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Abstract This paper proposes the use of a randomized kinodynamic planning tech-

nique to synthesize dynamic motions for cable-suspended parallel robots. Given

two mechanical states of the robot, both with a prescribed position and velocity,

the method attempts to connect them by a collision-free trajectory that respects the

joint and force limits of the actuators, keeps the cables in tension, and takes the robot

dynamics into account. The method is based on the construction of a bidirectional

rapidly-exploring random tree over the state space. Remarkably, the technique can

be used to cross forward singularities of the robot in a predictable manner, which

extends the motion capabilities beyond those demonstrated in previous work. The

paper describes experiments that show the performance of the method in point-to-

point operations with specific cable-driven robots, but the overall strategy remains

applicable to other mechanism designs.

1 Introduction

Cable-suspended parallel robots consist of a moving load hanging from a fixed base

by means of cables. The load configuration can be changed by varying the cable

lengths or anchor point locations, and gravity is typically used to maintain the ca-

bles under tension. As opposed to fully-constrained parallel cable-driven robots,

cable-suspended robots are not redundantly actuated, and generally employ as many

actuators as the number of degrees of freedom to be governed.

A fundamental issue in such robots is to guarantee that the cable tensions remain

positive at all times. In this way, cable slackness is avoided, which allows the control

of the load using proper tension adjustments. Traditionally, these robots have been
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used as robotic cranes, setting them to operate in static or quasi-static conditions,

in which gravity is the sole source of cable tension [1, 5]. While this simplifies the

planning and control of the motions, it also confines them to the static workspace,

which is a region limited by the footprint of the robot. More recently, inertia has also

been proposed as another source of tension [11], extending the movement capacity

to the dynamic workspace, i.e., the region that can be attained when load acceler-

ations are allowed [3]. Using pendulum-like motions, for example, pick-and-place

tasks between points well beyond the robot footprint can be planned [10, 14].

In this new context, there is a strong need for an efficient planning technique

that determines the force inputs required to move the robot between two mechan-

ical states (both with a prescribed position and velocity). Such planner must avoid

collisions of the robot with itself or with the environment while obeying the phys-

ical laws imposed by the motion equations, and the force and joint limits of the

actuators. This problem, known as kinodynamic planning in the literature [16], is

gaining attention in cable-driven robotics [9]. Early work in this regard includes

planning methods for a remarkable mechanism like the Winch-bot, which can fol-

low prescribed paths on a vertical plane with just a single actuator [8], or evolved

architectures with additional manipulation abilities [18, 22, 23]. Because of their

underactuation, however, these robots cannot control their pose exactly along the

motion, which motivated the development of newer methods for fully-actuated de-

signs. For instance, in [11] cyclic trajectories leaving the static workspace were

given, and the approach was later extended to synthesize point-to-point trajectories

for pick-and-place tasks [10, 14]. Optimal control methods for Robocrane-type plat-

forms were also provided in [2]. While such methods are remarkable, none of them

were designed to avoid collisions. The methods in [10, 14], moreover, rely on pre-

defined trajectories, and they need some guidance to define intermediate waypoints

when the start and goal configurations fail to be connected by such trajectories.

Particular solutions for specific robots are valuable, but it is the authors’ belief

that existing randomized techniques can solve the kinodynamic planning problem

with great generality in cable-driven robots. The purpose of this paper is, precisely,

to show that a recent method of this kind [7] can successfully cope with the kine-

matic, collision, and positive-tension constraints arising in such robots. The method

is based on deploying an exploration tree over the state space and it is probabilisti-

cally complete, i.e., it finds a connecting trajectory whenever one exists and enough

computing time is available. Remarkably, we show that the method can also be used

to cross forward singularities in a predictable manner, which further extends the

motion capabilities beyond those envisaged in earlier work [10, 14]. The method is

a generalization of a classic planning method [17]. Whereas the approach in [17]

was suitable for mechanisms described by means of independent generalized coor-

dinates, the one in [7] can also handle dependent coordinates coupled by kinematic

constraints, which often arise in parallel mechanisms. After reviewing the contri-

butions of [17] and [7] (Section 2), we show how the resulting technique can be

applied to cable-driven robots (Section 3), and illustrate its performance on chal-

lenging problems (Section 4). We finally summarize the main strengths of the ap-

proach, and points deserving further attention (Section 5).
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2 A kinodynamic motion planner

