first ;
FOURTH second = FOURTH third * THIRD second ;

5. Long chains and multi-path chains are possible (multi-path chains are
seldom):

Z w = Z y * Y x * X w; % a chain of three elements
D a = D b * B a + D c * C a; % a chain with two paths

5 Vectorizing structure arrays

In the toolbox code it is usual to check different flags on the structure arrays
as a whole. Here is a typical example:

% this code clears all landmarks in Lmk()
for lmk = find([Lmk.used])

Lmk(lmk).used = false;
end

In the code above, the expression [Lmk.used] collects in a vector all the
.used flags in each member of the structure array Lmk(). For example:

% if Lmk() is such that

8

Lmk(1).used = true;
Lmk(2).used = false;
Lmk(3).used = true;
% then we have
[Lmk.used]
ans =

1 0 1
% and
find([Lmk.used])
ans =

1 3
% so that the loop
for lmk = find([Lmk.used])

lmk
Lmk(lmk) = something();

end
% prints the indices of the landmarks in Lmk()
% that are being affected by something()
lmk =

1
lmk =

3
% See also FOR.

Use the following guidelines for vectorizing structure array fields:

1. Use vectorization to obtain arrays. Examples:

% 3 logical vectors
used = [Lmk.used];
vis = [Obs(sen,:).vis];
drawn = (strcmp((get([MapFig.estLmk.ellipse],'visible')),'on'))';

% a numeric vector of IDs
lmkIds = [Lmk.id];

2. If the field you want to access is a string, try this

idps = strcmp({Lmk.type},'idpPnt') % a logical vector

3. Operate with the logicals to get new logicals. Example:

erase = ∼vis & drawn;
usedIdps = used & idps;

9

4. When setting logicals individually, always use true/false, not 1/0:

Obs(1).vis = true; % Do not use 1 instead of true, otherwise
Obs(2).vis = false; % you turn the whole vector to numeric.

5. You can access an array directly with the logical vector

Lmk(used) % all the Lmk's that are used

6. You can get the indices with FIND

usedIdx = find(used);

7. You can also access an array with indices, of course:

Lmk(usedIdx) % this is equivalent to Lmk(used)

8. If you want the first N unused Lmk’s, do for example

Lmk(find(∼used,N,'first'))

or, easier to read:

notUsed = find(∼[Lmk.used]);
Lmk(notUsed(1:N));

6 Error messages

Be kind to your fellows and stick to Matlab standards. The line:

error('??? Unknown sensor type ''%s''.',Sen(sen).type)

gives a ‘nice’ Matlab error message (the second line is ours!):

??? Error using ==> createSensors at 46

10

??? Unknown sensor type 'pinPole'.

Error in ==> createSLAMstructures at 10
Sen = createSensors(Sensor);

Error in ==> slamtb at 38
[Rob,Sen,Lmk,Obs,Tim] = createSLAMstructures(...

11

	Matlab Help
	Code readability
	Aligned code reads well!
	Line grouping and commenting
	Line breaking ``...''
	Function APIs

	Names of variables
	Jacobians and the chain rule
	Vectorizing structure arrays
	Error messages

