
IRI-TR-01-08

A Linear Relaxation Technique for the
Position Analysis of Multi-Loop Linkages

Josep M. Porta

Llúıs Ros

Federico Thomas



Abstract

This report presents a new method able to isolate all configurations that a multi-loop linkage
can adopt. We tackle the problem by providing formulation and resolution techniques that fit
particularly well together. The adopted formulation yields a system of simple equations (only
containing linear and bilinear terms, and trivial trigonometric functions for the helical pair
exclusively) whose special structure is later exploited by a branch-and-prune method based on
linear relaxations. The method is general, as it can be applied to linkages with single or multiple
loops with arbitrary topology, involving lower pairs of any kind, and complete, as all possible
solutions get accurately bounded, irrespectively of whether the linkage is rigid or mobile.

Institut de Robòtica i Informàtica Industrial (IRI)
Consejo Superior de Investigaciones Cient́ıficas (CSIC)

Universitat Politècnica de Catalunya (UPC)
Llorens i Artigas 4-6, 08028, Barcelona, Spain

Tel (fax): +34 93 401 5750 (5751)

http://www.iri.upc.edu

Corresponding author:

JM Porta
tel: +34 93 401 0775
porta@iri.upc.edu

http://www.iri.upc.edu/people/porta

Copyright IRI, 2008



Section 1 Introduction 1

1 Introduction

A linkage is an articulated mechanism of rigid links connected through lower-pair joints. We
are interested in linkages forming one or more kinematic loops, i.e., closed sequences of pairwise
articulated links. This report presents a new method for the position analysis of such linkages,
that is, for the computation of the configurations they can adopt, within specified ranges for their
degrees of freedom. A configuration is here understood in a kinematic sense: as an assignment
of positions and orientations to all links that respects the kinematic constraints imposed by all
joints, with no regard to possible link-link interferences. Several problems in Robotics translate
into the above one, or require an efficient module able to solve it. The problem arises, for
instance, when solving the inverse/forward kinematics of serial/parallel manipulators [32, 20],
when planning the coordinated manipulation of an object or the locomotion of a reconfigurable
robot [56], or in simultaneous localization and map-building [40]. The problem also appears
in other domains, such as in the simulation and control of complex deployable structures [27],
the theoretical study of rigidity [4], or the conformational analysis of biomolecules [55]. The
common denominator in all cases is the existence of one or more kinematic loops in the system
at hand, defining a linkage whose feasible configurations must be determined.

For decades, kinematicians have devoted considerable efforts to solve such problem, but em-
inently on an ad-hoc basis. Closed-form or efficient iterative solutions have been derived for
specific linkages, notable ones including those for the inverse kinematics of general 6R manipu-
lators [45], or for the forward kinematics of parallel platforms [50]. However, scarce efforts have
been devoted to obtain a general solver, able to tackle linkages of any kind. While it is true that
such solver could be implemented by algebraizing the problem and using any general technique
for systems of polynomial equations (see Section 2), our experience shows that, unfortunately, a
solution to both algebraization and resolution, treated as independent problems, does not neces-
sarily yield an efficient procedure. In this work, in contrast, we will propose solution techniques
to both problems that fit particularly well together.

A few previous works in the literature specifically provide general linkage solvers, but limited
to planar linkages only. These include the work by Nielsen and Roth, who gave an algorithm to
derive the Dixon resultant of any planar linkage [39], the work by Wampler, which improves on
Nielsen and Roth’s by applying a complex plane formulation [54], the work by Celaya et al. [8],
which provides an interval propagation algorithm, and, finally, the work by Porta et al. [41],
which attacks the problem via linear relaxations of the equations. A careful examination of
these methods shows that [41] is specially amenable for generalization to the spatial case, a task
we preliminary addressed in [42] and which we complete in the present work. As a result, we
contribute with a method able to solve the position analysis of any spatial linkage, irrespective of
the joint types it involves, of the number of loops it presents, and of the loops’ interconnection
pattern. In every case the method returns a discrete map of the linkage configuration space
given as a box approximation—a collection of boxes enclosing all of its points at the desired
resolution level. Such map allows visualizing the linkage rigid and flexible assembly modes, and
bifurcations.

The rest of the report is organized as follows. Section 2 briefly reviews related work concern-
ing the resolution of the problem using general techniques for systems of algebraic equations.
Section 3 shows how the position analysis of a multi-loop linkage can be formulated as a canonical
system of quadratic, bilinear, and trivial trigonometric equations. A linear relaxation method
for solving this system is next presented in Section 4. Section 5 includes several experiments il-
lustrating the performance of a C implementation of the technique. Finally, the report concludes
in Section 6 summarizing the main contributions and points deserving further attention.



2 Position Analysis of Multi-Loop Linkages

2 Related Work

Although the position analysis problem can be approached by geometric constructive tech-
niques [13], only the algebraic methods have proved general enough to tackle all problem in-
stances. These methods consist in characterizing the linkage configurations by an algebraic
system of equations that is then solved using standard techniques. Reviews of such techniques
in the context of Robotics, CAD/CAM and Molecular Modelling can be found for example
in [38], [19], and [43], respectively. Broadly speaking, the proposed methods fall into three cat-
egories, depending on whether they use algebraic geometry, continuation, or branch-and-prune
techniques.

Algebraic-geometric methods, including those based on resultants and Gröbner bases, use
variable elimination to reduce the initial system to a univariate polynomial. The roots of this
polynomial, once backsubstituted into other equations, yield all solutions of the original system.
These methods have proved quite efficient in fairly non-trivial problems such as the inverse
kinematics of general 6R manipulators [32, 45], or the forward analysis of general Stewart-
Gough platforms [50]. Recent progress on the theory of sparse resultants, moreover, qualifies
them as a very promising set of techniques [10].

Continuation methods, in contrast, begin with an initial system whose solutions are known,
and then transform it gradually to the system whose solutions are sought, while tracking all
solution paths along the way. In its original form, this technique was known as the Bootstrap
Method, as developed by Roth and Freudenstein [47], and subsequent work by Garcia and Li [14],
Garcia and Zangwill [15], Morgan [35], and Li et al. [30], among others, led the procedure
into its current highly-developed state [49, 17]. These methods have been responsible for the
first solutions to many long-standing problems in Kinematics. For example, using them, Tsai
and Morgan first showed that the inverse kinematics of the general 6R manipulator has up
to sixteen solutions [28], Raghavan showed that the direct kinematics of the general Stewart-
Gough platform can have at most forty solutions [44], and Wampler et al. solved nine-point
path synthesis problems for four-bar linkages [52].

In a different approach, branch-and-prune methods use approximate bounds of the solution
set in order to rule out portions of the search space that contain no solution. The initial domain
is iteratively reduced as much as possible, and then bisected in two halves. The whole reduction-
bisection process is then applied on each half recursively, until a fine-enough approximation of
the solution set is derived. The convergence of this scheme is guaranteed by the fact that the
bounds get tighter as the intermediate domains get smaller.

While algebraic-geometric and continuation methods are general, they have a number of
limitations in practice. On the one hand, algebraic-geometric methods usually explode in com-
plexity, may introduce extraneous roots, and can only be applied to relatively simple systems of
equations. Beyond this, they may require the solution of high-degree polynomials, which may
be a numerically ill-conditioned step in some cases. On the other hand, continuation methods
must be implemented in exact rational arithmetic to avoid numerical instabilities, leading to
important memory requirements, and, like elimination methods, they must compute all possible
roots, even the complex ones, which slows the process substantially on systems with a small
fraction of real roots. Branch-and-prune methods are also general, but present a number of
advantages that make them preferable in our case: (1) Contrarily to many elimination methods,
they do not require intuition-guided symbolic reductions, (2) they directly isolate the real roots,
(3) they can be made numerically robust without resorting to extra-precision arithmetic, and
(4) some of them can tackle under- and over-constrained problems without any modification.
These are the main reasons that motivate the approach we present, which belongs to this latter
category.

Two families of branch-and-prune methods can be distinguished, depending on whether they



Section 3 Kinematic Equations 3

bound the solution set via Taylor expansions, or via polytopes.

Within the first family, the interval Newton method [18, 46, 11, 7, 21, 22] is perhaps the
most-studied one. This method is based on the mean value theorem or, what is the same, on
a zeroth-order Taylor expansion of the equations with a remainder of order one. The method
requires the interval evaluation of the inverse of the Jacobian involved in the Taylor remainder
and, therefore, it is only applicable to systems where such Jacobian is non-singular at all points
of the input domain. Daney [9] and Gavriliu [16] present methods relying on first-order Taylor
approximations of the equations, with bounded second-order reminders. While [9] uses Linear
Programming to determine the area of feasible solutions, [16] solves a linear system instead,
inverting a Jacobian matrix. The main difference with respect to interval Newton methods is
that, here, the matrix to be inverted is real-valued and, therefore, the Jacobian is only required
to be non-singular at the linearization point. Results show that first-order methods outperform
zeroth-order ones [16]. Higher-order Taylor approximations are used in the so-called Taylor
forms [3, 36], but they are limited to singe variable, single equation problems.