The planning of dynamic motions typically takes place in the state space of the

robot, i.e., the set X of kinematically-valid states xxx = (qqq, q̇qq), where qqq is a vector

of nq generalized coordinates describing the configuration of the robot, and q̇qq is

the time derivative of qqq, which describes its velocity. The coordinates in qqq may be

independent or not. In the former case, any pair xxx = (qqq, q̇qq) ∈ R
2nq is kinematically

valid, and X becomes parametrically defined. The latter case is more complex. The

configuration space (C-space) of the robot is the set C of points qqq that satisfy a

system of ne nonlinear equations

ΦΦΦ(qqq) = 000 (1)

encoding, e.g., loop-closure constraints, or geometric constraints due to nonminimal

representations of SO(3). As a result, the valid values of q̇qq are those that fulfill

ΦΦΦqqq q̇qq = 000, (2)

where ΦΦΦqqq = ∂ΦΦΦ/∂qqq. Then, X becomes a nonlinear manifold of dimension dX =
2(nq −ne) generically, defined implicitly by Eqs. (1) and (2).

Irrespective of the form of X , the motions must always be confined to a feasi-

bility region Xfeas ⊆X of collision-free states respecting joint and constraint force

limits (such as tension positivities in cable-driven robots). Finally, the motions must

also obey the dynamic equations of the robot, which can be written in the form

ẋxx = ggg(xxx,uuu). (3)

In this equation, ggg(xxx,uuu) is an appropriate differentiable function, and uuu is a d-vector

of actuator forces subject to lie in a bounded subset U ⊂ R
d . Then, given start and

goal states, xxxs and xxxg, the kinodynamic planning problem consists in finding a time

function uuu(t) such that the system trajectory xxx(t) determined by Eqs. (1)-(3) for

xxx(0) = xxxs , fulfills xxx(t f ) = xxxg for some time t f > 0, and uuu(t) ∈ U , xxx(t) ∈ Xfeas for

all t ∈ [0, t f ].
The solution proposed in [17] assumes that the qqq coordinates are independent,

so that Eqs. (1) and (2) need not be considered. The resulting planner looks for a

solution by constructing a rapidly-exploring random tree (RRT) over X . The RRT

is rooted at xxxs and it is grown incrementally towards xxxg while staying inside Xfeas.

Every tree node stores a feasible state xxx ∈ Xfeas, and every edge stores the action

uuu ∈ U needed to move between the connected states. This action is assumed to

be constant during the move. The expansion of the RRT proceeds by applying three

steps repeatedly (Fig. 1, top-left). First, a state xxxrand ∈X is randomly selected; then,

the RRT state xxxnear that is closest to xxxrand is computed according to some metric;

finally, a movement from xxxnear towards xxxrand is performed by applying an action

uuu ∈ U during a fixed time ∆ t. The movement from xxxnear towards xxxrand is simulated

by integrating Eq. (3) numerically, which yields a new state xxxnew that may or may

not be in Xfeas. In the former case xxxnew is added to the RRT, and in the latter it
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Fig. 1: Left-Top: Extension process of an RRT. Left-Bottom: A kinodynamic plan-

ning problem is often solved faster with a bidirectional RRT. Right: Construction of

an RRT on an implicitly-defined state space manifold.

is discarded. To test whether xxxnew ∈ Xfeas, xxxnew is checked for collisions by using

standard algorithms [15], and the joint positions and constraint forces are computed

to check whether they stay within bounds. The action uuu applied is typically chosen

as the one from U that brings the robot closer to xxxrand . One can either try all possible

values in U (if it is a discrete set) or only those of ns random points on U (if it is

continuous). To force the RRT to extend towards xxxg, xxxrand is set to xxxg once in a while,

stopping the whole process when a RRT leaf is close enough to xxxg. Usually, however,

a solution trajectory can be found more rapidly if two RRTs respectively rooted at

xxxs and xxxg are grown simultaneously towards each other (Fig. 1, left-bottom). The

expansion of the tree rooted at xxxg is based on the integration of Eq. (3) backward in

time.

The previous strategy has proved to be effective in many situations, but in parallel

robots the coordinates in qqq are often dependent. This fact complicates the generation

of RRTs over X , because there is no straightforward way to randomly select points

xxx = (qqq, q̇qq) satisfying Eqs. (1) and (2), and the numerical integration of Eq. (3) easily

drifts away from X when standard methods for ordinary differential equations are

used. These two issues have been recently circumvented in [7] by constructing an

atlas of X in parallel to the RRT.

