Planning Singularity-free Force-feasible Paths on the Stewart Platform

181
Oriol Bohigas, Montserrat Manubens, Lluís Ros

SINGULARITY-FREE PATH PLANNING

SINGULARITY-FREE PATH PLANNING

CLEARANCE GIVEN BY DET(J)

NOT PHYSICALLY MEANINGFUL

SINGULARITY-FREE PATH PLANNING

CLEARANCE GIVEN BY DET(J)

NOT PHYSICALLY MEANINGFUL

CLEARANCE GIVEN BY|FORCE RANGES WRENCH w

PHYSICALLY MEANINGFUL

> Bosscher
> Riechel
> Ebert-Uphoff IEEE TRO 2006

Hubert
PhD thesis 2010

CSIC

SINGULARITY-FREE FORCE-FEASIBLE PATH PLANNING

SINGULARITY-FREE FORCE-FEASIBLE PATH PLANNING

SYSTEM OF EQUATIONS FOR THE FORCE-FEASIBLE C-SPACE

HIGHER-DIMENSIONAL CONTINUATION FOR EXPLORATION

SYSTEM OF EQUATIONS FOR THE FORCE-FEASIBLE C-SPACE

HIGHER-DIMENSIONAL CONTINUATION FOR EXPLORATION

C-SPACE

$$
\begin{aligned}
& \rho_{i}^{2}=\left|\boldsymbol{p}+\boldsymbol{R} \boldsymbol{b}_{i}-\boldsymbol{a}_{i}\right|^{2} \\
& \rho_{i} \in\left[\underline{\rho_{i}}, \overline{\rho_{i}}\right]
\end{aligned}
$$

FORCES ON THE LEGS

$$
\begin{aligned}
& \boldsymbol{J}(\boldsymbol{q}) \cdot \boldsymbol{f}_{0}=\hat{\boldsymbol{w}}_{0} \\
& \boldsymbol{B}=\boldsymbol{J}(\boldsymbol{q})^{\top} \boldsymbol{E} \quad \boldsymbol{J}(\boldsymbol{q}) \\
& \boldsymbol{B}^{i} \boldsymbol{v}_{i}=\mathbf{0} \\
& \boldsymbol{v}_{i}^{\top} \boldsymbol{B} \boldsymbol{v}_{i}=1 \\
& v_{i, i} \geq 0 \\
& f_{0, i}-v_{i, i} \geq f_{i} \\
& f_{0, i}+v_{i, i} \leq \overline{f_{i}}
\end{aligned}
$$

$$
\begin{gathered}
\left(\boldsymbol{f}-\boldsymbol{f}_{0}\right)^{\top} \boldsymbol{B}\left(\boldsymbol{f}-\boldsymbol{f}_{0}\right) \leq 1 \\
\boldsymbol{B}=\boldsymbol{J}(\boldsymbol{q})^{\top} \boldsymbol{E} \boldsymbol{J}(\boldsymbol{q})
\end{gathered}
$$

SYSTEM OF EQUATIONS FOR THE FORCE-FEASIBLE C-SPACE

HIGHER-DIMENSIONAL CONTINUATION FOR EXPLORATION

C-SPACE

$$
\begin{aligned}
& \rho_{i}^{2}=\left|\boldsymbol{p}+\boldsymbol{R} \boldsymbol{b}_{i}-\boldsymbol{a}_{i}\right|^{2} \\
& \rho_{i} \in\left[\underline{\rho_{i}}, \overline{\rho_{i}}\right] \longrightarrow\left(\rho_{i}-m_{i}\right)^{2}+r_{i}^{2}=h_{i}^{2}
\end{aligned}
$$

