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aInstitut de Robòtica i Informàtica Industrial (UPC-CSIC)
Llorens Artigas 4-6, 08028 Barcelona, Catalonia
E-mails: {obohigas,mmanuben,llros@iri.upc.edu}

Abstract

The study of the singularity set is of utmost importance to understand the
local and global properties of a manipulator. After reviewing the mathemat-
ical conditions that characterize this set, and the physical consequences of
traversing each singularity type, this paper shows that its defining equations
can be formulated in an amenable manner on planar manipulators, allowing
to devise a conceptually-simple technique for isolating the set exhaustively,
even in higher-dimensional cases. As a result, the method obtains a collec-
tion of small boxes bounding the location of all points of the set, which can
be computed at any required precision in principle. Such boxes can be pro-
jected to the input or output coordinate spaces of the manipulator, obtaining
informative diagrams, or portraits, on the global motion capabilities of the
underlying mechanism. Examples are included that show the application of
the method to simple manipulators, and to complex mechanisms that would
be difficult to analyze using common-practice procedures.

Keywords: Singularity set, locus, forward and inverse singularity, planar
linkage, mechanism, manipulator, box approximation, linear relaxation.

1. Introduction

Φ(q) = 0 (1)

L ·m = 0
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Singularity Analysis is a central topic of Robot Kinematics. It has as
a goal to study certain special configurations, termed singular or critical,
where important changes take place in the kinetostatic performance of a
manipulator. Depending on the singularity type, control or dexterity losses
can arise, and there may appear unresolvable or uncontrollable end-effector
forces, among other effects. In the vast majority of applications, thus, the
study of singularities is motivated by a desire to avoid these configurations,
but it may be helpful to operate close to them sometimes, like in tasks involv-
ing drilling, fine-positioning, or the handling of heavy objects, for instance,
where extreme force or motion transformation ratios are often required. In-
dependently of the context of application, however, it is clear that the avail-
ability of reliable tools to compute and visualize the whole singularity set is
essential to properly assist the robot design and programming stages.

Numerous mathematical conditions aimed at characterizing singularity
have been given in the literature [1–5], even for manipulators of general
structure [6–10]. The earliest attempt to provide a general framework to
determine and classify all possible singular configurations can be attributed
to Gosselin and Angeles [6], who proposed the use of input/output velocity
equations to define the well-known “Type I” and “Type II” singularities,
where the velocity of the end-effector does not determine the velocities of the
actuators, and vice versa. The approach was sound, but neglected the role
played by passive joint velocities, and it was later found that further singu-
larity types existed that could not be framed into their formalism [7–9]. This
observation led Zlatanov to define singular configurations in a more general
way, as those where the forward or the inverse instantaneous kinematic prob-
lems1 become undetermined [9], and to identify three fundamental types of

1Understood as the computation of the overall configuration velocity, given the input
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need for the norm to be invariant with respect to change of frame
or units, because the condition ‖!!!‖2 = 1 only serves to guarantee
that !!! is not 000.

The solution of the system on the left in Eq. (2) corresponds
to all configurations where the FIKP is undeterminate, including
all input singularities, while the solution of the system on the
right includes all output singularities, where the IIKP is undeter-
minate. Configuration-space singularities will satisfy both sys-
tems in (2), as well as any analogous system obtained by deleting
n columns in LLL. The whole singularity set can be computed as
the union of the sets obtained as solutions of each system.

Types and Classes of Singularities
The singularity set can be seen to contain six distinct low-

level singularity types, depending on the cause of the degeneracy
of the FIKP or IIKP. These are redundant input (RI), redundant
output (RO), impossible input (II), impossible output (IO), in-
creased instantaneous mobility (IIM) and redundant passive mo-
tion (RPM) [19].

Each of the six singularity-type definitions describes an im-
portant change in the kinematic properties of the manipulator that
occurs in a singular configuration of that type. When the mecha-
nism is in a singularity of type RO or IO (RI or II), the output (in-
put) is undeterminate or restricted. In an IIM-type configuration
the instantaneous motion of the manipulator is undeterminate, no
matter which n parameters are being controlled. In an RPM-type
singularity, the passive motion of the mechanism is undetermi-
nate, which may create problems such as interference with other
links and obstacles.

Moreover, as proved in [19], any singular configuration be-
longs to several of the six singularity types, but only twenty-one
different combinations of singularity types, called singularity

1 2 3 4 5 6 7

IO

IO IO II and

IO II and IIM and and II

II IIM IIM and

IIM

1 RI Y

2 RO Y

3 RI and RO Y Y Y Y Y

4 RPM Y Y Y

5 RI and RPM Y Y Y

6 RO and RPM Y Y Y

7 RI and RO and RPM Y Y Y Y Y

TABLE 1. The twenty-one singularity classes.

classes, are possible. These correspond to the cells marked with
“Y” in Table 1. Configurations belonging to the same class are
equivalent in terms of the various types of kinematic and static
degeneracy that characterize mechanism singularity. It is, there-
fore, desirable to identify each constituent singularity class in
order to obtain a complete description of the singularity set. To
see how such identification can be performed, we next recall a
method for computing the whole singularity set [21], and then
show how such method can be applied to classify the points of
the set into the various possible singularity classes.

ISOLATION OF THE SINGULARITY SET
The method, which is based on an earlier approach for the

position analysis of multi-loop linkages [24], consists in first for-
mulating the systems of equations in (2) in an appropriate way,
and then using a numerical technique that exploits the particu-
lar structure of these systems to isolate the singularity set at the
desired resolution.

Equation formulation
For manipulators with non-helical pairs, and departing from

the generalised coordinates qqq proposed in [24], it is possible to
formulate both systems in (2) so that they adopt the form of a
polynomial system of quadratic equations, i.e. equations where
only monomials of the form a, a2, or ab intervene, where a and
b refer to any two of the variables. All variables in such systems
will only take values within limited intervals, because interval
bounds for all of the qqq variables can be readily obtained [24],
and equation ‖!!!‖2 = 1 limits the components of !!! to the [−1,1]
range. This allows the use of a particularly simple technique to
compute the solution of the systems in (2) numerically. For ease
of explanation, we will write any one of these systems as

FFF(yyy) = 000 (3)

hereafter, where yyy is the vector of variables involved in the sys-
tem, and FFF(yyy) is a quadratic vector-valued function.

Numerical solution
In order to solve (3), we start defining the changes of vari-

ables pi = y2i and bk = yiy j for each quadratic and bilinear mono-
mial in (3), transforming the system into the expanded form

"""(xxx) = 000
###(xxx) = 000

}

, (4)

where """(xxx) = 000 is a collection of linear equations in xxx and
###(xxx) = 000 is a collection of quadratic equations, each of which
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FIGURE 1. From left to right: Viviani’s curve, solution of the system formed by equations x2+y2+ z2 = 4a2 and (x−a)2+y2 = a2, and three steps
of the progression of the numerical method when computing such curve.

adopts one of the two forms xk = x2i or xk = xix j. The vector of
variables xxx contains the previous yyy variables and the newly de-
fined ones pi and bk. Note that all variables in xxx are bounded
within limited intervals, because the yyy variables are. Thus, from
the Cartesian product of such intervals, one can define a box B

that initially bounds all solutions of the considered system.
We can now solve a system of the form of (4) by recur-

sively applying two operations on the initial box B, called box
shrinking and box splitting. Using box shrinking, portions of B

containing no solution are eliminated by narrowing some of its
defining intervals. This process is repeated until either the box
is reduced to an empty set, in which case it contains no solution,
or the box is “sufficiently” small, in which case it is considered
a solution box, or the box cannot be “significantly” reduced, in
which case it is bisected into two sub-boxes via box splitting
(which simply bisects its largest interval). To converge to all so-
lutions, the whole process is recursively applied to the new sub-
boxes, until one obtains a collection B of solution boxes whose
side lengths are below a given threshold ! . As an illustrative
example, the progression of the method is illustrated in Fig. 1.