Methods in the second family bound the solutions by deriving, at each iteration, a convex
polytope enclosing the solution set. In fact, such polytope is never determined explicitly, as its
exact form can be rather complex. Instead, its rectangular hull is readily derived via Linear
Programming. Polytope methods have similar convergence properties to Taylor methods [48, 25],
but present a number of advantages: (1) they avoid the computation of derivatives and Jacobian
inverses, (2) they naturally account for inequalities in the problem, and (3) they can directly deal
with under- or over-constrained problems. The first methods of this kind appeared in the early
nineties, by hand of Sherbrooke and Patrikalakis, who derived the polytope from properties of
the equations’ Bernstein form [48]. Later on, Yamamura [57] and Kolev [26] presented algorithms
where the equations are bounded by polytopes made out of bands. In the first case, the bands
are aligned according to the linear terms of the equations and the interval evaluation of the
non-linear terms defines their width. In the second case, the slopes of trivial functions define the
bands’ orientation, and the roots of a univariate polynomial yield their width. More recently,
linear relaxation techniques have been proposed [29], following a research line that can be traced
back to the seventies [1, 33]. A linear relaxation is a set of linear inequalities that tightly bound
a particular type of function. The simplest possible relaxation is the one obtained from a first-
order Taylor expansion plus a second-order remainder that, when bounded, defines a polytope
similar to those of Yamamura’s and Kolev’s methods. However, rather than resorting to general
Taylor expansions, linear relaxations are defined on an ad-hoc basis for each function, including
as many linear constraints as necessary to produce better bounds for the function at hand.

Among polytope methods, those based on linear relaxations are usually faster, as they de-
fine tighter polytopes with smaller linear programs. Their drawnback is, however, that although
linear relaxations are easy to define and yield efficient pruning, they do so only on polynomial
equations with simple terms (usually quadratic, or bilinear terms). While in principle any poly-
nomial system could be transformed into such form, the transformation would introduce too
extra variables, rendering the solution method inefficient. This is precisely why, being superior
in principle, linear relaxation techniques have not been tried in the past on well-established alge-
braizations of the position analysis problem. This work overcomes this limitation by proposing
a new formulation that comes in the adequate form, together with accurate relaxations for its
defining equations.

3 Kinematic Equations

This section formulates the kinematic equations of a linkage. Contrarily to the standard ap-
proach, all links will be oriented with respect to an absolute frame, rather than by giving their
relative angles to vicinal links.



4 Position Analysis of Multi-Loop Linkages

We introduce some definitions for the purpose of discussion. A linkage is a pair L = (L, J),
where L = {L1, . . . , Ln} is a set of rigid links, and J = {J1, . . . , Jm} is a set of lower-pair joints,
each connecting a couple of links. Every linkage has an associated graph G(L) = (V, E) encoding
its topology. We place a node in V for every link Li ∈ L, and an edge (u, v) in E if the links
associated with u and v are connected by a joint. We also furnish every link Li with a local
reference frame, denoted Fi, and anchor any one of the links to the ground, letting its reference
frame be the absolute frame, Fa. We will use the notation pFi to indicate that the components
of vector p ∈ R

3, representing the coordinates of point P , are given in the basis of Fi. Vectors
with no superscript are assumed to be given in the basis of the absolute frame.

A linkage configuration is an assignment of a pose (ri,Ri) to each link, where ri ∈ R
3 is the

absolute position of Fi’s origin, and Ri is a 3 × 3 rotation matrix giving the orientation of Fi

relative to Fa. Note that we cannot assign arbitrary poses to the links, since the joints impose
certain constraints that must be fulfilled. We next formulate them explicitly.

3.1 Joint equations

We start assuming that the linkage consists of only one loop, with links and joints numbered
from 1 to n, consecutively, and that all joints are of revolute type. Later on, the formulation
will be easily extended to arbitrary linkage topologies and joint types.

Let us derive the assembly constraints imposed by joint Ji on its two links, Li and Li+1. If
Pi and Qi are two different points on the axis of Ji (Fig. 1), the valid poses for such links are
those that fulfill1

ri + Ri q
Fi

i = ri+1 + Ri+1 q
Fi+1

i , (1)

Ri d
Fi

i = Ri+1 d
Fi+1

i , (2)

where di = qi − pi. The first condition forces Li to be placed so that the point Qi, seen as
attached to Fi, coincides with the same point, seen as attached to Fi+1. The second condition
does a similar identification for the di vector. Note that, if Ri = (ûi, v̂i, ŵi), then the following
orthonormality conditions must also hold for i = 1, . . . , n, so that Ri represents a valid rotation:

‖ûi‖ = 1, (3)

‖v̂i‖ = 1, (4)

ûi · v̂i = 0, (5)

ûi × v̂i = ŵi. (6)

Definition 1. The basic system of equations of a linkage is the one formed by Eqs. (1) and (2),
gathered for all joints, and Eqs. (3)-(6), gathered for all links.

Definition 2. A feasible configuration is a tuple (r1,R1, . . . , rn,Rn) that satisfies all equations
of the basic system.

3.2 Loop equations

Our next goal is to show that the basic system can actually be simplified, reducing the number
of equations and variables involved. Note for this that we can write Eq. (1) as

ri + Ri p
Fi

i + Ri d
Fi

i −Ri+1 q
Fi+1

i − ri+1 = 0 (7)

1In what follows, indices will be cyclic, so that indices n + 1 and 0 will refer to indices 1 and n, respectively.



Section 3 Kinematic Equations 5

ẑi

ẑi+1

Fi

Fi+1

φi

Li

Li+1

Pi

Qi

di

Figure 1: Elements intervening in the assembly constraints of a revolute joint.

ri+2

polygon_i

−qipi

O

polygon_i−1 polygon_i+1

ri−1

p1
qn

Link L1 (ground)

Link Li−1

Link Li Link Li+1

Link Li+2

Joint Ji

ri ri+1

a1

ai ai+1

d1

di

dnP1

Pi

Qi−1 Pi+1

Qi

Qn

Figure 2: Schematic representation of the joint and loop equations. The joint
equation for Ji expresses the closure of a pentagon through Ji (thick arrows).
The loop equation expresses the closure of the polygon defined by the ai and
di vectors (the outer perimeter of all pentagons).

which can be interpreted as the sum of five vectors forming a closed polygon (Fig. 2). This
implies that if we add up equation (7), for i = 1, . . . , n, we obtain

n
∑

i=1

Ri a
Fi

i + Ri d
Fi

i = 0, (8)

where ai = pi − qi−1. We call Eq. (8) a loop equation, as it expresses the fact that the ai and
di vectors form a closed polygon.



6 Position Analysis of Multi-Loop Linkages

Definition 3. The reduced system of a single-loop linkage L is the one formed by Eqs. (2),
gathered for all joints, Eqs. (3)-(6), gathered for all links, and Eq. (8).

Definition 4. A feasible orientation of a linkage is an assignment of a 3×3 matrix Ri to each
of its links such that all equations in the reduced system get satisfied.

Observe that the reduced system only contains the Ri matrices as variables (the ri vectors
have been eliminated) and much less equations (n equations of the basic system have been
replaced by just one equation). We next prove that solving any of the two systems is equivalent.

Proposition 5. Assuming that link L1 is the ground, with r1 = 0 and R1 = I, the solutions
of the reduced system are in one-to-one correspondence with the solutions of the basic system.

Proof 1 Clearly, if the tuple (r1,R1, . . . , rn,Rn) satisfies the basic system, the tuple (R1, . . . ,Rn)
also satisfies the reduced system, and we only need to prove the converse.