An atlas is a collection of charts mapping X entirely, where each chart is a

local diffeomorphism ψψψ from an open set P ⊆ R
dX of parameters to an open set

V ⊂ X (Fig. 1, right). The V sets can be thought of as partially-overlapping tiles
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covering X , in such a way that every xxx ∈ X lies in at least one set V . Assuming

that an atlas is available, the problem of sampling X boils down to generating

random values yyy in the P sets, since these values can always be projected to X

using xxx = ψψψ(yyy). Also, the atlas allows the conversion of the vector field defined on

X by Eq. (3) into one in the coordinate spaces P, which permits the integration of

Eq. (3) using local coordinates [21]. As a result, the RRT motions satisfy Eqs. (1)

and (2) by construction, eliminating any drift from X to machine precision.

As explained in [7], the construction of the atlas is incremental. The atlas is

initialized with two charts covering xxxs and xxxg, respectively (Fig. 1, right). Then,

these charts are used to pull the expansion of the RRT, which in turn adds new charts

to the atlas as needed, until xxxs and xxxg become connected. To be able to construct the

charts, the method requires X to be smooth, which implies that the robot cannot

exhibit C-space singularities, i.e., points qqq for which ΦΦΦqqq is rank deficient [4, 6]. In

practice, the exclusion of such singularities can be achieved by choosing appropriate

mechanism dimensions, since generically ΦΦΦqqq will be full rank. Another choice is to

set joint limits excluding the presence of such singularities.

3 Application to a cable-suspended robot

To apply the previous method to a specific cable-suspended robot we need to obtain

Eqs. (1)-(3) and verify that ΦΦΦqqq is full rank over the C-space. Moreover, to determine

whether a given xxx belongs to Xfeas, note that the joint limits can be trivially checked,

and we can use the methods in [15] to detect the collisions. Thus, we only need to

provide a means to compute the cable tensions for each xxx ∈ X . We next illustrate

these points in the particular robot of Fig. 2.

3.1 Kinematic model

Consider a point mass suspended from three cables of fixed length ρi, i = 1,2,3.

Each cable is connected to an actuated slider that can move along a guide line de-

fined by a point AAAi, with position vector aaai, and a unit vector wwwi, both given in a

fixed frame Oxyz (Fig. 2). Although the guides are horizontal and parallel in this

figure, they could take any direction in general. By changing the displacements

ddd = [d1,d2,d3]
T of the sliders, the robot can control the position PPP of the point

mass, with position vector ppp = [x,y,z]T in the mentioned frame. In this robot, it is

natural to choose qqq = [x,y,z,d1,d2,d3]
T so that Eq. (1) becomes the system formed

by

ρ2
i − ccci

Tccci = 0, (4)

for i = 1,2,3, where ccci = (aaai +diwwwi)− ppp is the vector from PPP to the ith slider posi-

tion. By taking the partial derivatives of Eqs. (4) with respect to ppp and ddd we obtain
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Fig. 2: A spatial 3-DOF cable-driven robot.

ΦΦΦqqq =





︸ ︷︷ ︸

ΦΦΦ ppp

2ccc1
T

2ccc2
T

2ccc3
T

︸ ︷︷ ︸

ΦΦΦddd

−2ccc1
Twww1 0 0

0 −2ccc2
Twww2 0

0 0 −2ccc3
Twww3



 , (5)

which readily provides Eq. (2).

By inspection of the previous Jacobian, it is easy to see that a configuration qqq

is a C-space singularity if, and only if, the three cables lie on a plane π orthogonal

to the three guides. Certainly, if for a given qqq all cables lie on such a plane π , the

subjacobian ΦΦΦddd is null, and the subjacobian ΦΦΦ ppp is rank deficient. This implies that

all 3×3 minors of ΦΦΦqqq will vanish, so that qqq is a C-space singularity. Conversely, if

not all cables lie on such a plane π , but they are still on a plane not orthogonal to the

guides, ΦΦΦ ppp is rank deficient but ΦΦΦddd will be full rank. If the cables are not coplanar,

ΦΦΦ ppp is full rank. In any of the two situations, therefore, ΦΦΦqqq will be full rank.

In what follows, we shall assume that our robot does not exhibit C-space sin-

gularities. To ensure so, note that it suffices to choose cable lengths for which it is

impossible to assemble the mechanism with all of its cables stretched and lying on

the plane π just described.

The configurations in which ΦΦΦ ppp is rank deficient are the so-called forward singu-

larities of the mechanism [6]. In these singularities, the velocities of the actuators do

not determine the velocity of the end effector if only Eq. (2) is considered. However,

in the next section we shall see that, dynamically, the evolution of the mechanism is

perfectly predictable across such singularities.
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3.2 Dynamic model

To formulate Eq. (3), we use the Euler-Lagrange equations with multipliers [12]

which lead to a compact treatment of dynamics and are easily applicable to other

cable-driven architectures. These equations take the form

d

dt

∂K

∂ q̇qq
−

∂K

∂qqq
+

∂U

∂qqq
+ΦΦΦqqq

Tλλλ = τττ, (6)

where K and U are the expressions of the kinetic and potential energies of the robot,

λλλ is a vector of ne Lagrange multipliers, and τττ is the generalized force correspond-

ing to the non-conservative forces applied on the system.