The crucial operation in this scheme is box shrinking, which
is implemented as follows. Note first that the solutions falling in
some sub-box Bc ⊆ B must lie in the linear variety defined by
"""(xxx) = 0. Thus, we may shrink Bc to the smallest possible box
bounding this variety inside Bc. The limits of the shrunk box
along, say, dimension xi can be found by solving the two linear
programs

LP1: Minimize xi, subject to: """(xxx) = 000,xxx ∈ Bc

LP2: Maximize xi, subject to: """(xxx) = 000,xxx ∈ Bc.

However, observe that Bc can be further reduced, because the
solutions must also satisfy all equations xk = x2i and xk = xix j in

###(xxx) = 000. These equations can be taken into account by noting
that, if [vi,ui] denotes the interval ofBc along dimension xi, then:

1. The portion of the parabola xk = x2i lying insideBc is bound
by the triangle A1A2A3, where A1 and A2 are the points
where the parabola intercepts the lines xi = vi and xi = ui,
and A3 is the point where the tangent lines at A1 and A2 meet
(Fig. 2a).

2. The portion of the hyperbolic paraboloid xk = xix j lying
inside Bc is bound by the tetrahedron B1B2B3B4, where
the points B1, . . . ,B4 are obtained by lifting the corners of
the rectangle [vi,ui]× [v j,u j] vertically to the paraboloid
(Fig. 2b).

(a)

(b)

A1

A2

A3

B1

B2

B3

B4

xk

xk

x j

xi

xi

ui

ui

vi

vi

u j
v j

FIGURE 2. Polytope bounds within boxBc.

4 Copyright c© 2012 by ASME

>B9A=CD!;&D*9HB?!?C*>
8



FIGURE 1. From left to right: Viviani’s curve, solution of the system formed by equations x2+y2+ z2 = 4a2 and (x−a)2+y2 = a2, and three steps
of the progression of the numerical method when computing such curve.

adopts one of the two forms xk = x2i or xk = xix j. The vector of
variables xxx contains the previous yyy variables and the newly de-
fined ones pi and bk. Note that all variables in xxx are bounded
within limited intervals, because the yyy variables are. Thus, from
the Cartesian product of such intervals, one can define a box B

that initially bounds all solutions of the considered system.
We can now solve a system of the form of (4) by recur-

sively applying two operations on the initial box B, called box
shrinking and box splitting. Using box shrinking, portions of B

containing no solution are eliminated by narrowing some of its
defining intervals. This process is repeated until either the box
is reduced to an empty set, in which case it contains no solution,
or the box is “sufficiently” small, in which case it is considered
a solution box, or the box cannot be “significantly” reduced, in
which case it is bisected into two sub-boxes via box splitting
(which simply bisects its largest interval). To converge to all so-
lutions, the whole process is recursively applied to the new sub-
boxes, until one obtains a collection B of solution boxes whose
side lengths are below a given threshold ! . As an illustrative
example, the progression of the method is illustrated in Fig. 1.

The crucial operation in this scheme is box shrinking, which
is implemented as follows. Note first that the solutions falling in
some sub-box Bc ⊆ B must lie in the linear variety defined by
"""(xxx) = 0. Thus, we may shrink Bc to the smallest possible box
bounding this variety inside Bc. The limits of the shrunk box
along, say, dimension xi can be found by solving the two linear
programs

LP1: Minimize xi, subject to: """(xxx) = 000,xxx ∈ Bc

LP2: Maximize xi, subject to: """(xxx) = 000,xxx ∈ Bc.

However, observe that Bc can be further reduced, because the
solutions must also satisfy all equations xk = x2i and xk = xix j in

###(xxx) = 000. These equations can be taken into account by noting
that, if [vi,ui] denotes the interval ofBc along dimension xi, then:

1. The portion of the parabola xk = x2i lying insideBc is bound
by the triangle A1A2A3, where A1 and A2 are the points
where the parabola intercepts the lines xi = vi and xi = ui,
and A3 is the point where the tangent lines at A1 and A2 meet
(Fig. 2a).

2. The portion of the hyperbolic paraboloid xk = xix j lying
inside Bc is bound by the tetrahedron B1B2B3B4, where
the points B1, . . . ,B4 are obtained by lifting the corners of
the rectangle [vi,ui]× [v j,u j] vertically to the paraboloid
(Fig. 2b).

(a)

(b)

A1

A2

A3

B1

B2

B3

B4

xk

xk

x j

xi

xi

ui

ui

vi

vi

u j
v j

FIGURE 2. Polytope bounds within boxBc.

4 Copyright c© 2012 by ASME

FIGURE 1. From left to right: Viviani’s curve, solution of the system formed by equations x2+y2+ z2 = 4a2 and (x−a)2+y2 = a2, and three steps
of the progression of the numerical method when computing such curve.

adopts one of the two forms xk = x2i or xk = xix j. The vector of
variables xxx contains the previous yyy variables and the newly de-
fined ones pi and bk. Note that all variables in xxx are bounded
within limited intervals, because the yyy variables are. Thus, from
the Cartesian product of such intervals, one can define a box B

that initially bounds all solutions of the considered system.
We can now solve a system of the form of (4) by recur-

sively applying two operations on the initial box B, called box
shrinking and box splitting. Using box shrinking, portions of B

containing no solution are eliminated by narrowing some of its
defining intervals. This process is repeated until either the box
is reduced to an empty set, in which case it contains no solution,
or the box is “sufficiently” small, in which case it is considered
a solution box, or the box cannot be “significantly” reduced, in
which case it is bisected into two sub-boxes via box splitting
(which simply bisects its largest interval). To converge to all so-
lutions, the whole process is recursively applied to the new sub-
boxes, until one obtains a collection B of solution boxes whose
side lengths are below a given threshold ! . As an illustrative
example, the progression of the method is illustrated in Fig. 1.

The crucial operation in this scheme is box shrinking, which
is implemented as follows. Note first that the solutions falling in
some sub-box Bc ⊆ B must lie in the linear variety defined by
"""(xxx) = 0. Thus, we may shrink Bc to the smallest possible box
bounding this variety inside Bc. The limits of the shrunk box
along, say, dimension xi can be found by solving the two linear
programs

LP1: Minimize xi, subject to: """(xxx) = 000,xxx ∈ Bc

LP2: Maximize xi, subject to: """(xxx) = 000,xxx ∈ Bc.

However, observe that Bc can be further reduced, because the
solutions must also satisfy all equations xk = x2i and xk = xix j in

###(xxx) = 000. These equations can be taken into account by noting
that, if [vi,ui] denotes the interval ofBc along dimension xi, then:

1. The portion of the parabola xk = x2i lying insideBc is bound
by the triangle A1A2A3, where A1 and A2 are the points
where the parabola intercepts the lines xi = vi and xi = ui,
and A3 is the point where the tangent lines at A1 and A2 meet
(Fig. 2a).

2. The portion of the hyperbolic paraboloid xk = xix j lying
inside Bc is bound by the tetrahedron B1B2B3B4, where
the points B1, . . . ,B4 are obtained by lifting the corners of
the rectangle [vi,ui]× [v j,u j] vertically to the paraboloid
(Fig. 2b).

(a)

(b)

A1

A2

A3

B1

B2

B3

B4

xk

xk

x j

xi

xi

ui

ui

vi

vi

u j
v j

FIGURE 2. Polytope bounds within boxBc.