Given a feasible orientation (R1, . . . ,Rn) we only need to give the associated ri vectors,
i = 1, . . . , n, to complete it to a feasible configuration. For a link Li, we can compute its ri using
the recurrence

rk = rk−1 + Rk−1 p
Fk−1

k−1
+ Rk−1 d

Fk−1

k−1
−Rk qFk

k−1
, (9)

for k = 2, . . . , i. Observe that the use of this recurrence makes Eq. (7), and thus Eq. (1), be
satisfied on joints J1, . . . , Ji−1. However, we can also compute ri using the recurrence

rk = rk+1 −Rk pFk

k −Rk dFk

k + Rk+1 q
Fk+1

k (10)

for k = i, . . . , n, which renders Eq. (7) satisfied on joints Ji, Ji+1, . . . , Jn. To conclude the
proof, we only need to check whether the ri values, computed either via Eq. (9) or Eq. (10), do
coincide. Note for this that, taking into account that p1 = qn + R1 aF1

1
, and using (9), then ri

can be written in solved form as

ri = qn +





i−1
∑

j=1

Rj a
Fj

j + Rj d
Fj

j



−Ri q
Fi

i−1
, (11)

and using (10) as

ri = qn −





n
∑

j=i

Rj a
Fj

j + Rj d
Fj

j



−Ri q
Fi

i−1
. (12)

The two values will coincide if the difference between the right-hand sides of Eqs. (11) and (12)
vanishes. But this is the case, since such difference is

n
∑

j=1

Rj a
Fj

j + Rj d
Fj

j ,

and according to Eq. (8) this summation vanishes.

3.3 Multiple loops

We next extend the formulation to cope with linkages L = (L, J) with an arbitrary graph G(L).
Note first that if G(L) is a tree (Fig. 3a), then the position analysis of L becomes trivial: we
can parameterize the configurations of L by the relative joint angles of one link with respect to
its predecessor in the tree, and the set of valid angle tuples is simply Tm, the m-dimensional
torus. Similarly, the graph of a general linkage can be seen as a tree of “ordinary” nodes and



Section 3 Kinematic Equations 7

Pair Shape Joint equations δi term

Revolute Pi

Qi

di

ri + Ri q
Fi

i = ri+1 + Ri+1 q
Fi+1

i

Ri d
Fi

i = Ri+1 d
Fi+1

i

Ri d
Fi

i

Prismatic Pi

Qi

di d̂i

ri + Ri p
Fi

i + di Ri d̂
Fi

i = ri+1 + Ri+1 q
Fi+1

i .
Ri = Ri+1

di Ri d̂
Fi

i

Cylindrical
Pi

Qi

di d̂i

ri + Ri p
Fi

i + diRi d̂
Fi

i = ri+1 + Ri+1 q
Fi+1

i

Ri d̂
Fi

i = Ri+1 d̂
Fi+1

i ,

Helical Pi

Qi

di d̂i

φi

ri + Ri p
Fi

i + di Ri d̂
Fi

i = ri+1 + Ri+1 q
Fi+1

i

Ri d̂
Fi

i = Ri+1 d̂
Fi+1

i ,
φi = ki di

Spherical
Qi

ri + Ri q
Fi

i = ri+1 + Ri+1 q
Fi+1

i 0

Planar

n̂i n̂i+1

Pi
Qi

πi

di

ri + Ri p
Fi

i + di = ri+1 + Ri+1 q
Fi+1

i

di ·Ri n̂
Fi

i = 0

Ri n̂
Fi

i = −Ri+1 n̂
Fi+1

i+1
.

di

Table 1: Joint equations and δi term for all lower pairs.

“block” nodes2 (Fig. 3b) and the position analysis of L reduces to the position analysis of its
constituent blocks. We assume hereafter, thus, that G(L) is a block graph.

We now realize that the loop equation (8) must hold for every cycle of G(L) since, along
the cycle, the ai and di vectors must necessarily form a closed polygon. However, not all loop
equations are independent.

Proposition 6 : For a linkage L, every loop equation can be expressed as a linear combination
of the loop equations associated with a cycle basis of G(L).

Proof 2 Let C be a cycle of G(L) = (V, E). Assuming E = {e1, . . . , em}, we may encode C
with the binary vector c = (c1, . . . , cm), where ci = 1 if edge ei belongs to the cycle, and ci = 0
otherwise. It is well known that, using the symmetric difference ⊕ as vector addition3, the set
of cycle vectors defined in this way forms a vector space, CG. Thus, if A and B are cycles with
vectors a and b, then c = a ⊕ b also defines a cycle. It is also known that any cycle c can be
expressed as

c = c1 ⊕ . . .⊕ ck, (13)

2A block is a maximal subgraph where every two vertices are traversed by one cycle
3The symmetric difference of two binary vectors, c = a ⊕ b, is their element-wise XOR. I.e., ci = 1 if ai and

bi have different values, and ci = 0 otherwise.



8 Position Analysis of Multi-Loop Linkages

(a) (b)

Figure 3: (a) A tree (b) A graph with two blocks, shown as shaded regions.

where c1, . . . , ck are vectors of a basis of CG. The proposition can be proved by showing that the
loop equation corresponding to c is the sum of the loop equations corresponding to c1, . . . , ck.
Actually, we only need to prove this claim for the k = 2 case, since the general case follows by
induction on the number of sumands in Eq. (13). Suppose thus that a cycle C is the symmetric
difference of two other cycles, C1 and C2, i.e., c = c1 ⊕ c2. Then, using Fig. (4) we easily see
that the loop equation of C is the sum of the loop equations of C1 and C2 since (1) such sum
will cancel out the ai and di terms belonging to edges both in C1 and C2, and (2) all ai terms
corresponding to C are either ai terms corresponding to C1 or C2, or a sum of them.

Definitions 1 and 3 also apply to multi-loop linkages, with the exception that the reduced
system contains one loop equation for each cycle of a selected cycle basis of G(L). The analogue
of Proposition 5 also holds:

Proposition 7. Let L be a linkage for which G(L) is a block graph. Assuming that link L1

is the ground, with r1 = 0 and R1 = I, the solutions of the reduced system are in one-to-one
correspondence with the solutions of the basic system.

Proof 3 As for Proposition 5, we only need to prove that every feasible orientation can be
completed to a feasible configuration. This only requires assigning a position vector ri to every
link Li ∈ L so that all joint equations get satisfied. Let u1 be the node of G(L) corresponding to
the ground link L1, and let ui be the node corresponding to any other link Li. Let P be any path
of G(L) connecting u1 with ui. We can let ri be the position vector defined by recurrence (9),
applied on the chain of links found along P . If we apply such recurrence on a different path P ′

connecting u1 with ui, we will obtain the same ri value because, as in Proposition 5, P and P ′

form a closed loop. Thus, the ri values computed in this way are unique and consistent, and
satisfy all joint equations of the linkage.

As a corollary, we have that the reduced system provides a set of necessary and sufficient
conditions characterizing the feasible configurations of the linkage. Although the basic system
could also be used to solve the position analysis problem, we will prefer using the reduced system
in general, because it involves much less variables (the ri vectors do not intervene) and equations
(m joint equations of the basic system have been replaced by m− n + 1 loop equations).

3.4 Accounting for joint limits

Let Li and Li+1 be two links connected through joint Ji. The relative angle between Li and Li+1,
denoted φi, is defined as the angle between two unit vectors, ẑi and ẑi+1, chosen orthogonal to
Ji’s axis, solidary to Li and Li+1 respectively (Fig. 1). Suppose that we want to limit φi to lie



Section 3 Kinematic Equations 9

C

C1

C2

Figure 4: The loop equation of cycle C is the sum of the loop equations
corresponding to cycles C1 and C2. The figure follows the same conventions
used in Fig. 2: shaded regions are links, intralink arrows correspond to ai

vectors, and interlink arrows correspond to di vectors.

within the interval [φl
i, φ

u
i ] ⊂ [0, 2π]. We will take these bounds into account by limiting the

range of the sine and cosine of φi. Note for this that, if

ci = cos(φi), (14)

si = sin(φi), (15)

then ci and si can be obtained from Ri and Ri+1 by realizing that

ci = ẑi · ẑi+1, (16)

si d̂i = ẑi × ẑi+1, (17)

where

ẑi = Ri ẑ
Fi

i , (18)

ẑi+1 = Ri+1 ẑ
Fi+1

i+1
, (19)

d̂i = Ri d̂
Fi

i . (20)

Thus, to limit φi we can simply add Eqs. (16)-(20) to the system to be solved, and fix the ranges
of the si and ci variables to the interval evaluation of sin(φi) and cos(φi) on [φl

i, φ
u
i ].



10 Position Analysis of Multi-Loop Linkages

3.5 Other Lower Pairs

This section extends the formulation given in Sections 3.1 and 3.2 to deal with lower pairs of
any kind. We start reviewing the joint equations that each lower pair introduces into the basic
system, and then examine the loop equations they yield in the reduced system.

Regarding the joint equations, note that a lower pair introduces motions about points (as
in spherical joints), lines (as in revolute, prismatic, cylindrical, or helical joints), or planes (as
in planar joints). In general, we define the Pi and Qi points of a joint as in Section 3.1, but
selected on the point, line, or plane characterizing the motion and with Pi rigidly attached to Fi

and Qi rigidly attached to Fi+1. The equations of each lower pair are as follows (see Table 1):

• When Ji is revolute, we have the equations of Table 1, first row, already discussed above.