In the robot of Fig. 2, we assume that the cables have negligible mass, and let ml

and ms refer to the mass of the moving load and the mass of each slider, respectively.

By defining MMMl = mlIII3 and MMMs = msIII3, where III3 is the 3× 3 identity matrix, the

kinetic energy of the robot is given by

K =
1

2

[
ṗppT ḋddT

]
[

MMMl 000

000 MMMs

][
ṗpp

ḋdd

]

=
1

2
q̇qqTMMMq̇qq, (7)

where MMM is the so-called mass matrix, which is always symmetric and positive def-

inite. The potential energy of the robot, on the other hand, is given by

U = mlgz, (8)

where g is the gravitational acceleration. By substituting Eq. (7) into Eq. (6), the

Euler-Lagrange equations of our robot reduce to

MMMq̈qq+Uqqq +ΦΦΦqqq
Tλλλ = τττ . (9)

where the term Uqqq is given by the partial derivatives of Eq. (8), i.e.,

Uqqq = [0,0,mlg,0,0,0]
T. (10)

Also, assuming for simplicity that all contacts are frictionless, and letting ui denote

the force exerted by the ith actuator, we have

τττ = [0,0,0,u1,u2,u3]
T. (11)

Since Eq. (9) is a system of nq equations in nq + ne unknowns (the values of q̈qq

and λλλ ), we need extra equations to be able to solve for q̈qq. These can be obtained by

differentiating Eq. (2), which yields

ΦΦΦqqqq̈qq−ξξξ = 000, (12)

where ξξξ =−(ΦΦΦqqqqqqq̇qq)q̇qq. Eqs. (9) and (12) can then be written as
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[
MMM(qqq) ΦΦΦ⊤

qqq
ΦΦΦqqq 000

][
q̈qq

λλλ

]

=

[
τττ −Uqqq

ξξξ

]

. (13)

Clearly, if ΦΦΦqqq is full rank, i.e. there are no C-space singularities, the matrix on the

left-hand side of Eq. (13) is invertible, even at forward singularities, and thus we

can write

q̈qq = fff (qqq, q̇qq,uuu) =
[
IIInq 000

]
[

MMM(qqq) ΦΦΦ⊤
qqq

ΦΦΦqqq 000

]−1 [
τττ −Uqqq

ξξξ

]

. (14)

To finally obtain Eq. (3), we transform Eq. (14) into a first-order ordinary differential

equation using the change of variables q̇qq = vvv, yielding

ẋxx =

[
q̇qq

v̇vv

]

=

[
vvv

fff (qqq,vvv,uuu)

]

= ggg(xxx,uuu). (15)

3.3 Tension computation

Let FFF i denote the force applied by the ith cable on the moving load (Fig. 2). Such

a force can be written as FFF i = ccciFi/ρi, where Fi is the tension of the ith cable. We

next see that the tensions Fi can be obtained from the Lagrange multipliers λλλ . Note

that Eq. (9) can be decomposed into

MMMl p̈pp = [0,0,−mlg]
T−ΦΦΦ ppp

Tλλλ , (16)

MMMs d̈dd = [u1,u2,u3]
T−ΦΦΦddd

Tλλλ , (17)

which correspond, respectively, to Newton’s 2nd law applied to the load and the

sliders. Using Eq. (16), for instance, we see that the term −ΦΦΦ ppp
Tλλλ must be the

resultant force applied by the cables FFFc = FFF1 + FFF2 + FFF3, because the other two

terms are the weight of the load and the time derivative of its linear momentum.

Thus we can say that FFFc =−ΦΦΦ ppp
Tλλλ , or, using the value of ΦΦΦ ppp in Eq. (5),

FFFc = 2ccc1λ1 +2ccc2λ2 +2ccc3λ3. (18)

On the other hand, FFFc can also be written as

FFFc =
ccc1

ρ1
F1 +

ccc2

ρ2
F2 +

ccc3

ρ3
F3, (19)

and comparing Eqs. (18) and (19) we obtain Fi = 2ρiλi. We note this expression

for Fi could also have been obtained by departing from Eq. (17) instead. Moreover,

since the robot is assumed to be free from C-space singularities, the λλλ values are

always determined by Eq. (13), implying that the tensions Fi will be determined too,

even at forward singularities.
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4 Experiments