4 Copyright c© 2012 by ASME

>B9A=CD!;&D*9HB?!?C*>
8



FIGURE 1. From left to right: Viviani’s curve, solution of the system formed by equations x2+y2+ z2 = 4a2 and (x−a)2+y2 = a2, and three steps
of the progression of the numerical method when computing such curve.

adopts one of the two forms xk = x2i or xk = xix j. The vector of
variables xxx contains the previous yyy variables and the newly de-
fined ones pi and bk. Note that all variables in xxx are bounded
within limited intervals, because the yyy variables are. Thus, from
the Cartesian product of such intervals, one can define a box B

that initially bounds all solutions of the considered system.
We can now solve a system of the form of (4) by recur-

sively applying two operations on the initial box B, called box
shrinking and box splitting. Using box shrinking, portions of B

containing no solution are eliminated by narrowing some of its
defining intervals. This process is repeated until either the box
is reduced to an empty set, in which case it contains no solution,
or the box is “sufficiently” small, in which case it is considered
a solution box, or the box cannot be “significantly” reduced, in
which case it is bisected into two sub-boxes via box splitting
(which simply bisects its largest interval). To converge to all so-
lutions, the whole process is recursively applied to the new sub-
boxes, until one obtains a collection B of solution boxes whose
side lengths are below a given threshold ! . As an illustrative
example, the progression of the method is illustrated in Fig. 1.

The crucial operation in this scheme is box shrinking, which
is implemented as follows. Note first that the solutions falling in
some sub-box Bc ⊆ B must lie in the linear variety defined by
"""(xxx) = 0. Thus, we may shrink Bc to the smallest possible box
bounding this variety inside Bc. The limits of the shrunk box
along, say, dimension xi can be found by solving the two linear
programs

LP1: Minimize xi, subject to: """(xxx) = 000,xxx ∈ Bc

LP2: Maximize xi, subject to: """(xxx) = 000,xxx ∈ Bc.

However, observe that Bc can be further reduced, because the
solutions must also satisfy all equations xk = x2i and xk = xix j in

###(xxx) = 000. These equations can be taken into account by noting
that, if [vi,ui] denotes the interval ofBc along dimension xi, then:

1. The portion of the parabola xk = x2i lying insideBc is bound
by the triangle A1A2A3, where A1 and A2 are the points
where the parabola intercepts the lines xi = vi and xi = ui,
and A3 is the point where the tangent lines at A1 and A2 meet
(Fig. 2a).

2. The portion of the hyperbolic paraboloid xk = xix j lying
inside Bc is bound by the tetrahedron B1B2B3B4, where
the points B1, . . . ,B4 are obtained by lifting the corners of
the rectangle [vi,ui]× [v j,u j] vertically to the paraboloid
(Fig. 2b).

(a)

(b)

A1

A2

A3

B1

B2

B3

B4

xk

xk

x j

xi

xi

ui

ui

vi

vi

u j
v j

FIGURE 2. Polytope bounds within boxBc.

4 Copyright c© 2012 by ASME

FIGURE 1. From left to right: Viviani’s curve, solution of the system formed by equations x2+y2+ z2 = 4a2 and (x−a)2+y2 = a2, and three steps
of the progression of the numerical method when computing such curve.

adopts one of the two forms xk = x2i or xk = xix j. The vector of
variables xxx contains the previous yyy variables and the newly de-
fined ones pi and bk. Note that all variables in xxx are bounded
within limited intervals, because the yyy variables are. Thus, from
the Cartesian product of such intervals, one can define a box B

that initially bounds all solutions of the considered system.
We can now solve a system of the form of (4) by recur-

sively applying two operations on the initial box B, called box
shrinking and box splitting. Using box shrinking, portions of B

containing no solution are eliminated by narrowing some of its
defining intervals. This process is repeated until either the box
is reduced to an empty set, in which case it contains no solution,
or the box is “sufficiently” small, in which case it is considered
a solution box, or the box cannot be “significantly” reduced, in
which case it is bisected into two sub-boxes via box splitting
(which simply bisects its largest interval). To converge to all so-
lutions, the whole process is recursively applied to the new sub-
boxes, until one obtains a collection B of solution boxes whose
side lengths are below a given threshold ! . As an illustrative
example, the progression of the method is illustrated in Fig. 1.

The crucial operation in this scheme is box shrinking, which
is implemented as follows. Note first that the solutions falling in
some sub-box Bc ⊆ B must lie in the linear variety defined by
"""(xxx) = 0. Thus, we may shrink Bc to the smallest possible box
bounding this variety inside Bc. The limits of the shrunk box
along, say, dimension xi can be found by solving the two linear
programs

LP1: Minimize xi, subject to: """(xxx) = 000,xxx ∈ Bc

LP2: Maximize xi, subject to: """(xxx) = 000,xxx ∈ Bc.

However, observe that Bc can be further reduced, because the
solutions must also satisfy all equations xk = x2i and xk = xix j in

###(xxx) = 000. These equations can be taken into account by noting
that, if [vi,ui] denotes the interval ofBc along dimension xi, then:

1. The portion of the parabola xk = x2i lying insideBc is bound
by the triangle A1A2A3, where A1 and A2 are the points
where the parabola intercepts the lines xi = vi and xi = ui,
and A3 is the point where the tangent lines at A1 and A2 meet
(Fig. 2a).

2. The portion of the hyperbolic paraboloid xk = xix j lying
inside Bc is bound by the tetrahedron B1B2B3B4, where
the points B1, . . . ,B4 are obtained by lifting the corners of
the rectangle [vi,ui]× [v j,u j] vertically to the paraboloid
(Fig. 2b).

(a)

(b)

A1

A2

A3

B1

B2

B3

B4

xk

xk

x j

xi

xi

ui

ui

vi

vi

u j
v j

FIGURE 2. Polytope bounds within boxBc.

4 Copyright c© 2012 by ASME

>B9A=CD!;&D*9HB?!?C*>
8



FIGURE 1. From left to right: Viviani’s curve, solution of the system formed by equations x2+y2+ z2 = 4a2 and (x−a)2+y2 = a2, and three steps
of the progression of the numerical method when computing such curve.

adopts one of the two forms xk = x2i or xk = xix j. The vector of
variables xxx contains the previous yyy variables and the newly de-
fined ones pi and bk. Note that all variables in xxx are bounded
within limited intervals, because the yyy variables are. Thus, from
the Cartesian product of such intervals, one can define a box B

that initially bounds all solutions of the considered system.
We can now solve a system of the form of (4) by recur-

sively applying two operations on the initial box B, called box
shrinking and box splitting. Using box shrinking, portions of B

containing no solution are eliminated by narrowing some of its
defining intervals. This process is repeated until either the box
is reduced to an empty set, in which case it contains no solution,
or the box is “sufficiently” small, in which case it is considered
a solution box, or the box cannot be “significantly” reduced, in
which case it is bisected into two sub-boxes via box splitting
(which simply bisects its largest interval). To converge to all so-
lutions, the whole process is recursively applied to the new sub-
boxes, until one obtains a collection B of solution boxes whose
side lengths are below a given threshold ! . As an illustrative
example, the progression of the method is illustrated in Fig. 1.

The crucial operation in this scheme is box shrinking, which
is implemented as follows. Note first that the solutions falling in
some sub-box Bc ⊆ B must lie in the linear variety defined by
"""(xxx) = 0. Thus, we may shrink Bc to the smallest possible box
bounding this variety inside Bc. The limits of the shrunk box
along, say, dimension xi can be found by solving the two linear
programs

LP1: Minimize xi, subject to: """(xxx) = 000,xxx ∈ Bc

LP2: Maximize xi, subject to: """(xxx) = 000,xxx ∈ Bc.

However, observe that Bc can be further reduced, because the
solutions must also satisfy all equations xk = x2i and xk = xix j in

###(xxx) = 000. These equations can be taken into account by noting
that, if [vi,ui] denotes the interval ofBc along dimension xi, then:

1. The portion of the parabola xk = x2i lying insideBc is bound
by the triangle A1A2A3, where A1 and A2 are the points
where the parabola intercepts the lines xi = vi and xi = ui,
and A3 is the point where the tangent lines at A1 and A2 meet
(Fig. 2a).