• When Ji is prismatic, Li+1 can only translate with respect to Li. This can be enforced by
choosing parallel reference frames for Li and Li+1, and adding Ri = Ri+1 to the system.
Then, the valid poses for Li and Li+1 are the pairs (ri,Ri) and (ri+1,Ri+1) that verify
the equations in Table 1, second row, where d̂i is a unit vector along the axis of the joint,
pointing from Pi to Qi, and di is a variable parameter taking values within some range.

• When Ji is cylindrical, Li+1 can freely rotate and translate along Ji’s axis and the valid
poses must satisfy the equations in Table 1, third row, where di and d̂i are defined as for
prismatic joints.

• When Ji is helical, it can be seen as a cylindrical joint where the rotated angle φi and the
displacement di are related by

φi = kidi, (21)

where ki is the pitch of the helix. Recall from Section 3.4, that φi must verify Eqs. (14)-(20)
and thus, in addition to these equations, each helical joint contributes with the equations
in Table 1, fourth row, to the basic system.

• When Ji is spherical, Pi coincides with Qi and Li+1 can freely rotate with respect to Li,
meaning that the valid poses for the two links are those verifying the equation in Table 1,
fifth row.

• When Ji is planar, the contact of links Li and Li+1 is constrained to a plane πi. The
situation is depicted in the last row of Table 1 The points Pi and Qi defining di are
selected on πi, the former attached to Li and the latter to Li+1. The vectors n̂i and n̂i+1

are the normals to such links in Pi and Qi, respectively. Three conditions for a proper
assembly of Li and Li+1 are also given in Table 1, last row.

Regarding the loop equations, note that on any lower pair, the first joint equation given in
each row of the table plays a role similar to Eq. (1) for revolute joints. These equations merely
force Li and Li+1 to be placed with their Qi points coinciding. It is not difficult to see again
that, as done for revolute joints, we can eliminate the ri vectors by adding the joint equations
around a loop of the linkage. This will yield a loop equation of the form

n
∑

i=1

Ri a
Fi

i + δi = 0, (22)

where the δi term depends on the joint type, as given in Table 1. Proposition 5 also holds for
such generalized loop equations, with trivial modifications in its proof.



Section 4 Solution Strategy 11

qi

xi

B′
c

xl

i
xu

i

ql

i

qu

i

L(x) = 0

Ai

Bi

qi

xi

B′
c

xl

i
xu

i

ql

i

qu

i

qi = x2
i

s

t

Ai

Bi

qi

xi

B′
c

xl

i
xu

i

ql

i

qu

i

L(x) = 0 qi = x2
i

s

t

(a) (b) (c)

Figure 5: (a) Shrinking B′c to fit the linear variety L(x) = 0. (b) Half-planes
approximating the part of the parabola inside B′c. (c) Smallest box enclosing
the intersection of L(x) = 0 with the half-planes in (b).

4 Solution Strategy

This section provides a method to solve the reduced system of equations of a multi-loop linkage.
The method involves a preprocessing step to leave the equations in a canonical form (Section 4.1)
and a numerical method that exploits this form to isolate all solutions (Section 4.2). Detailed
pseudocode of the algorithm is given in Section 4.3, and its performace is discussed in Section 4.4.

4.1 Equation expansion

Observe that most of the equations in the reduced system are polynomial and, if xi and xj refer
to any two of their variables, the involved monomials can only be of the form x2

i , xixj , or xi. In
other words, there can only be quadratic, bilinear, or linear terms. Only in the case of a linkage
with helical joints, trigonometric equations of the form xi = cos(xj) or xi = sin(xj) appear in
the system. For the sake of conciseness, we skip this particular case in the following, but it can
be easily accommodated if necessary.

Let us define the changes of variables qi = x2
i for each quadratic monomial, and bk = xixj

for each bilinear monomial. Clearly, by substituting the qi’s and bk’s into the equations of the
reduced system, we obtain a new system of the form

F (x) = (L(x), P (x), H(x)) = 0, (23)

where x = (x1, . . . , xnl
, q1, . . . , qnq , b1, . . . , bnb

) is a tuple including the original and newly defined
variables, and:

• L(x) = (l1(x), . . . , lml
(x)) is a block of linear functions.

• P (x) = (p1(x), . . . , pmp(x)) is a block of parabolic functions of the form qi − x2
i .

• H(x) = (h1(x), . . . , hmh
(x)) is a block of hyperbolic functions of the form bk − xixj .

Hereafter, the xi’s will be refereed to as primary variables, and the qi’s and bi’s as dummy ones.
Also, we will let n = nl + np + nh, and m = ml + mp + mh.

As it turns out, all component functions of F (x) are relatively simple. They are either linear
functions, or simple quadratic or bilinear functions involving two or three variables each. More-
over, since the ûi, v̂i, and ŵi vectors are unit vectors, the maximum ranges for the corresponding



12 Position Analysis of Multi-Loop Linkages

xi variables are [−1, 1]. For the di variables appearing in prismatic, cylindrical, or helical joints
their range can be easily scaled to [0, 1]. With this, the ranges for the qi’s are [0, 1], and for
the bi’s are [−1, 1]. As a result, the search space B where the solutions of System (23) must be
sought for is the Cartesian product of such ranges. In the text below, any subset of this space
defined by the Cartesian product of a number of intervals will be referred to as a box, and we
will write [xl

i, x
u
i ] to denote the interval of a box along dimension i.

4.2 Equation solving

The algorithm starts with the initial box B, and isolates the valid configurations it contains by
iterating over two operations, box shrinking and box splitting. Using box shrinking, portions of B
containing no solution are eliminated by narrowing some of its defining intervals. This process
is repeated until either (1) the box is reduced to an empty set, in which case it contains no
solution, or (2) the box is “sufficiently” small, in which case it is considered a solution box, or
(3) the box cannot be “significantly” reduced, in which case it is bisected into two sub-boxes
via box splitting (which simply bisects its largest interval). To converge to all solutions, the
whole process is then repeated for the newly created sub-boxes, and for the sub-boxes recursively
created thereafter, until one ends up with a collection of (solution) boxes whose side lengths are
below a given threshold, σ.

Before further precising this process, we will first see how to eliminate portions of a box that
cannot contain any solution. Detailed pseudo-code of the whole strategy will be given later, in
Section 4.3.

When reducing any box Bc ⊆ B note first that, since any solution inside Bc must be in the
linear variety L(x) = 0, we may shrink Bc to the smallest possible box bounding the portion of
this variety falling inside Bc. The limits of this new box along, say, dimension xi can be easily
found by solving the two linear programs

LP1: Minimize xi, subject to: L(x) = 0,x ∈ Bc,

LP2: Maximize xi, subject to: L(x) = 0,x ∈ Bc,

giving, respectively, the new lower and upper bounds for xi. Fig. 5-(a) illustrates the process
on the xi-qi plane, in the case that L(x) = 0 is a straight line. However, note that Bc can be
further reduced, as the parabolic and hyperbolic equations must also be satisfied.

Regarding the parabolic equations, qi = x2
i , we incorporate them into the previous linear

programs as follows. The section of the parabola lying inside the box B′c = [xl
i, x

u
i ]× [ql

i, q
u
i ] is

bounded to lie in the shaded area between lines s and t in Fig. 5-(b). Line s is defined by
the intersection points, Ai and Bi, of the parabola with the box. Line, t is the tangent to the
parabola parallel to s. The two inequalities defining the area between these lines can be added to
LP1 and LP2, which, in conjunction with L(x) = 0, usually produces a much larger reduction
of B′c, as illustrated in Fig. 5-(c).

Regarding the hyperbolic equations, we linearize them as follows. If we consider one of
these equations, say bk = xixj , and we know that its variables can take values inside the ranges
xi ∈ [a, b], xj ∈ [c, d], and bk ∈ [e, f ], all we need is a collection of half-planes tightly delimiting
the set of points that satisfy bk = xixj inside the box B′c = [a, b]× [c, d]× [e, f ]. For this purpose,
consider the vertexes of the rectangle [a, b]× [c, d] in the xi − xj plane, and lift them vertically
to the points D1, D2, D3 and D4 on the hyperbolic paraboloid bk = xixj , as shown in Fig. 6.
Using the fact that this is a doubly-ruled surface, it is easy to see that the tetrahedron defined
by D1, D2, D3 and D4 completely contains the portion of the surface inside B′c. Hence, to prune
portions of a box that do not satisfy the hyperbolic equations, one can simply introduce the
half-planes defining this tetrahedron into LP1 and LP2 above.



Section 4 Solution Strategy 13

D1

D2

D3

D4

xi

xj

bk

Figure 6: The tetrahedron defined by the Di’s bounds this surface inside B′c.