The planner has been implemented in C, and it has been integrated into the CUIK

Suite [20]. To illustrate its performance, we next show three experiments of increas-

ing complexity. The first two experiments involve a planar version of the robot of

Fig. 2, whereas the last experiment is three-dimensional. In all cases the mass of the

load is 1 [kg], the mass of each slider is 0.1 [kg], and the force applied by the sliders

is limited to the range [−8,8] [N], so that U = [−8,8]d , with d ∈ {2,3}. A bidirec-

tional RRT is always constructed, and each time it is extended, ns = 25 actions are

randomly sampled from U . Each of these actions is applied during ∆ t = 0.5 [s].

For each experiment, Table 1 summarizes the values of nq, ne, and dX , as well

as the performance statistics on an iMac with an Intel i7 processor with 8 CPU

cores running at 2.93 Ghz. The statistics include the number of samples and charts

generated, and the planning time in seconds, all averaged over ten runs. The planner

successfully connected the start and goal states in all runs. Finally, the table also

indicates the execution time, t f , for the trajectories of Fig. 3.

Experiment 1: Moving in the dynamic workspace

In this example, the load is suspended from two cables, and the sliders move along

vertical guides [Fig. 3(a)]. The cables and the sliders move on different planes and,

thus, their collisions need not be checked. The distance between the two guides is

2 [m], and the cables’ length is 8 [m]. The goal here is to move the load from a

low position to a higher position, both in rest and outside the static workspace. The

load has to oscillate along the trajectory in order to gain momentum and finally

reach the goal. The smaller the allowable force on the motors, the larger the number

of oscillations and the harder the planning problem. The bidirectional RRT created

encompasses two trees rooted at the start and goal states, shown in red and green

respectively. Note that although the robot has a limited static workspace (the region

between the guides), including dynamics in the planning has increased the usable

workspace substantially.

Experiment nq ne dX No. of samples No. of charts Planning Time [s] t f [s]

1 4 2 4 1928 283 12.6 10.1

2 4 2 4 20946 2622 140 7.1

3 6 3 6 24398 2244 234 8.4

Table 1: Problem dimensions and performance statistics for the shown experiments.
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Fig. 3: Three planning problems on planar and spatial versions of the robot.
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Experiment 2: Singularity crossing

We now consider the robot of Fig. 3(b), in which the load is suspended from two

horizontal guides separated 1 [m] from each other. The lengths of the cables have

been set to 6.6 and 8 [m], which allows them to align at 45◦ relative to the guides.

The planning problem consists in finding a trajectory to move the load between the

left and rightmost positions in the figure, assuming that the cables cannot collide

with the guides nor with themselves. Note that the triangle 1-2-3 has a different ori-

entation at the start and goal positions, so that the robot will have to cross a forward

singularity to connect them. Although the inverse static problem is indeterminate in

such a singularity, we have shown how both the tensions and the evolution of the

robot remain dynamically determined (Sections 3.2 and 3.3). The planner, as a re-

sult, has no trouble in computing the shown trajectory, which certainly crosses the

singularity somewhere between the two configurations depicted on the right.

Experiment 3: Obstacle avoidance

Finally, a 3D cable-driven robot with three horizontal guides is used to demonstrate

how obstacles are avoided. The distance between two consecutive guides is 3 [m],

and the cables’ length is 8 [m]. The robot moves from a rest position inside the static

workspace to another position outside of it. Both positions are separated by a wall

in the middle of the workspace, which has to be avoided during the move. The robot

is able to overpass the obstacle and manages to reach the goal as seen in Fig. 3(c).

5 Conclusions

This paper has shown how a recent randomized kinodynamic planning technique

can be applied to generate dynamic trajectories for cable-suspended parallel robots.

Taking into account the system dynamics enlarges the robot workspace substan-

tially, allowing to reach points further apart from the footprint of the supporting

structure. Moreover, the joint consideration of obstacle avoidance, force and joint

limits, positive tension constraints, and singularity crossings makes the planner ap-

plicable to challenging scenarios. The approach has been validated with experiments

on particular architectures, but it remains applicable to other robot designs.

The trajectory directly returned by the planner is smooth in position, but not in

velocity and acceleration. A point deserving further attention, thus, is the appli-

cation of local optimization techniques to obtain twice-differentiable trajectories.

Also, global optimization methods should be developed to obtain trajectories in-

volving minimum-time or energy consumption [13, 19]. Finally, efforts should be

devoted to enhance the metric used to measure the distance between states, which is

known to be a challenging task in all sampling-based kinodynamic planners.
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