2. The portion of the hyperbolic paraboloid xk = xix j lying
inside Bc is bound by the tetrahedron B1B2B3B4, where
the points B1, . . . ,B4 are obtained by lifting the corners of
the rectangle [vi,ui]× [v j,u j] vertically to the paraboloid
(Fig. 2b).
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Abstract

The study of the singularity set is of utmost importance to understand the
local and global behaviour of a manipulator. After reviewing the mathemat-
ical conditions that characterize this set, and the kinematic consequences of
traversing each singularity type, this paper shows that the defining equations
of the set can be formulated in an amenable manner on planar manipulators,
allowing to devise a conceptually-simple technique for isolating the set ex-
haustively, even in higher-dimensional cases. As a result, the method delivers
a collection of small boxes bounding the location of all points of the set, which
can be refined to any desired precision in principle. Such boxes can be pro-
jected to the input or output coordinate spaces of the manipulator, obtaining
informative diagrams, called portraits, on the global motion capabilities of
the underlying mechanism. Examples are included that show the application
of the method to simple manipulators, and to complex ones that would be
difficult to analyze using common-practice procedures.

Keywords: Singularity set, locus, forward and inverse singularity, planar
linkage, mechanism, manipulator, box approximation, linear relaxation.

1. Introduction

F (y) = 0 (1)

Singularity Analysis is a central topic of Robot Kinematics. It has as
a goal to study certain special configurations, termed singular or critical,
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(which simply bisects its largest interval). To converge to all so-
lutions, the whole process is recursively applied to the new sub-
boxes, until one obtains a collection B of solution boxes whose
side lengths are below a given threshold ! . As an illustrative
example, the progression of the method is illustrated in Fig. 1.
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AN ILLUSTRATIVE EXAMPLE
To illustrate the process of the classification of the singular-

ity set, the 2-dof planar manipulator shown in Fig. 3 is used. The
inputs are the joint velocities at A and E, and the output is the
motion of point G. The equations !!!(qqq) = 0 are written as







































0=−x+2cos"D+ 3
2 cos"C,

0=−y+2sin"D+ 3
2 sin"C,

0= cos"A+ cos"B−2cos"D−1,
0= sin"A+ sin"B−2sin"D,
0= 2cos"D+ 3

2 cos"C+2cos"G−3cos"E −1,
0= 2sin"D+ 3

2 sin"C+2sin"G−3sin"E ,

(5)

where "A, "B, "C, "D, "E and "G are the counterclockwise angles
of links AB, BC, CG, DC, EF , and GF , respectively, relative to
the ground, and x, y are the coordinates of point G relative to a
fixed frame centered in D. The velocity equation of the manipu-
lator may be obtained, for instance, by differentiating (5) with re-
spect to all variables, but it could also be obtained using the twist
loop equations, or by any other means. In order to achieve the
desired quadratic formulation for all systems in Eq. (2) and Ta-
ble 2, the changes of variables c# = cos"# and s# = sin"# can be
applied for all # ∈ {A,B,C,D,E,G}. Since the variables c# and
s# represent the cosine and sine of a variable, the circle equations
c2# + s2# = 1 are introduced in the systems for all angles.

The manipulator can be seen as made of a 4-bar manipulator
(loop ABCD) and a 5-bar manipulator (loop DCGFE) with one
link in common (CD). As a whole, the manipulator has two de-
grees of freedom, so its configuration space is a surface, and one
may expect the singularity set to be made of curves or isolated
configurations. However, the link dimensions are chosen so that
the 4-bar part of the manipulator has a one-dimensional set of
singular configurations (joint C coincident with A, links AB and
BC can rotate around A), while the other part can still move for
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FIGURE 3. A 2-dof planar manipulator. The link dimensions are
AB= BC = DE = 1, AD=CD= FG= 2,CG= 1.5 and EF = 3.
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FIGURE 4. Complete singularity set projected onto the space of the
x, y and "A variables (top), and onto the space of the x and y variables
only (bottom). The configuration space is shown in blue. Green curves:
(RO, II), red curves and cylinder-shaped red surface: (RI, IO), orange
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(RI-RO-II-IO), cyan curves: (RI, IO) and (RI, RO, IIM), yellow dots:
(RI, IO), (RI, RO, IIM) and (RI, RPM, IO, IIM).

each of those configurations, with G moving on a circle. This
gives raise to a two-dimensional subset of singularities inside the
whole singularity set, which is illustrated in Fig. 4a, projected
onto the x, y and "A variables. The green, cyan and purple curves
are those configurations where the FIKP is undeterminate, and
the red curves, together with the cylinder-shaped red surface,
where the IIKP is undeterminate. Altogether, around 128000
boxes obtained by solving Eq. (2) at a small-enough & , form
an envelope of the singularity set of the manipulator. The surface
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(i) q ∈ {RI} ⇐⇒ rank LO < rank Lp + n,
(ii) q ∈ {RO} ⇐⇒ rank LI < rank Lp + n,
(iii) q ∈ {RPM} ⇐⇒ rank Lp < N − n,
(iv) q ∈ {II} ⇐⇒ rank LI < rank L,
(v) q ∈ {IO} ⇐⇒ rank LO < rank L,
(vi) q ∈ {IIM} ⇐⇒ rank L < N ,
(vii) q ∈ {RI} or q ∈ {RPM} ⇐⇒ q ∈ {IO} or

q ∈ {IIM} ⇐⇒ LO is singular,
(viii)q ∈ {RO} or q ∈ {RPM} ⇐⇒ q ∈ {II} or

q ∈ {IIM} ⇐⇒ LI is singular
Singularity Analysis is a central topic of Robot Kinematics. It has as

a goal to study certain special configurations, termed singular or critical,
where important changes take place in the kinetostatic performance of a
manipulator. Depending on the singularity type, control or dexterity losses
can arise, and there may appear unresolvable or uncontrollable end-effector
forces, among other effects. In the vast majority of applications, thus, the
study of singularities is motivated by a desire to avoid these configurations,
but it may be helpful to operate close to them sometimes, like in tasks involv-
ing drilling, fine-positioning, or the handling of heavy objects, for instance,
where extreme force or motion transformation ratios are often required. In-
dependently of the context of application, however, it is clear that the avail-
ability of reliable tools to compute and visualize the whole singularity set is
essential to properly assist the robot design and programming stages.

Numerous mathematical conditions aimed at characterizing singularity
have been given in the literature [1–4], even for manipulators of general
structure [5–9]. The earliest attempt to provide a general framework to de-
termine and classify all singular configurations can be attributed to Gosselin
and Angeles [5], who proposed the use of input/output velocity equations to
define the well-known “Type I” and “Type II” singularities, where the veloc-
ity of the end-effector does not determine the velocities of the actuators, and
vice versa. The approach was sound, but neglected the role played by passive
joint velocities, and it was later found that further singularity types existed
that could not be framed into their formalism [6–8]. This observation led Zla-
tanov to define singular configurations in a more general way, as those where
the forward or the inverse instantaneous kinematic problems1 become unde-

1Understood as the computation of the overall configuration velocity, given the input
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ability of reliable tools to compute and visualize the whole singularity set is
essential to properly assist the robot design and programming stages.