Observe that we can define linear relaxations directly for more complex equations such as
circle or sphere equations. This reduces the number of dummy variables introduced during
equation expansion (Section 4.1), and thus speeds up the execution of each iteration. But such
relaxations are in general more conservative, increasing the number of iterations required to
solve the problem.

4.3 Pseudocode

Algorithm 1 gives the main loop of the process. As input, it receives the box B, the list F
containing the equations L(x) = 0, P (x) = 0, and H(x) = 0, and two threshold parameters σ
and ρ. As output, it returns a list S of “solution boxes” that enclose all points of the solution
set. The functions Volume(B) and Size(B) compute the volume and the length of the longest
side of B, respectively. These and other low-level procedures of straightforward implementation
will be left unspecified in the algorithms below.

Initially, two lists are set up in lines 1 and 2: an empty list S of solution boxes, and a list P
of boxes to be processed, containing B. A while loop is then executed until P gets empty (lines
3-18), by iterating the following steps. Line 4 extracts one box from P . Lines 5-9 repeatedly
reduce this box as much as possible, via the Shrink-Box function, until either the box is an
empty set (Is-Void(Bc) is true), or it cannot be significantly reduced (Vc/Vp > ρ), or it becomes
small enough (Size(B) ≤ σ). In the latter case, the box is considered a solution for the problem.
If a box is neither a solution nor it is empty, lines 14 and 15 split it into two sub-boxes and add
them to P for further processing (line 15).

Notice that this algorithm implicitly explores a binary tree of boxes, whose internal nodes
are boxes that have been split at some time, and whose leaves are either solution or empty boxes.
Solution boxes are collected in list S and returned as output in line 19. Clearly, the tree may
be explored in either depth-first or breadth-first order, depending on whether line 15 inserts the
boxes at the head or tail of P , getting identical output in any case.

The Shrink-Box procedure is sketched in Algorithm 2. It takes as input the box Bc to
shrink, and the list of equations F . The procedure starts by collecting in C all linear equations
(line 1), all half planes approximating the parabolic equations (lines 2-4), and, finally, all half
planes approximating the hyperbolic equations (lines 5-7). Then, the procedure uses these
constraints to reduce every dimension of the box, solving the linear programs in lines 8 to 11,
which possibly give tighter bounds for the corresponding intervals. Observe that the linear
programs need only be solved for the primary variables (x1, . . . , xvl

) and not for the dummy
ones.

If System (23) has a finite number of isolated solutions, the previous algorithm returns a



14 Position Analysis of Multi-Loop Linkages

Solve-Linkage(B, F, σ, ρ)

1: S ← ∅
2: P ← {B}
3: while P 6= ∅ do
4: Bc ← Extract(P )
5: repeat
6: Vp ← Volume(Bc)
7: Shrink-Box(Bc, F )
8: Vc ← Volume(Bc)
9: until Is-Void(Bc) or Size(Bc) ≤ σ or Vc

Vp
> ρ

10: if not Is-Void(Bc) then
11: if Size(Bc) ≤ σ then
12: S ← S ∪ {Bc}
13: else
14: (B1,B2)← Split-Box(Bc)
15: P ← P ∪ {B1,B2}
16: end if
17: end if
18: end while
19: return S

Algorithm 1: The top-level search scheme.

collection of small boxes containing them all, with each solution lying in one, and only one box.
If, on the contrary, the solution space is an algebraic variety of dimension one or higher, the
returned boxes will form a discrete envelope of the variety. The precision of the output can be
adjusted at will by using the σ parameter, which fixes an upper limit for the width of the widest
interval on all returned boxes.

4.4 Performance analysis

The performance of a root finding algorithm is normally assessed in terms of its completeness,
correctness, and convergence order.

An algorithm is complete if its output includes all solutions of the problem at hand. As for
the proposed method, we note that it iterates over two basic operations: the linear relaxation
of non-linear functions and the solution of linear programs. Both operations are designed in
a conservative way: as defined, a linear relaxation fully includes the graph of the function it
approximates (within the box where solutions are sought), and the output of the linear programs
always defines an axis-aligned orthotope enclosing the solution set. The proposed method is thus
complete, because solution points are never ruled out anywhere in the algorithm. While it is
true that numerical issues could arise due to the use of floating-point arithmetic, both in the
computation of the linear relaxations and in the solution of the linear programs, these problems
can be easily overcome. Linear relaxations can be made conservative by carefully considering the
rounding when computing them [29] and, with a cheap post-process, the output of the Simplex
method can be correctly interpreted so that it is also numerically safe [37, 23].

An algorithm is correct if its output only includes solution points. In the context of branch-
and-prune methods, the algorithm is correct if all of the returned boxes contain, at least, one
solution each. We next provide a sufficient condition that allows checking the existence of
solutions of F (x) = 0 in a given box Bc. To this end, consider the system formed by L(x) = 0
together with the linear relaxations of P (x) = 0 and H(x) = 0, derived for Bc as explained



Section 4 Solution Strategy 15

Shrink-Box(Bc, F )

1: C ← { Linear equations in F }
2: for all equations qi = x2

i in F do
3: C ← C ∪ { Two half planes bounding the feasible area of the equation for the ranges of

qi, xi }
4: end for
5: for all equations bk = xixj in F do
6: C ← C ∪ { Four half planes bounding the feasible area of the equation for the ranges of

bk, xi, xj }
7: end for
8: for all i ∈ {1, . . . , vl} do
9: xl

i ← min. xi subject to all eqs. in C and x ∈ Bc

10: xu
i ← max. xi subject to all eqs. in C and x ∈ Bc

11: end for

Algorithm 2: The Shrink-Box procedure.

in Section 4.2. Note that the solution set of this system is a convex polytope P(Bc) ⊂ R
n. If

F (x) = 0 has as many variables as equations (i.e., n = m), the following existence condition can
be used:

If P(Bc) ⊂ Bc, then Bc contains at least one solution point of F (x) = 0.

Note that, in practice, the condition can be easily checked by deriving the smallest orthotope
enclosing P(Bc) via Linear Programming, and checking whether it is contained in Bc.

To prove the condition, we first realize that, by linearizing F (x) about a point xc ∈ Bc,
F (x) = 0 can be written as

F (xc) + JF (xc) (x− xc) + ε(x,xc) = 0, (24)

where JF (xc) is the Jacobian of F (x) at xc, and ε(x,xc) is a second-order error term. But, if
m = n and C is full rank, Eq. (24) is equivalent to

x = JF (xc)
−1(JF (xc) xc − F (xc)− ε(x,xc)). (25)

Thus, finding the solutions of F (x) = 0 is equivalent to finding the fixed points of the right
hand side of Eq. (25), M(x) = JF (xc)

−1(JF (xc) xc − F (xc)− ε(x,xc)). Since y = M(x) maps
points x ∈ Bc to points y ∈ P(Bc), by Brouwer’s fixed point theorem [6] we can assert that,
if P(Bc) ⊂ Bc, then there exists an x∗ ∈ Bc for which x∗ = M(x∗), which implies that x∗ is a
solution of F (x) = 0.

It is worth mentioning that the existence condition just described is less restrictive than
other sufficient criteria [24, 34, 5], yet easier to integrate in our framework. Also, while the
test proposed by Miranda [34] can be extended to non-squared systems, the resulting sufficient
condition is too weak to be useful in general. To our knowledge, no results are available to derive
necessary and sufficient conditions for the existence of solutions in a given box. Therefore, as it
happens on all algorithms of this kind, our algorithm can in principle return boxes for which it
is not possible to elucidate whether they include a solution. In any case, the error in all function
approximations, ε(x,xc), is quadratic with respect to the size of the box. Since the algorithm
returns boxes whose largest side is below σ, the error in the equations is always O(σ2). Thus,
only boxes with small errors can be misleadingly taken as solutions. In practice this occurs for
linkage configurations that are close to a singularity.



16 Position Analysis of Multi-Loop Linkages

(a) (b) (c) (d)

Figure 7: Test cases analyzed: (a) A generic 6R loop, (b) a special 6R loop,
(c) a generic 6-6 Stewart platform, and (d) a special 6-6 Stewart platform.

General 6R Parameters Special 6R
i ai di αi interpretation i ai di αi

1 0.3 0.0106 π/2

pi−1

qi−1

Link i

Link i− 1

Link i + 1

di

ai

αi

Pi

Qi

xi

zi

1 0.5 1 π/3

2 1 0 0.0175 2 0 1 π/3

3 0 0.2 π/2 3 0 1 π/3

4 1.5 0 0.0175 4 0.5 1 π/3

5 0 0 π/2 5 0 1 π/3

6 1.1353 0.1049 1.4716 6 0 1 π/3

Table 2: Denavit-Hartenberg parameters of the solved 6R loops.

