

ON THE NUMERICAL CLASSIFICATION OF THE SINGULARITIES OF ROBOT MANIPULATORS

Oriol Bohigas, Dimiter Zlatanov Montserrat Manubens, Lluís Ros

August 2012

SINGULARITIES

COMPUTATION CLASSIFICATION?

C-SPACE INPUT SINGULARITIES OUTPUT

 $\Phi(q) = 0$ $L \cdot m = 0$ input output passive

 $\left. \begin{array}{l} \boldsymbol{\Phi}(\boldsymbol{q}) = \boldsymbol{0} \\ \boldsymbol{L}_{I}^{\mathsf{T}}\boldsymbol{\xi} = \boldsymbol{0} \\ \|\boldsymbol{\xi}\|^{2} = 1 \end{array} \right\}$ $\Phi(\boldsymbol{q}) = \mathbf{0}$ $egin{aligned} & L_O^\mathsf{T} oldsymbol{\xi} &= \mathbf{0} \ & \|oldsymbol{\xi}\|^2 &= 1 \end{aligned}$

REDUNDANT INPUT **IMPOSSIBLE INPUT** REDUNDANT OUTPUT IMPOSSIBLE OUTPUT SINGULARITIES REDUNDANT 6 TYPES PASSIVE MOTION **INCREASED** 21 CLASSES INSTANTANEOUS MOTION

REDUNDANT INPUT SINGULARITIES

IMPOSSIBLE INPUT								ΙΟ
REDUNDANT OUTPUT		IO	П	IO and	IIM	IO and	II and	and 11
IMPOSSIBLE OUTPUT		10	11	II	11111	IIM	IIM	and
								IIM
	RI	Y						
	RO		Y					
INCREASED INSTANTANEOUS	RI and RO			Y	Y	Y	Y	Y
	RPM			Y	Y			Y
	RI and RPM			Y		Y		Y
	RO and RPM			Y			Y	Y
MOTION	RI and RO and RPM			Y	Y	Y	Y	Y

NUMERICAL COMPUTATION → CLASSIFICATION

 $oldsymbol{F}(oldsymbol{y}) = oldsymbol{0}$

CONDITIONS OF SINGULARITY

(i)
$$q \in \{RI\} \iff rank L_O < rank L_p + n$$
,
(ii) $q \in \{RO\} \iff rank L_I < rank L_p + n$,
(iii) $q \in \{RPM\} \iff rank L_p < N - n$,
(iv) $q \in \{II\} \iff rank L_I < rank L$,
(v) $q \in \{IO\} \iff rank L_O < rank L$,
(vi) $q \in \{IIM\} \iff rank L < N$,
(vii) $q \in \{RI\}$ or $q \in \{RPM\} \iff q \in \{IO\}$ or
 $q \in \{IIM\} \iff L_O$ is singular,
(viii) $q \in \{RO\}$ or $q \in \{RPM\} \iff q \in \{II\}$ or
 $q \in \{IIM\} \iff L_I$ is singular

CONDITIONS OF SINGULARITY

(i) $q \in \{RI\} \iff rank L_O < rank L_p + n$, (ii) $q \in \{RO\} \iff rank L_I < rank L_p + n$, (iii) $q \in \{RPM\} \iff rank L_p < N - n$, (iv) $q \in \{II\} \iff rank L_I < rank L$, (v) $q \in \{IO\} \iff rank L_O < rank L$, (vi) $q \in \{IIM\} \iff rank L < N$, (vii) $q \in \{RI\}$ or $q \in \{RPM\} \iff q \in \{IO\}$ or $q \in \{IIM\} \iff L_O$ is singular, (viii) $q \in \{RO\}$ or $q \in \{RPM\} \iff q \in \{II\}$ or $q \in \{IIM\} \iff L_I$ is singular

(iii)
$$\longrightarrow \begin{array}{c} \Phi(q) = \mathbf{0} \\ L_P \boldsymbol{\xi}_P = \mathbf{0} \\ \|\boldsymbol{\xi}_P\|^2 = 1 \end{array} \right\} \quad \begin{bmatrix} \mathsf{T1} \\ \mathsf{RPM} \end{bmatrix}$$

17

II,RI,IO,RO

Τ8

21

CONCLUSION

CLASSIFICATION OF THE SINGULARITY SET COMPUTATION COMPUTATION ю Ю Π and IO Π and IIM and Π and П M IIM and $\Phi(q) = 0$ FKP $L \cdot m = 0$ IVP IIM RI Y $\boldsymbol{F}(\boldsymbol{y}) = \boldsymbol{0}$ RO Y RI and RO Y Y Y Y RPM Y Υ Y RI and RPM KI UNU KO UNU KI P COLLECTION OF BOXES SEQUENCE OF TESTS

NUMERICAL METHOD BASED ON LINEAR RELAXATIONS