Numerous mathematical conditions aimed at characterizing singularity
have been given in the literature [1–4], even for manipulators of general
structure [5–9]. The earliest attempt to provide a general framework to de-
termine and classify all singular configurations can be attributed to Gosselin
and Angeles [5], who proposed the use of input/output velocity equations to
define the well-known “Type I” and “Type II” singularities, where the veloc-
ity of the end-effector does not determine the velocities of the actuators, and
vice versa. The approach was sound, but neglected the role played by passive
joint velocities, and it was later found that further singularity types existed
that could not be framed into their formalism [6–8]. This observation led Zla-
tanov to define singular configurations in a more general way, as those where
the forward or the inverse instantaneous kinematic problems1 become unde-
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Abstract

The study of the singularity set is of utmost importance to understand the
local and global behaviour of a manipulator. After reviewing the mathemat-
ical conditions that characterize this set, and the kinematic consequences of
traversing each singularity type, this paper shows that the defining equations
of the set can be formulated in an amenable manner on planar manipulators,
allowing to devise a conceptually-simple technique for isolating the set ex-
haustively, even in higher-dimensional cases. As a result, the method delivers
a collection of small boxes bounding the location of all points of the set, which
can be refined to any desired precision in principle. Such boxes can be pro-
jected to the input or output coordinate spaces of the manipulator, obtaining
informative diagrams, called portraits, on the global motion capabilities of
the underlying mechanism. Examples are included that show the application
of the method to simple manipulators, and to complex ones that would be
difficult to analyze using common-practice procedures.

Keywords: Singularity set, locus, forward and inverse singularity, planar
linkage, mechanism, manipulator, box approximation, linear relaxation.

1. Introduction

Φ(q) = 0

LPξP = 0

‖ξP‖2 = 1







(1)
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need for the norm to be invariant with respect to change of frame
or units, because the condition ‖!!!‖2 = 1 only serves to guarantee
that !!! is not 000.

The solution of the system on the left in Eq. (2) corresponds
to all configurations where the FIKP is undeterminate, including
all input singularities, while the solution of the system on the
right includes all output singularities, where the IIKP is undeter-
minate. Configuration-space singularities will satisfy both sys-
tems in (2), as well as any analogous system obtained by deleting
n columns in LLL. The whole singularity set can be computed as
the union of the sets obtained as solutions of each system.

Types and Classes of Singularities
The singularity set can be seen to contain six distinct low-

level singularity types, depending on the cause of the degeneracy
of the FIKP or IIKP. These are redundant input (RI), redundant
output (RO), impossible input (II), impossible output (IO), in-
creased instantaneous mobility (IIM) and redundant passive mo-
tion (RPM) [19].

Each of the six singularity-type definitions describes an im-
portant change in the kinematic properties of the manipulator that
occurs in a singular configuration of that type. When the mecha-
nism is in a singularity of type RO or IO (RI or II), the output (in-
put) is undeterminate or restricted. In an IIM-type configuration
the instantaneous motion of the manipulator is undeterminate, no
matter which n parameters are being controlled. In an RPM-type
singularity, the passive motion of the mechanism is undetermi-
nate, which may create problems such as interference with other
links and obstacles.

Moreover, as proved in [19], any singular configuration be-
longs to several of the six singularity types, but only twenty-one
different combinations of singularity types, called singularity

1 2 3 4 5 6 7

IO

IO IO II and

IO II and IIM and and II

II IIM IIM and

IIM

1 RI Y

2 RO Y

3 RI and RO Y Y Y Y Y

4 RPM Y Y Y

5 RI and RPM Y Y Y

6 RO and RPM Y Y Y

7 RI and RO and RPM Y Y Y Y Y

TABLE 1. The twenty-one singularity classes.

classes, are possible. These correspond to the cells marked with
“Y” in Table 1. Configurations belonging to the same class are
equivalent in terms of the various types of kinematic and static
degeneracy that characterize mechanism singularity. It is, there-
fore, desirable to identify each constituent singularity class in
order to obtain a complete description of the singularity set. To
see how such identification can be performed, we next recall a
method for computing the whole singularity set [21], and then
show how such method can be applied to classify the points of
the set into the various possible singularity classes.

ISOLATION OF THE SINGULARITY SET
The method, which is based on an earlier approach for the

position analysis of multi-loop linkages [24], consists in first for-
mulating the systems of equations in (2) in an appropriate way,
and then using a numerical technique that exploits the particu-
lar structure of these systems to isolate the singularity set at the
desired resolution.

Equation formulation
For manipulators with non-helical pairs, and departing from

the generalised coordinates qqq proposed in [24], it is possible to
formulate both systems in (2) so that they adopt the form of a
polynomial system of quadratic equations, i.e. equations where
only monomials of the form a, a2, or ab intervene, where a and
b refer to any two of the variables. All variables in such systems
will only take values within limited intervals, because interval
bounds for all of the qqq variables can be readily obtained [24],
and equation ‖!!!‖2 = 1 limits the components of !!! to the [−1,1]
range. This allows the use of a particularly simple technique to
compute the solution of the systems in (2) numerically. For ease
of explanation, we will write any one of these systems as

FFF(yyy) = 000 (3)

hereafter, where yyy is the vector of variables involved in the sys-
tem, and FFF(yyy) is a quadratic vector-valued function.

Numerical solution
In order to solve (3), we start defining the changes of vari-

ables pi = y2i and bk = yiy j for each quadratic and bilinear mono-
mial in (3), transforming the system into the expanded form

"""(xxx) = 000
###(xxx) = 000

}

, (4)

where """(xxx) = 000 is a collection of linear equations in xxx and
###(xxx) = 000 is a collection of quadratic equations, each of which
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or units, because the condition ‖!!!‖2 = 1 only serves to guarantee
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The solution of the system on the left in Eq. (2) corresponds
to all configurations where the FIKP is undeterminate, including
all input singularities, while the solution of the system on the
right includes all output singularities, where the IIKP is undeter-
minate. Configuration-space singularities will satisfy both sys-
tems in (2), as well as any analogous system obtained by deleting
n columns in LLL. The whole singularity set can be computed as
the union of the sets obtained as solutions of each system.

Types and Classes of Singularities
The singularity set can be seen to contain six distinct low-

level singularity types, depending on the cause of the degeneracy
of the FIKP or IIKP. These are redundant input (RI), redundant
output (RO), impossible input (II), impossible output (IO), in-
creased instantaneous mobility (IIM) and redundant passive mo-
tion (RPM) [19].

Each of the six singularity-type definitions describes an im-
portant change in the kinematic properties of the manipulator that
occurs in a singular configuration of that type. When the mecha-
nism is in a singularity of type RO or IO (RI or II), the output (in-
put) is undeterminate or restricted. In an IIM-type configuration
the instantaneous motion of the manipulator is undeterminate, no
matter which n parameters are being controlled. In an RPM-type
singularity, the passive motion of the mechanism is undetermi-
nate, which may create problems such as interference with other
links and obstacles.

Moreover, as proved in [19], any singular configuration be-
longs to several of the six singularity types, but only twenty-one
different combinations of singularity types, called singularity
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classes, are possible. These correspond to the cells marked with
“Y” in Table 1. Configurations belonging to the same class are
equivalent in terms of the various types of kinematic and static
degeneracy that characterize mechanism singularity. It is, there-
fore, desirable to identify each constituent singularity class in
order to obtain a complete description of the singularity set. To
see how such identification can be performed, we next recall a
method for computing the whole singularity set [21], and then
show how such method can be applied to classify the points of
the set into the various possible singularity classes.

ISOLATION OF THE SINGULARITY SET
The method, which is based on an earlier approach for the

position analysis of multi-loop linkages [24], consists in first for-
mulating the systems of equations in (2) in an appropriate way,
and then using a numerical technique that exploits the particu-
lar structure of these systems to isolate the singularity set at the
desired resolution.

Equation formulation
For manipulators with non-helical pairs, and departing from

the generalised coordinates qqq proposed in [24], it is possible to
formulate both systems in (2) so that they adopt the form of a
polynomial system of quadratic equations, i.e. equations where
only monomials of the form a, a2, or ab intervene, where a and
b refer to any two of the variables. All variables in such systems
will only take values within limited intervals, because interval
bounds for all of the qqq variables can be readily obtained [24],
and equation ‖!!!‖2 = 1 limits the components of !!! to the [−1,1]
range. This allows the use of a particularly simple technique to
compute the solution of the systems in (2) numerically. For ease
of explanation, we will write any one of these systems as

FFF(yyy) = 000 (3)

hereafter, where yyy is the vector of variables involved in the sys-
tem, and FFF(yyy) is a quadratic vector-valued function.