Generic 6-6 Stewart platform Special 6-6 Stewart platform

i q
B
i

q
P
i

li q
B
i

q
P
i

li

1 (0, 0, 0) (0, 0, 0) l1 = 1 (0, 0, 0) (0, 0, 0) 1.519640
2 (1.107915, 0, 0) (0.542805, 0, 0) l2 = 0.645275 (c, s, 0) (−c, s, 0) 1.922131
3 (0.549094, 0.756063, 0) (0.956919, −0.528915, 0) l3 = 1.086284 (2c, 2s, 0) (c, s, 0) 1.812880
4 (0.735077, −0.223935, 0.525991) (0.665885, −0.353482, 1.402538) l4 = 1.503439 (1 + c, s, 0) (3c, s, 0) 1.380117
5 (0.514188, −0.526063, −0.368418) (0.478359, 1.158742, 0.107672) l5 = 1.281933 (2, 0, 0) (2c, 0, 0) 1.715536
6 (0.590473, 0.094733, −0.205018) (−0.137087, −0.235121, 0.353913) l6 = 0.771071 (1, 0, 0) (c, −s, 0) 1.714524

Table 3: Geometric parameters of the solved 6-6 platforms. The letters s and
c abbreviate the sine and cosine of π/3, respectively.



Section 4 Solution Strategy 17

The convergence order of a root finding algorithm gives information about its asymptotic
performance. An algorithm is said to exhibit a convergence of order r if there exists a constant
k ∈ (0, 1), such that

ǫ(xi+1,x
∗) ≤ k · ǫ(xi,x

∗)r,

where xi is an estimation of the exact root x∗ at iteration i, and ǫ(xi,x
∗) indicates the distance

from x∗
i to x∗. As mentioned in Section 2, branch-and-prune methods rely on conservative

bounds to discard subsets of the input domain that do not containt solutions. The tighter the
bounds, the faster the convergence of the method. Therefore, we can compare the convergence
order of different families of branch-and-prune methods by comparing the quality of the bounds
used in each method.

The recursion used by the Newton method is derived from applying the mean value theorem
to the individual functions fi of F (x), at some point xc ∈ Bc,

fi(x) = fi(xc) +∇fi(ζ) (x− xc).

Here, ζ is also a point of Bc, but it is in general unknown. The interval extension of the Newton
recursion overcomes this problem using an interval evaluation of ∇fi(ζ) for all possible ζ ∈ Bc.
However, if all functions fi are quadratic (as it occurs in our formulation), any fi(x) can be
expressed in the form

fi(x) = x⊤ Ai x + b⊤
i x + ci,

where Ai is an n× n symmetric matrix, and bi is an n-dimensional vector. Thus, we can write

∇fi(x) = (2 Ai x + bi)
⊤

= (2 Ai (xc + x− xc) + bi)
⊤

= (2 Ai xc + bi)
⊤ + (2 Ai (x− xc))

⊤

= (2 Ai xc + bi)
⊤ + (x− xc)

⊤2 Ai

= ∇fi(xc) + (x− xc)
⊤Hfi

,

where Hfi
is the Hessian of fi, which is constant. Therefore, each fi can be written as

fi(x) = f(xc) +∇fi(xc) (x− xc) + (ζ − xc)
⊤Hfi

(x− xc).

On the other hand, a quadratic function can be exactly represented by its first-order Taylor
expansion about xc as

fi(x) = f(xc) +∇fi(xc) (x− xc) +
1

2
(x− xc)

⊤Hfi
(x− xc).

Comparing the last two equations, we see that the mean value approximation is exact when
ζ = (x + xc)/2. Therefore, if x is subject to lie in Bc, ζ can only be in

B′c = {x′ | x′ =
x + xc

2
, x ∈ Bc}.

Clearly, B′c is fully included in Bc and, thus, by evaluating ∇fi(ζ) for all ζ in Bc, and not
only in B′c, the interval Newton method overestimates the error. For this reason, at least for
quadratic functions, branch-and-prune methods based on first-order Taylor approximations, like
those used in [16], converge faster than the interval Newton method, which is known to be
quadratically convergent [2]. Since the approximations derived from linear relaxations are equal
or tighter than those derived from first-order Taylor approximations, we can conclude that the
convergence order of methods based on the former is equal or greater than methods based on
the latter.



18 Position Analysis of Multi-Loop Linkages

Note finally that, contrarily to interval Newton methods, our method can be applied to
under- or over-constrained systems. On over-constrained systems, our method exhibits the
same convergence order than when applied to well-constrained ones, since the addition of extra
equations does not hinder the convergence in any way. On the contrary, redundancy produces
larger box reductions in Shrink-Box and thus reduces the number of iterations. The drawback
is that the higher the number of equations, the slower the execution of each iteration. On under-
constrained systems, the convergence order of the algorithm is difficult to derive precisely. A
worst-case analysis, though, sheds some light on it. Note that, for an n-dimensional box Bc all
of whose sides are of length σ, the error at step i is

ǫi =
√

σ2 n = σ
√

n.

The worst possible case occurs when the Shrink-Box procedure is completely ineffective, which
makes the method rely on bisection only to isolate the solutions. Should this be the case, after
splitting Bc the error on each one of the child boxes would be

ǫi+1 =

√

σ2 (n− 1) +
σ2

4
= k ǫi.

where k =
√

(4 n− 3)/(4 n). Thus, in this situation the method would exhibit linear conver-
gence, with k approaching one (i.e., to the non-convergence case) as the number of variables
grows. We point out, however, that the worst-case just depicted is rather improbable and, in
fact, experiments show that when isolating positive-dimensional solutions, the convergence order
is linear, but k is always substantially smaller than

√

(4 n− 3)/(4 n) because the Shrink-Box

procedure always performs some reduction.

5 Experiments

The algorithm has been implemented in C, using the glpk library to solve the linear programs
involved [31]. We next illustrate its performance on a Pentium Core 2 at 2.4 GHz by way of
solving the four test cases shown in Fig. 7: a generic 6R loop, a generic 6-6 Stewart platform,
and special versions of these two linkages. Efficient specific solutions for them were obtained
in 1993 [45] and 2001 [50], respectively, via elimination techniques. We note, however, that
although the methods in [45] and [50] can solve the generic versions of such linkages, none of
them can isolate the one-dimensional configuration space of mobility-one instances like those in
Fig. 7 (b) and (d).

The algorithm has also been tested successfully on numerous other examples, ranging from
planar linkages to spatial robots and molecules. Details on such experiments (including their
formulation, output solutions, and linkage animations) are provided in [51]. In all cases, the
presented method is more than one order of magnitude faster than general polytope methods
like [48], whose implementation is notably more intricate.

5.1 Solving generic and special 6R loops

Loops with six revolute joints typically arise when solving the inverse kinematics of serial 6R
robot arms. Since in this context the ground link and the end effector have fixed relative
positions, the problem boils down to finding all possible configurations of a 6R loop. The
geometry of 6R loops is easily described in terms of Denavit-Hartenberg parameters, provided
in Table 2 for the two linkages herein analysed. The parameters in Table 2, left, correspond to
problem number 6 introduced in [53]. It has a generic geometry, with no special dimensions or
line coincidences, and exhibits 16 isolated solutions. The parameters in Table 2, right, correspond



Section 5 Experiments 19

overlaid

overlaid

(a)

(b) i1

i1

i2

i2

b1

b1

b2

b2

Two paths

Two paths

Figure 8: (a) One-dimensional configuration space of the Bricard loop,
as computed by the presented technique. Actually, the boxes are 22-
dimensional, but are here shown projected onto three of the problem’s vari-
ables. Boxes corresponding to the two isolated solutions have been enlarged
to make them visible. (b) The actual topology of the configuration space.

to a special Bricard linkage. Because all of its pairs of adjacent axes are intersecting (two of
them at infinity), this linkage exhibits a one-dimensional solution set, with bifurcation points
and additional isolated solutions. We next show that the parameters required by our formulation
can be easily written in terms of Denavit-Hartenberg parameters.

In our formulation, the system to be solved is formed by the loop equation (8), and equa-

tions (2) to (6) gathered for all joints. Thus, we need to obtain the vectors aFi

i , dFi

i , and d
Fi+1

i .
As done in the Denavit-Hartenberg convention, we number the links consecutively from 1 to n,
and define a reference frame Fi for each link Li, with the zi axis directed along the axis of the



20 Position Analysis of Multi-Loop Linkages

(a) (b)

Figure 9: Left: Dietmeier’s 6-6 platform, solved at two different precisions.
Right: A closer view of the output. In the two plots, transparent and opaque
boxes correspond to two different runs, at σ = 0.1 and σ = 10−7, respectively.
All opaque boxes have been slightly enlarged to make them visible.

i+1-th joint, and the xi axis directed along the normal line through joint axes i and i+1, with
both axes pointing towards a selected positive sense for the loop.

