ON THE NUMERICAL CLASSIFICATION OF the singularities of robot manipulators

SINGULARITIES

COMPUTATION CLASSIFICATION?

C-SPACE INPUT SINGULARITIES OUTPUT

$$
\begin{aligned}
\Phi(q) & =0 \\
L \cdot m & =0
\end{aligned}
$$

$$
\left.\begin{array}{r}
\mathbf{\Phi}(\boldsymbol{q})=\mathbf{0} \\
\boldsymbol{L}_{I}^{\top} \boldsymbol{\xi}=\mathbf{0} \\
\|\boldsymbol{\xi}\|^{2}=1 \\
\boldsymbol{\Phi}(\boldsymbol{q})=\mathbf{0} \\
\boldsymbol{L}_{O}^{\top} \boldsymbol{\xi}=\mathbf{0} \\
\|\boldsymbol{\xi}\|^{2}=1
\end{array}\right\}
$$

passive

REDUNDANT INPUT

IMPOSSIBLE INPUT
REDUNDANT OUTPUT
IMPOSSIBLE OUTPUT

SINGULARITIES

redundant nput SINGULARITIES

REDUNDANT OUTPUT IMPOSSIBLE OUTPUT		Io	II	$\begin{gathered} \text { Io } \\ \text { and } \\ \text { II } \end{gathered}$	ІІ	$\begin{gathered} \text { Io } \\ \text { and } \\ \text { IIM } \end{gathered}$	$\begin{gathered} \text { II } \\ \text { and } \\ \text { IIM } \end{gathered}$	\| $\begin{gathered}\text { IO } \\ \text { and } \\ \text { If } \\ \text { and } \\ \text { IIM }\end{gathered}$
	RI	Y						
	RO		Y					
	RI and RO			Y	Y	Y	Y	Y
	RPM			Y	Y			Y
	RI and RPM			Y		Y		Y
ANTANEOUS	RO and RPM			Y			Y	Y
MOT	RI and RO and RPM			Y	Y	Y	Y	Y

NUMERICAL COMPUTATION

NUMERICAL COMPUTATION

NUMERICAL COMPUTATION

NUMERICAL COMPUTATION

NUMERICAL COMPUTATION

$$
\boldsymbol{F}(\boldsymbol{y})=\mathbf{0}
$$

NUMERICAL COMPUTATION

NUMERICAL COMPUTATION

NUMERICAL COMPUTATION

CLASSIFICATION

(i) $\boldsymbol{q} \in\{R I\} \Longleftrightarrow \operatorname{rank} \boldsymbol{L}_{O}<\operatorname{rank} \boldsymbol{L}_{p}+n$,
(ii) $\boldsymbol{q} \in\{R O\} \Longleftrightarrow \operatorname{rank} \boldsymbol{L}_{I}<\operatorname{rank} \boldsymbol{L}_{p}+n$,

CONDITIONS
OF
SINGULARITY
(iii) $\boldsymbol{q} \in\{R P M\} \Longleftrightarrow \operatorname{rank} \boldsymbol{L}_{p}<N-n$,
(iv) $\boldsymbol{q} \in\{I I\} \Longleftrightarrow \operatorname{rank} \boldsymbol{L}_{I}<\operatorname{rank} \boldsymbol{L}$,
(v) $\boldsymbol{q} \in\{I O\} \Longleftrightarrow \operatorname{rank} \boldsymbol{L}_{O}<\operatorname{rank} \boldsymbol{L}$,
(vi) $\boldsymbol{q} \in\{I I M\} \Longleftrightarrow \operatorname{rank} \boldsymbol{L}<N$,
(vii) $\boldsymbol{q} \in\{R I\}$ or $\boldsymbol{q} \in\{R P M\} \Longleftrightarrow \boldsymbol{q} \in\{I O\}$ or $\boldsymbol{q} \in\{I I M\} \Longleftrightarrow \boldsymbol{L}_{O}$ is singular,
(viii) $\boldsymbol{q} \in\{R O\}$ or $\boldsymbol{q} \in\{R P M\} \Longleftrightarrow \boldsymbol{q} \in\{I I\}$ or $\boldsymbol{q} \in\{I I M\} \Longleftrightarrow \boldsymbol{L}_{I}$ is singular