Numerical solution
In order to solve (3), we start defining the changes of vari-

ables pi = y2i and bk = yiy j for each quadratic and bilinear mono-
mial in (3), transforming the system into the expanded form

"""(xxx) = 000
###(xxx) = 000

}

, (4)

where """(xxx) = 000 is a collection of linear equations in xxx and
###(xxx) = 000 is a collection of quadratic equations, each of which
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all input singularities, while the solution of the system on the
right includes all output singularities, where the IIKP is undeter-
minate. Configuration-space singularities will satisfy both sys-
tems in (2), as well as any analogous system obtained by deleting
n columns in LLL. The whole singularity set can be computed as
the union of the sets obtained as solutions of each system.

Types and Classes of Singularities
The singularity set can be seen to contain six distinct low-

level singularity types, depending on the cause of the degeneracy
of the FIKP or IIKP. These are redundant input (RI), redundant
output (RO), impossible input (II), impossible output (IO), in-
creased instantaneous mobility (IIM) and redundant passive mo-
tion (RPM) [19].

Each of the six singularity-type definitions describes an im-
portant change in the kinematic properties of the manipulator that
occurs in a singular configuration of that type. When the mecha-
nism is in a singularity of type RO or IO (RI or II), the output (in-
put) is undeterminate or restricted. In an IIM-type configuration
the instantaneous motion of the manipulator is undeterminate, no
matter which n parameters are being controlled. In an RPM-type
singularity, the passive motion of the mechanism is undetermi-
nate, which may create problems such as interference with other
links and obstacles.

Moreover, as proved in [19], any singular configuration be-
longs to several of the six singularity types, but only twenty-one
different combinations of singularity types, called singularity
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classes, are possible. These correspond to the cells marked with
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equivalent in terms of the various types of kinematic and static
degeneracy that characterize mechanism singularity. It is, there-
fore, desirable to identify each constituent singularity class in
order to obtain a complete description of the singularity set. To
see how such identification can be performed, we next recall a
method for computing the whole singularity set [21], and then
show how such method can be applied to classify the points of
the set into the various possible singularity classes.

ISOLATION OF THE SINGULARITY SET
The method, which is based on an earlier approach for the

position analysis of multi-loop linkages [24], consists in first for-
mulating the systems of equations in (2) in an appropriate way,
and then using a numerical technique that exploits the particu-
lar structure of these systems to isolate the singularity set at the
desired resolution.

Equation formulation
For manipulators with non-helical pairs, and departing from

the generalised coordinates qqq proposed in [24], it is possible to
formulate both systems in (2) so that they adopt the form of a
polynomial system of quadratic equations, i.e. equations where
only monomials of the form a, a2, or ab intervene, where a and
b refer to any two of the variables. All variables in such systems
will only take values within limited intervals, because interval
bounds for all of the qqq variables can be readily obtained [24],
and equation ‖!!!‖2 = 1 limits the components of !!! to the [−1,1]
range. This allows the use of a particularly simple technique to
compute the solution of the systems in (2) numerically. For ease
of explanation, we will write any one of these systems as

FFF(yyy) = 000 (3)

hereafter, where yyy is the vector of variables involved in the sys-
tem, and FFF(yyy) is a quadratic vector-valued function.

Numerical solution
In order to solve (3), we start defining the changes of vari-

ables pi = y2i and bk = yiy j for each quadratic and bilinear mono-
mial in (3), transforming the system into the expanded form
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of the FIKP or IIKP. These are redundant input (RI), redundant
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creased instantaneous mobility (IIM) and redundant passive mo-
tion (RPM) [19].

Each of the six singularity-type definitions describes an im-
portant change in the kinematic properties of the manipulator that
occurs in a singular configuration of that type. When the mecha-
nism is in a singularity of type RO or IO (RI or II), the output (in-
put) is undeterminate or restricted. In an IIM-type configuration
the instantaneous motion of the manipulator is undeterminate, no
matter which n parameters are being controlled. In an RPM-type
singularity, the passive motion of the mechanism is undetermi-
nate, which may create problems such as interference with other
links and obstacles.

Moreover, as proved in [19], any singular configuration be-
longs to several of the six singularity types, but only twenty-one
different combinations of singularity types, called singularity
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classes, are possible. These correspond to the cells marked with
“Y” in Table 1. Configurations belonging to the same class are
equivalent in terms of the various types of kinematic and static
degeneracy that characterize mechanism singularity. It is, there-
fore, desirable to identify each constituent singularity class in
order to obtain a complete description of the singularity set. To
see how such identification can be performed, we next recall a
method for computing the whole singularity set [21], and then
show how such method can be applied to classify the points of
the set into the various possible singularity classes.

ISOLATION OF THE SINGULARITY SET
The method, which is based on an earlier approach for the

position analysis of multi-loop linkages [24], consists in first for-
mulating the systems of equations in (2) in an appropriate way,
and then using a numerical technique that exploits the particu-
lar structure of these systems to isolate the singularity set at the
desired resolution.

Equation formulation
For manipulators with non-helical pairs, and departing from

the generalised coordinates qqq proposed in [24], it is possible to
formulate both systems in (2) so that they adopt the form of a
polynomial system of quadratic equations, i.e. equations where
only monomials of the form a, a2, or ab intervene, where a and
b refer to any two of the variables. All variables in such systems
will only take values within limited intervals, because interval
bounds for all of the qqq variables can be readily obtained [24],
and equation ‖!!!‖2 = 1 limits the components of !!! to the [−1,1]
range. This allows the use of a particularly simple technique to
compute the solution of the systems in (2) numerically. For ease
of explanation, we will write any one of these systems as

FFF(yyy) = 000 (3)

hereafter, where yyy is the vector of variables involved in the sys-
tem, and FFF(yyy) is a quadratic vector-valued function.

Numerical solution
In order to solve (3), we start defining the changes of vari-

ables pi = y2i and bk = yiy j for each quadratic and bilinear mono-
mial in (3), transforming the system into the expanded form
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to all configurations where the FIKP is undeterminate, including
all input singularities, while the solution of the system on the
right includes all output singularities, where the IIKP is undeter-
minate. Configuration-space singularities will satisfy both sys-
tems in (2), as well as any analogous system obtained by deleting
n columns in LLL. The whole singularity set can be computed as
the union of the sets obtained as solutions of each system.

Types and Classes of Singularities
The singularity set can be seen to contain six distinct low-

level singularity types, depending on the cause of the degeneracy
of the FIKP or IIKP. These are redundant input (RI), redundant
output (RO), impossible input (II), impossible output (IO), in-
creased instantaneous mobility (IIM) and redundant passive mo-
tion (RPM) [19].

Each of the six singularity-type definitions describes an im-
portant change in the kinematic properties of the manipulator that
occurs in a singular configuration of that type. When the mecha-
nism is in a singularity of type RO or IO (RI or II), the output (in-
put) is undeterminate or restricted. In an IIM-type configuration
the instantaneous motion of the manipulator is undeterminate, no
matter which n parameters are being controlled. In an RPM-type
singularity, the passive motion of the mechanism is undetermi-
nate, which may create problems such as interference with other
links and obstacles.

Moreover, as proved in [19], any singular configuration be-
longs to several of the six singularity types, but only twenty-one
different combinations of singularity types, called singularity
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“Y” in Table 1. Configurations belonging to the same class are
equivalent in terms of the various types of kinematic and static
degeneracy that characterize mechanism singularity. It is, there-
fore, desirable to identify each constituent singularity class in
order to obtain a complete description of the singularity set. To
see how such identification can be performed, we next recall a
method for computing the whole singularity set [21], and then
show how such method can be applied to classify the points of
the set into the various possible singularity classes.