It is easy to realise that, if we select the Pi and Qi points of joint i as indicated in Table 2,
middle figure, then

aFi

i = (ai, 0, 0), (26)

dFi

i = (0, 0, di), (27)

d
Fi+1

i = (0, di sinαi+1, di cos αi+1), (28)

where:

- ai is the distance between joints i and i + 1 along their common normal.

- di is the distance between consecutive normals along joint i.

- αi is the angle from the zi−1 axis to zi axis, turning around the direction of the positive
xi axis.

In sum, as for the problem formulation, we obtain a system of 28 linear, 21 parabolic and 23
hyperbolic equations, involving 23 primary variables and 44 dummy ones.

Choosing the parameters in Table 2, left, and setting σ = 10−2 and ρ = 0.95, we solve the
generic 6R loop in about 14 seconds, correctly isolating 16 boxes corresponding to the solutions
published in [32]. In this case, the system processed 131 boxes, 16 of which contain a solution,
50 were found to be empty, and 65 were split for recursive processing. All 16 solution boxes are
validated to include a solution point according to the existence condition described in Section 4.4.



Section 6 Conclusions 21

Choosing the parameters in Table 2, right, the 6R loop becomes an overconstrained mecha-
nism. While existing methods like [45, 32] can not deal with this degenerate case, the proposed
procedure is immune to such situations and obtains a complete box approximation of the whole
configuration space, as shown in Fig. 8 (a). With σ = 0.1 and ρ = 0.95, we obtain the shown
1863 boxes in 23 seconds, after processing 3749 boxes, 12 of which were found to be empty.
The number of empty boxes is pretty small, taking into account the total amount of processed
boxes and solutions, indicating that the box-shrinking strategy is efficient. Note that, ideally,
by iterating box-shrinking, one should end up with a box with solutions lying on its walls and,
therefore, splitting a box at such point should always separate portions of the search space
containing solutions. In other words, the ideal algorithm should not generate empty boxes.

From the output of the algorithm we can readily define a graph with one node for each box
and one edge joining two nodes if their corresponding boxes are adjacent. Note that the structure
of this graph reflects the structure of the configuration space of the analysed linkage. For the
special 6R loop, the analysis reveals that such space has two isolated points, corresponding to
two rigid assembly modes, and a one-dimensional cyclic curve, corresponding to a one-degree-
of-freedom assembly mode. Such curve, moreover, has two bifurcation points connected by six
different paths. The actual topology is represented in Fig. 8 (b).

5.2 Solving generic and special 6-6 platforms

A generic 6-6 Stewart platform can have up to 40 solutions. One case giving rise to exactly
40 solutions was found by Dietmeier [12], with the geometric parameters indicated in Table 3,
left. For each leg, the table gives the coordinates of the base (qB

i ) and platform (qP
i ) anchor

points, relative to base and platform frames respectively, and the leg length (li). The problem
formulation involves 24 equations in 24 variables, derived from five kinematic loops. When
solving the system with σ = 10−3 and ρ = 0.95 we obtain 35 isolated solutions and several
one-dimensional “curve segments” of boxes that include the remaining 11 solutions (Fig. 9). All
points included in these curve segments are quasi solutions: recall that the error is quadratic with
the size of the boxes and, thus for σ = 10−3 the error in the returned boxes is below σ2 = 10−6.
Therefore, the presence of curve segments of quasi solutions indicates that the linkage is close
to a singular configuration. It is possible to isolate the true solution points within these curve
segments by just re-running the method with a smaller σ. For σ = 10−7, our implementation
isolates the correct 40 solutions in 260 seconds, after processing 3395 boxes, 1658 of which were
found to be empty. In this case, also all the solutions boxes are verified to include a solution
point.

Choosing the geometric parameters of Table 3, the 6-6 platform becomes moveable with
one degree of freedom (despite it has all of its leg-lengths fixed). We highlight that the problem
formulation for this case is identical to the one used for the general 6-6 platform, only differing on
the mentioned geometric parameters. Fig. 10 shows the solution boxes obtained by the algorithm,
for decreasing values of the σ parameter, projected onto two of the problem’s dimensions. For
σ = 0.5, the obtained box approximation is too crude to reveal the toplogy of the configuration
space. However, as we reduce σ, two separated one-dimensional components rapidly emerge
(depicted in white and grey in the figure), allowing for a correct motion analysis of the linkage
at hand. Finally, Fig. 11 is a 3D version of the last plot in Fig. 10 where the two connected
components can be better appreciated.

6 Conclusions

We have presented a complete method able to give box approximations of the configuration
space of arbitrary multi-loop linkages. The method is general, in the sense that it can manage



22 REFERENCES

σ = 0.5, t = 94, ns = 193 σ = 0.25, t = 109, ns = 256 σ = 0.0625, t = 140, ns = 703

Figure 10: Box approximations obtained for the Griffis-Duffy platform, at
three different resolutions, projected onto two of the problem’s variables. In
each plot we indicate the σ parameter used, the CPU seconds employed (t),
and the number of solution boxes found (ns).

any type of links and lower-pair joints, forming kinematic loops of arbitrary topology. It is also
complete, meaning that every solution point will be contained in one of the returned boxes.
Moreover, in all experiments done so far the algorithm was also correct, since, by using a small
enough σ value, all output boxes contained at least one solution point each. Although we
cannot verify the presence of solutions in all boxes, returning boxes with no solution seems
rather improbable due to the fact that the linearizations introduce errors smaller than the size
of the considered boxes. Moreover, the fact that all equations are simultaneously taken into
account during box reduction (whether directly or in a linearized form) palliates the so-called
cluster effect, a known problem of bisection-based techniques of this kind, whereby each solution
is obtained as a compact cluster of boxes instead of a single box containing it, irrespectively of
the precision used [35]. In the experiments performed so far, we encountered spurious output
on linkages with close-to-singular configurations, but this can not be attributed to clustering
problems since the phenomenon disappeared when running the algorithm at smaller σ values.

A main contribution with respect to previous work is the method’s ability to deal with
configuration spaces of general structure. This is accomplished by maintaining a collection of
boxes that form a tight envelope of such spaces, which can be refined to the desired precision
in a multi-resolutive fashion. The method is quadratically convergent to all roots if these are
isolated points, and linearly convergent to them if these form positive-dimensional connected
components. Although the method’s performance is notable for a general technique of this kind,
an extensive study should be endeavored to determine how it scales with the complexity of the
tackled linkages.

References

[1] C. S. Adjiman, S. Dallwig, C. A. Foudas, and A. Neumaier. A global optimization method,
αBB, for general twice-differentiable constrained NLPs - I theoretical advances. Computer
and Chemical Engineering, 22:1137–1158, 1998.

[2] G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic Press,
Orlando, Florida, 1983.



REFERENCES 23

Figure 11: Box approximation obtained for the Griffis-Duffy platform, for
σ = 0.0625, projected onto three of the problem’s variables.

[3] M. Berz and G. Hoffstätter. Computation and applications of Taylor polynomials with
interval remainder bounds. Reliable Computing, 4:83–97, 1998.

[4] C. Borcea and I. Streinu. The number of embeddings of a minimally-rigid graph. Discrete
and Computational Geometry, 31(2):287–303, 2004.

[5] K. Borsuk. Drei sätze über die n-dimensionale sphäre. Fund. Math., 20:177–190, 1933.

[6] L. E. J. Brouwer. Ueber eineindeutige, stetige transformationen von flächen in sich. Math.
Ann., 69:176–180, 1910.

[7] A. Castellet and F. Thomas. An algorithm for the solution of inverse kinematics problems
based on an interval method. In M. Husty and J. Lenarcic, editors, Advances in Robot
Kinematics, pages 393–403. Kluwer Academic Publishers, 1998.

[8] E. Celaya, T. Creemers, and L. Ros. Exact interval propagation for the efficient solution
of planar linkages. In Proceedings of 12th World Conference in Mechanism and Machine
Science, 2007.



24 REFERENCES

[9] D. Daney, Y. Papegay, and A. Neumainer. Interval methods for certification of the kine-
matic calibration of parallel robots. In IEEE International Conference on Robotics and
Automation, pages 1913–1918, 2004.

[10] A. Dickenstein and I. Z. Emiris. Solving polynomial equations: Foundations, algorithms,
and applications. Algorithms and Computation in Mathematics. Springer-Verlag, 2005.