FORCES ON THE LEGS

$$
\begin{aligned}
& \boldsymbol{J}(\boldsymbol{q}) \cdot \boldsymbol{f}_{0}=\hat{\boldsymbol{w}}_{0} \\
& \boldsymbol{B}=\boldsymbol{J}(\boldsymbol{q})^{\top} \boldsymbol{E} \boldsymbol{J}(\boldsymbol{q}) \\
& \boldsymbol{B}^{i} \boldsymbol{v}_{i}=\mathbf{0} \\
& \boldsymbol{v}_{i}^{\top} \boldsymbol{B} \boldsymbol{v}_{i}=1 \\
& v_{i, i} \geq 0 \longrightarrow v_{i, i}=s_{i}^{2} \\
& f_{0, i}-v_{i, i} \geq f_{i} \longrightarrow f_{0, i}-v_{i, i}=t_{i}^{2}+\underline{f_{i}} \\
& f_{0, i}+v_{i, i} \leq \overline{f_{i}} \longrightarrow f_{0, i}+v_{i, i}=-u_{i}^{2}+\overline{f_{i}}
\end{aligned}
$$

SYSTEM OF EQUATIONS FOR THE FORCE-FEASIBLE C-SPACE

HIGHER-DIMENSIONAL CONTINUATION FOR EXPLORATION

HIGHER-DIMENSIONAL CONTINUATION FOR EXPLORATION

ITERATIVELY BUILDS THE CHARTS OF THE ATLAS FROM A STARTING POINT

HIGHER-DIMENSIONAL CONTINUATION FOR EXPLORATION

INITIALIZE CHART

$$
\text { II f Institut de Robòtica } \quad \text { i Informàtica Industrial }]
$$

HIGHER-DIMENSIONAL CONTINUATION FOR EXPLORATION

INITIALIZE CHART

SELECT POINT AND PROJECT

CSIC

HIGHER-DIMENSIONAL CONTINUATION FOR EXPLORATION

INITIALIZE CHART

SELECT POINT AND PROJECT
TEST VALIDITY OF NEW CHART

HIGHER-DIMENSIONAL CONTINUATION FOR EXPLORATION

INITIALIZE CHART

SELECT POINT AND PROJECT
TEST VALIDITY OF NEW CHART
INITIALIZE NEW CHART

HIGHER-DIMENSIONAL CONTINUATION FOR EXPLORATION

INITIALIZE CHART

SELECT POINT AND PROJECT
TEST VALIDITY OF NEW CHART
INITIALIZE NEW CHART
CROP THE CHARTS

HIGHER-DIMENSIONAL CONTINUATION FOR EXPLORATION

INITIALIZE CHART

SELECT POINT AND PROJECT
TEST VALIDITY OF NEW CHART
INITIALIZE NEW CHART
CROP THE CHARTS

HIGHER-DIMENSIONAL CONTINUATION FOR EXPLORATION

INITIALIZE CHART

SELECT POINT AND PROJECT
TEST VALIDITY OF NEW CHART
INITIALIZE NEW CHART
CROP THE CHARTS
EXPAND THE ATLAS

HIGHER-DIMENSIONAL CONTINUATION FOR EXPLORATION

NEIGHBOUR CHARTS CROP THE POLYTOPE

POLYTOPE INSIDE THE BALL

CHART CLOSED

HIGHER-DIMENSIONAL CONTINUATION FOR EXPLORATION

CONSTANT ORIENTATION

$\left[\begin{array}{ll}18\end{array}\right]$
CSIC \ddot{H}°

CONSTANT ORIENTATION

Z FIXED

CONSTANT ORIENTATION

CONSTANT ORIENTATION

$\left[\mathbf{I}^{R} \mathbf{I}_{i}^{\text {institut dermat Robòtica Indusa }}\right.$
然CSIC

APPROACH TO COMPUTE SINGULARITY-FREE FORCE-FEASIBLE PATHS ON THE STEWART PLATFORM

RESOLVABILITY OF A SET OF WRENCHES

SYSTEM OF EQUATIONS FOR THE FORCE-FEASIBLE C-SPACE
HIGHER-DIMENSIONAL
CONTINUATION

NO EXPLICIT REPRESENTATION OF SINGULARITY LOCUS

ALLOWS COMPUTATION OF FORCEFEASIBLE WORKSPACE

TREATMENT OF COLLISIONS (RANDOMIZING)

APPLICATION TO CABLE-DRIVEN MANIPULATORS