ISOLATION OF THE SINGULARITY SET
The method, which is based on an earlier approach for the

position analysis of multi-loop linkages [24], consists in first for-
mulating the systems of equations in (2) in an appropriate way,
and then using a numerical technique that exploits the particu-
lar structure of these systems to isolate the singularity set at the
desired resolution.

Equation formulation
For manipulators with non-helical pairs, and departing from

the generalised coordinates qqq proposed in [24], it is possible to
formulate both systems in (2) so that they adopt the form of a
polynomial system of quadratic equations, i.e. equations where
only monomials of the form a, a2, or ab intervene, where a and
b refer to any two of the variables. All variables in such systems
will only take values within limited intervals, because interval
bounds for all of the qqq variables can be readily obtained [24],
and equation ‖!!!‖2 = 1 limits the components of !!! to the [−1,1]
range. This allows the use of a particularly simple technique to
compute the solution of the systems in (2) numerically. For ease
of explanation, we will write any one of these systems as
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hereafter, where yyy is the vector of variables involved in the sys-
tem, and FFF(yyy) is a quadratic vector-valued function.

Numerical solution
In order to solve (3), we start defining the changes of vari-
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Each of the six singularity-type definitions describes an im-
portant change in the kinematic properties of the manipulator that
occurs in a singular configuration of that type. When the mecha-
nism is in a singularity of type RO or IO (RI or II), the output (in-
put) is undeterminate or restricted. In an IIM-type configuration
the instantaneous motion of the manipulator is undeterminate, no
matter which n parameters are being controlled. In an RPM-type
singularity, the passive motion of the mechanism is undetermi-
nate, which may create problems such as interference with other
links and obstacles.

Moreover, as proved in [19], any singular configuration be-
longs to several of the six singularity types, but only twenty-one
different combinations of singularity types, called singularity

1 2 3 4 5 6 7

IO

IO IO II and

IO II and IIM and and II

II IIM IIM and

IIM

1 RI Y

2 RO Y

3 RI and RO Y Y Y Y Y

4 RPM Y Y Y

5 RI and RPM Y Y Y

6 RO and RPM Y Y Y

7 RI and RO and RPM Y Y Y Y Y

TABLE 1. The twenty-one singularity classes.

classes, are possible. These correspond to the cells marked with
“Y” in Table 1. Configurations belonging to the same class are
equivalent in terms of the various types of kinematic and static
degeneracy that characterize mechanism singularity. It is, there-
fore, desirable to identify each constituent singularity class in
order to obtain a complete description of the singularity set. To
see how such identification can be performed, we next recall a
method for computing the whole singularity set [21], and then
show how such method can be applied to classify the points of
the set into the various possible singularity classes.

ISOLATION OF THE SINGULARITY SET
The method, which is based on an earlier approach for the

position analysis of multi-loop linkages [24], consists in first for-
mulating the systems of equations in (2) in an appropriate way,
and then using a numerical technique that exploits the particu-
lar structure of these systems to isolate the singularity set at the
desired resolution.

Equation formulation
For manipulators with non-helical pairs, and departing from

the generalised coordinates qqq proposed in [24], it is possible to
formulate both systems in (2) so that they adopt the form of a
polynomial system of quadratic equations, i.e. equations where
only monomials of the form a, a2, or ab intervene, where a and
b refer to any two of the variables. All variables in such systems
will only take values within limited intervals, because interval
bounds for all of the qqq variables can be readily obtained [24],
and equation ‖!!!‖2 = 1 limits the components of !!! to the [−1,1]
range. This allows the use of a particularly simple technique to
compute the solution of the systems in (2) numerically. For ease
of explanation, we will write any one of these systems as

FFF(yyy) = 000 (3)

hereafter, where yyy is the vector of variables involved in the sys-
tem, and FFF(yyy) is a quadratic vector-valued function.

Numerical solution
In order to solve (3), we start defining the changes of vari-

ables pi = y2i and bk = yiy j for each quadratic and bilinear mono-
mial in (3), transforming the system into the expanded form

"""(xxx) = 000
###(xxx) = 000

}

, (4)

where """(xxx) = 000 is a collection of linear equations in xxx and
###(xxx) = 000 is a collection of quadratic equations, each of which
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Box Tests applied Singularity classes Example configuration

B1

T1: E

(RO, II) →
T2: E
T7: E
T8: NE

T7+T8: E

B2,B3

T1: E

(RI, IO) →
T2: E
T7: NE
T8: E

T7+T8: E

B4

T1: E
T2: E (RI, IO)
T7: NE (RO, II)
T8: NE (RI, RO, IO, II) →

T7+T8: NE

B5

T1: E
T2: E (RI, IO)
T7: NE (RO, II)
T8: NE (RI, RO, II, IO) →

T7+T8: NE

B6

T1: E
T2: NE
T6: E (RI, IO)
T5: E (RO, II)
T7: NE (RI, RO, II, IO)
T8: NE (RI, RO, IIM) →

T7+T8: NE
T2+T7+T8: NE

B7

T1: NE (RO, II)
T2: NE (RI, IO)
T6: NE (RI, RO, II, IO)
T5: E (RI, RO, IIM)
T3: NE (RI, RO, IO, IIM)
T4: E (II, IO, RPM)

T1+T2: NE (RI, II, IO, RPM)
T3+T6: NE (RI, RPM, IO, IIM) →

(RPM, IIM)

TABLE 3. Some example boxes of the process of classification. Column “Singularity classes” shows those classes that have not been discarded by
the sequence of tests (column “Tests applied”), and those actually present inside the box are framed. Last column shows an example of a configuration
in the box belonging to the singularity class indicated by an arrow.
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T3+T6: NE (RI, RPM, IO, IIM) →

(RPM, IIM)

TABLE 3. Some example boxes of the process of classification. Column “Singularity classes” shows those classes that have not been discarded by
the sequence of tests (column “Tests applied”), and those actually present inside the box are framed. Last column shows an example of a configuration
in the box belonging to the singularity class indicated by an arrow.

8 Copyright c© 2012 by ASME

[=C2C*\

Box Tests applied Singularity classes Example configuration

B1

T1: E

(RO, II) →
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B7

T1: NE (RO, II)
T2: NE (RI, IO)
T6: NE (RI, RO, II, IO)
T5: E (RI, RO, IIM)
T3: NE (RI, RO, IO, IIM)
T4: E (II, IO, RPM)

T1+T2: NE (RI, II, IO, RPM)
T3+T6: NE (RI, RPM, IO, IIM) →

(RPM, IIM)

TABLE 3. Some example boxes of the process of classification. Column “Singularity classes” shows those classes that have not been discarded by
the sequence of tests (column “Tests applied”), and those actually present inside the box are framed. Last column shows an example of a configuration
in the box belonging to the singularity class indicated by an arrow.
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B1

T1: E

(RO, II) →
T2: E
T7: E
T8: NE

T7+T8: E

B2,B3

T1: E

(RI, IO) →
T2: E
T7: NE
T8: E

T7+T8: E

B4

T1: E
T2: E (RI, IO)
T7: NE (RO, II)
T8: NE (RI, RO, IO, II) →

T7+T8: NE

B5

T1: E
T2: E (RI, IO)
T7: NE (RO, II)
T8: NE (RI, RO, II, IO) →

T7+T8: NE

B6

T1: E
T2: NE
T6: E (RI, IO)
T5: E (RO, II)
T7: NE (RI, RO, II, IO)
T8: NE (RI, RO, IIM) →

T7+T8: NE
T2+T7+T8: NE

B7

T1: NE (RO, II)
T2: NE (RI, IO)
T6: NE (RI, RO, II, IO)
T5: E (RI, RO, IIM)
T3: NE (RI, RO, IO, IIM)
T4: E (II, IO, RPM)