CLASSIFICATION

CONDITIONS OF
(i) $\boldsymbol{q} \in\{R I\} \Longleftrightarrow \operatorname{rank} \boldsymbol{L}_{O}<\operatorname{rank} \boldsymbol{L}_{p}+n$,
(ii) $\boldsymbol{q} \in\{R O\} \Longleftrightarrow \operatorname{rank} \boldsymbol{L}_{I}<\operatorname{rank} \boldsymbol{L}_{p}+n$,
(iii) $\boldsymbol{q} \in\{R P M\} \Longleftrightarrow \operatorname{rank} \boldsymbol{L}_{p}<N-n$, (iv) $q \in\{I I\} \Longleftrightarrow \operatorname{rank} \boldsymbol{L}_{I}<\operatorname{rank} \boldsymbol{L}$, $\boldsymbol{q} \in\{I O\} \Longleftrightarrow \operatorname{rank} \boldsymbol{L}_{O}<\operatorname{rank} \boldsymbol{L}$, SINGULARITY

(vii) $q \in\{R I\}$ or $q \in\{R P M\} \Longleftrightarrow q \in\{I O\}$ or
$\boldsymbol{q} \in\{I I M\} \Longleftrightarrow \boldsymbol{L}_{O}$ is singular,
(viii) $\boldsymbol{q} \in\{R O\}$ or $\boldsymbol{q} \in\{R P M\} \Longleftrightarrow \boldsymbol{q} \in\{I I\}$ or $q \in\{I I M\} \Longleftrightarrow L_{I}$ is singular

$$
\text { (iii) } \left.\longrightarrow \begin{array}{l}
\boldsymbol{\Phi}(\boldsymbol{q})=\mathbf{0} \\
\boldsymbol{L}_{P} \boldsymbol{\xi}_{P}=\mathbf{0} \\
\left\|\boldsymbol{\xi}_{P}\right\|^{2}=1
\end{array}\right\} \quad \mathrm{T} \mathrm{RPM}
$$

CLASSIFICATION

T1 RPM
T2 IIM
T3 RI+RPM
T4 RO+RPM
T5 II+IIM
T6 IO+IIM
T7 II,RI, IO,RO
T8 II,RI,IO,RO

CLASSIFICATION

T1 RPM

T2 IIM
T3 RI+RPM
T4 RO+RPM
T5 II+IIM
T6 IO+IIM
T7 II,RI,IO,RO

T8 II,RI,IO,RO

CLASSIFICATION
T1 RPM

T2 IIM

T3 RI+RPM
T4 RO+RPM
T5 II+IIM
T6 IO+IIM
T7 II,RI, IO,RO
T8 II,RI,IO,RO

CLASSIFICATION

T1 RPM

T2 IIM
T3 RI+RPM
T4 RO+RPM
T5 II+IIM
T6 IO+IIM
T7 II,RI,IO,RO

T8 II,RI,IO,RO

CLASSIFICATION

T1 RPM

T2 ॥.
T3 RI+RPM
T4 RO+RPM
T5 II+IIM
T6 IO+IIM
T7 II,RI,IO,RO

T8 II,RI,IO,RO

CLASSIFICATION

T1 RPM

T2 IIM
T3 RI+RPM
T4 RO+RPM
T5 II+IIM
T6 IO+IIM
T7 II,RI,IO,RO

	IO	II	IO and II	IIM	IO and IIM	II and IIM	IO and II and IIM
RI	Y						
RO		Y					
RI and RO			Y	Y	Y	Y	Y
RPM			Y	Y			Y
nianal NDM			Y		Y		Y
Ro-al Rem			Y			Y	Y
			Y	Y	Y	Y	Y

T8 II,RI,IO,RO

CLASSIFICATION

T1 RPM

T2 IIm
T3 RI+RPM
T4 RO+RPM
T5 II+IIM
T6 Io+IIM
T7 II,RI,Io,RO

	IO	II	IO and II	IIM	IO and IIM	II and IIM	IO and II and IIM
RI	Y						
RO		Y					
RI and RO			Y	Y	Y	Y	Y
RPM			Y	Y			Y
nitulu nom			Y		Y		Y
RO ard RDM			Y			Y	Y
niatu CO			Y	Y	Y	Y	

T8 II,RI,IO,RO

CLASSIFICATION

CONCLUSION

CLASSIFICATION OF THE SINGULARITY SET

COMPUTATION

$$
\begin{array}{rlr}
\Phi(q)=0 & \text { F/KP } & F(y)=0 \\
L \cdot m=0 & \text { l|yP } &
\end{array}
$$

COLLECTION OF BOXES

COMPUTATION

sequence of TESTS