[11] O. Didrit, M. Petitot, and E. Walter. Guaranteed solution of direct kinematic problems
for general configurations of parallel manipulators. IEEE Transactions on Robotics and
Automation, 14(2):259–266, 1998.

[12] P. Dietmeier. The Stewart-Gough platform of general geometry can have 40 real postures.
In J. Lenarcic and M. Husty, editors, Advances in Robot Kinematics: Analysis and Control,
pages 7–16. Springer, 1998.

[13] I. Fudos and C. M. Hoffmann. A graph-constructive approach to solving systems of geo-
metric constraints. ACM Transactions on Graphics, 16(2):179–216, 1997.

[14] C. B. Garcia and T. Y. Li. On the number of solutions to polynomial systems of equations.
SIAM Journal of Numerical Analysis, 17:540–546, 1980.

[15] C. B. Garcia and W. I. Zangwill. Pathways to solutions, fixed points, and equilibria. Prentice
Hall, Upper Saddle River, NJ, 1981.

[16] M. Gavriliu. Towards More Efficient Interval Analysis: Corner Forms and a Remainder
Interval Newton Method. PhD thesis, California Institute of Technology, 2005.

[17] H.-J. Su, J. M. McCarthy, M. Sosonkina, and L. T. Watson. Algorithm 857: POLSYS
GLP-a parallel linear product homotopy code for solving polynomial systems of equations.
ACM Transactions on Mathematical Software, 32(4):561–579, 2006.

[18] E. Hansen. Global Optimization Using Interval Analisis. Marcel Dekker Inc., New York,
1992.

[19] C. H. Hoffmann and B. Yuan. On spatial constraints solving approaches. In Third Inter-
national Workshop on Automated Deduction in Geometry, volume 2061 of Lecture Notes in
Computer Science, 2000.

[20] J.-P. Merlet. Parallel Robots. Springer, 2000.

[21] J.-P. Merlet. A formal numerical approach to determine the presence of singularity within
the workspace of a parallel robot. In Proceedings of the 2nd Workshop on Computational
Kinematics, pages 167–176, 2001.

[22] J.-P. Merlet. An improved design algorithm based on interval analysis for parallel ma-
nipulator with specified workspace. In IEEE International Conference on Robotics and
Automation, pages 1289–1294, 2001.

[23] C. Jansson. Rigorous lower and upper bounds in linear programming. SIAM Journal of
Optimization, 14(3):914–935, 2004.

[24] L. Kantorivich. On Newton’s method for functional equations. Dokl. Akad. Nauk SSSR,
59:1237–1240, 1948.

[25] R. B. Kearfott. Discussion and empirical comparisons of linear relaxations and alternate
techniques in validated deterministic global optimization. Optimization Methods and Soft-
ware, 21(5):715–731, 2006.



REFERENCES 25

[26] L. V. Kolev. A new method for global solution of systems of non-linear equations. Reliable
Computing, 4:125–146, 1998.

[27] P. Kumar and S. Pellegrino. Computation of kinematic paths and bifurcation points. In-
ternational Journal of Solids and Structures, (37):7003–70027, 2000.

[28] L. -W. Tsai and A. Morgan. Solving the kinematics of the most general six- and five-
degree-of-freedom manipulators by continuation methods. ASME Journal of Mechanisms,
Transmissions, and Automation in Design, 107:189–200, 1985.

[29] Y. Lebbah, C. Michel, M. Rueher, D. Daney, and J.-P. Merlet. Efficient and safe global con-
straints for handling numerical constraint systems. SIAM Journal of Numerical Analysis,
42(5):2076–2097, 2005.

[30] T. Y. Li, T. Sauer, and J. A. York. The cheater’s homotopy: An efficient procedure for
solving systems of polynomial equations. SIAM Journal of Numerical Analysis, 18(2):173–
177, 1988.

[31] A. Makhorin. GLPK - The GNU linear programming toolkit. http://www.gnu.org/

software/glpk.

[32] D. Manocha and J. Canny. Efficient inverse kinematics for general 6R manipulators. IEEE
Transactions on Robotics and Automation, 10:648–657, 1994.

[33] G. P. McCormick. Computability of global solutions to factorable nonconvex programs:
Part I - convex underestimating problems. Mathematical Programming, 10:147–175, 1976.

[34] C. Miranda. Un’osservatione su un teorema di Brouwer. Bolletino dell’Unione Matematica
Italiana, 3(2):5–7, 1940.

[35] A. Morgan and V. Shapiro. Box-bisection for solving second-degree systems and the problem
of clustering. ACM Transactions on Mathematical Software, 13(2):152–167, 1987.

[36] A. Neumaier. Taylor forms–use and limits. Reliable Computing, 9:43–79, 2002.

[37] A. Neumaier and O. Shcherbina. Safe bounds in linear and mixed-integer programming.
Mathematical Programming, 99:283–296, 2004.

[38] J. Nielsen and B. Roth. On the kinematic analysis of robotic mechanisms. The International
Journal of Robotics Research, 18(12):1147–1160, 1999.

[39] J. Nielsen and B. Roth. Solving the input/output problem for planar mechanisms. ASME
Journal of Mechanical Design, 121:206–211, 1999.

[40] J. M. Porta. CuikSlam: A kinematics-based approach to SLAM. In IEEE International
Conference on Robotics and Automation, pages 2436–2442, 2005.

[41] J. M. Porta, L. Ros, T. Creemers, and F. Thomas. Box approximations of planar linkage
configuration spaces. ASME Journal of Mechanical Design, 129(4):397–405, 2007.

[42] J. M. Porta, L. Ros, and F. Thomas. Multi-loop position analysis via iterated linear
programming. In Robotics: Science and Systems II, pages 169–178. MIT Press, 2006.

[43] J. M. Porta, L. Ros, F. Thomas, F. Corcho, J. Cantó, and J. J. Pérez. Complete maps of
molecular-loop conformational spaces. Journal of Computational Chemistry, 28(13):2170–
2189, 2007.



26 REFERENCES

[44] M. Raghavan. The Stewart platform of general geometry has 40 configurations. ASME
Journal of Mechanical Design, 115:277–282, 1993.

[45] M. Raghavan and B. Roth. Inverse kinematics of the general 6R manipulator and related
linkages. Transactions of the ASME Journal of Mechanical Design, (115):502–508, 1993.

[46] R. S. Rao, A. Asaithambi, and S. K. Agrawal. Inverse kinematic solution of robot manip-
ulators using interval analysis. ASME Journal of Mechanical Design, 120:147–150, 1998.

[47] B. Roth and F. Freudenstein. Synthesis of path-generating mechanisms by numerical meth-
ods. ASME Journal of Engineering for Industry, 85:298–307, 1963.

[48] E. C. Sherbrooke and N. M. Patrikalakis. Computation of the solutions of nonlinear poly-
nomial systems. Computer Aided Geometric Design, 10(5):379–405, 1993.

[49] A. J. Sommese and C. W. Wampler. The Numerical Solution of Systems of Polynomials
Arising in Engineering and Science. World Scientific, 2005.

[50] T.-Y. Lee and J.-K. Shim. Forward kinematics of the general 6-6 Stewart platform using
algebraic elimination. Mechanism and Machine Theory, (36):1073–1085, 2001.

[51] The CUIK project home page. http://www-iri.upc.es/groups/gmr/cuikweb.

[52] C. Wampler, A. Morgan, and A. Sommese. Complete solution of the nine-point path
synthesis problem for four-bar linkages. ASME Journal of Mechanical Design, 114:153–159,
1992.

[53] C. Wampler and A. P. Morgan. Solving the 6R inverse position problem using a generic-case
solution methodology. Mechanism and Machine Theory, 26(1):91–106, 1991.

[54] C. W. Wampler. Solving the kinematics of planar mechanisms by Dixon’s determinant and
a complex plane formulation. ASME Journal of Mechanical Design, 123:382–387, 2001.

[55] W. J. Wedemeyer and H. Scheraga. Exact analytical loop closure in proteins using polyno-
mial equations. Journal of Computational Chemistry, 20(8):819–844, 1999.

[56] J. H. Yakey, S. M. LaValle, and L. E. Kavraki. Randomized path planning for linkages with
closed kinematic chains. IEEE Transactions on Robotics and Automation, 17(6):951–958,
2001.

[57] K. Yamamura. Interval solution of nonlinear equations using linear programming. BIT,
38(1):186–199, 1998.





Acknowledgements

This work has been partially supported by the Spanish Ministry of Education and Science
(DPI2007-60858), by the “Comunitat de Treball dels Pirineus” (2006ITT-10004), and by Ramón
y Cajal and I3 program funds.

IRI reports

This report is in the series of IRI technical reports.
All IRI technical reports are available for download at the IRI website
http://www.iri.upc.edu.