T1+T2: NE (RI, II, IO, RPM)
T3+T6: NE (RI, RPM, IO, IIM) →

(RPM, IIM)

TABLE 3. Some example boxes of the process of classification. Column “Singularity classes” shows those classes that have not been discarded by
the sequence of tests (column “Tests applied”), and those actually present inside the box are framed. Last column shows an example of a configuration
in the box belonging to the singularity class indicated by an arrow.
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B1

T1: E

(RO, II) →
T2: E
T7: E
T8: NE

T7+T8: E

B2,B3

T1: E

(RI, IO) →
T2: E
T7: NE
T8: E

T7+T8: E

B4

T1: E
T2: E (RI, IO)
T7: NE (RO, II)
T8: NE (RI, RO, IO, II) →

T7+T8: NE

B5

T1: E
T2: E (RI, IO)
T7: NE (RO, II)
T8: NE (RI, RO, II, IO) →

T7+T8: NE

B6

T1: E
T2: NE
T6: E (RI, IO)
T5: E (RO, II)
T7: NE (RI, RO, II, IO)
T8: NE (RI, RO, IIM) →

T7+T8: NE
T2+T7+T8: NE

B7

T1: NE (RO, II)
T2: NE (RI, IO)
T6: NE (RI, RO, II, IO)
T5: E (RI, RO, IIM)
T3: NE (RI, RO, IO, IIM)
T4: E (II, IO, RPM)

T1+T2: NE (RI, II, IO, RPM)
T3+T6: NE (RI, RPM, IO, IIM) →

(RPM, IIM)

TABLE 3. Some example boxes of the process of classification. Column “Singularity classes” shows those classes that have not been discarded by
the sequence of tests (column “Tests applied”), and those actually present inside the box are framed. Last column shows an example of a configuration
in the box belonging to the singularity class indicated by an arrow.
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need for the norm to be invariant with respect to change of frame
or units, because the condition ‖!!!‖2 = 1 only serves to guarantee
that !!! is not 000.

The solution of the system on the left in Eq. (2) corresponds
to all configurations where the FIKP is undeterminate, including
all input singularities, while the solution of the system on the
right includes all output singularities, where the IIKP is undeter-
minate. Configuration-space singularities will satisfy both sys-
tems in (2), as well as any analogous system obtained by deleting
n columns in LLL. The whole singularity set can be computed as
the union of the sets obtained as solutions of each system.

Types and Classes of Singularities
The singularity set can be seen to contain six distinct low-

level singularity types, depending on the cause of the degeneracy
of the FIKP or IIKP. These are redundant input (RI), redundant
output (RO), impossible input (II), impossible output (IO), in-
creased instantaneous mobility (IIM) and redundant passive mo-
tion (RPM) [19].

Each of the six singularity-type definitions describes an im-
portant change in the kinematic properties of the manipulator that
occurs in a singular configuration of that type. When the mecha-
nism is in a singularity of type RO or IO (RI or II), the output (in-
put) is undeterminate or restricted. In an IIM-type configuration
the instantaneous motion of the manipulator is undeterminate, no
matter which n parameters are being controlled. In an RPM-type
singularity, the passive motion of the mechanism is undetermi-
nate, which may create problems such as interference with other
links and obstacles.

Moreover, as proved in [19], any singular configuration be-
longs to several of the six singularity types, but only twenty-one
different combinations of singularity types, called singularity

1 2 3 4 5 6 7

IO

IO IO II and

IO II and IIM and and II

II IIM IIM and

IIM

1 RI Y

2 RO Y

3 RI and RO Y Y Y Y Y

4 RPM Y Y Y

5 RI and RPM Y Y Y

6 RO and RPM Y Y Y

7 RI and RO and RPM Y Y Y Y Y

TABLE 1. The twenty-one singularity classes.

classes, are possible. These correspond to the cells marked with
“Y” in Table 1. Configurations belonging to the same class are
equivalent in terms of the various types of kinematic and static
degeneracy that characterize mechanism singularity. It is, there-
fore, desirable to identify each constituent singularity class in
order to obtain a complete description of the singularity set. To
see how such identification can be performed, we next recall a
method for computing the whole singularity set [21], and then
show how such method can be applied to classify the points of
the set into the various possible singularity classes.

ISOLATION OF THE SINGULARITY SET
The method, which is based on an earlier approach for the

position analysis of multi-loop linkages [24], consists in first for-
mulating the systems of equations in (2) in an appropriate way,
and then using a numerical technique that exploits the particu-
lar structure of these systems to isolate the singularity set at the
desired resolution.

Equation formulation
For manipulators with non-helical pairs, and departing from

the generalised coordinates qqq proposed in [24], it is possible to
formulate both systems in (2) so that they adopt the form of a
polynomial system of quadratic equations, i.e. equations where
only monomials of the form a, a2, or ab intervene, where a and
b refer to any two of the variables. All variables in such systems
will only take values within limited intervals, because interval
bounds for all of the qqq variables can be readily obtained [24],
and equation ‖!!!‖2 = 1 limits the components of !!! to the [−1,1]
range. This allows the use of a particularly simple technique to
compute the solution of the systems in (2) numerically. For ease
of explanation, we will write any one of these systems as

FFF(yyy) = 000 (3)

hereafter, where yyy is the vector of variables involved in the sys-
tem, and FFF(yyy) is a quadratic vector-valued function.

Numerical solution
In order to solve (3), we start defining the changes of vari-

ables pi = y2i and bk = yiy j for each quadratic and bilinear mono-
mial in (3), transforming the system into the expanded form

"""(xxx) = 000
###(xxx) = 000

}

, (4)

where """(xxx) = 000 is a collection of linear equations in xxx and
###(xxx) = 000 is a collection of quadratic equations, each of which
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Abstract

The study of the singularity set is of utmost importance to understand the
local and global properties of a manipulator. After reviewing the mathemat-
ical conditions that characterize this set, and the physical consequences of
traversing each singularity type, this paper shows that its defining equations
can be formulated in an amenable manner on planar manipulators, allowing
to devise a conceptually-simple technique for isolating the set exhaustively,
even in higher-dimensional cases. As a result, the method obtains a collec-
tion of small boxes bounding the location of all points of the set, which can
be computed at any required precision in principle. Such boxes can be pro-
jected to the input or output coordinate spaces of the manipulator, obtaining
informative diagrams, or portraits, on the global motion capabilities of the
underlying mechanism. Examples are included that show the application of
the method to simple manipulators, and to complex mechanisms that would
be difficult to analyze using common-practice procedures.
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1. Introduction

Φ(q) = 0 (1)

L ·m = 0
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Abstract

The study of the singularity set is of utmost importance to understand the
local and global behaviour of a manipulator. After reviewing the mathemat-
ical conditions that characterize this set, and the kinematic consequences of
traversing each singularity type, this paper shows that the defining equations
of the set can be formulated in an amenable manner on planar manipulators,
allowing to devise a conceptually-simple technique for isolating the set ex-
haustively, even in higher-dimensional cases. As a result, the method delivers
a collection of small boxes bounding the location of all points of the set, which
can be refined to any desired precision in principle. Such boxes can be pro-
jected to the input or output coordinate spaces of the manipulator, obtaining
informative diagrams, called portraits, on the global motion capabilities of
the underlying mechanism. Examples are included that show the application
of the method to simple manipulators, and to complex ones that would be
difficult to analyze using common-practice procedures.

Keywords: Singularity set, locus, forward and inverse singularity, planar
linkage, mechanism, manipulator, box approximation, linear relaxation.

1. Introduction

F (y) = 0 (1)

Singularity Analysis is a central topic of Robot Kinematics. It has as
a goal to study certain special configurations, termed singular or critical,
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