
1

Amortized Constant Time State Estimation in

SLAM using a Mixed Kalman-Information Filter
Viorela Ila Josep M. Porta Juan Andrade-Cetto

Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Barcelona, Spain

Abstract—The computational bottleneck in all information-
based algorithms for SLAM is the recovery of the state mean and
covariance. The mean is needed to evaluate model Jacobians and
the covariance is needed to generate data association hypotheses.
Recovering the state mean and covariance requires the inversion
of a matrix of the size of the state. Current state recovery methods
use sparse linear algebra tools that have quadratic cost, either
in memory or in time. In this paper, we present an approach to
state estimation that is worst case linear both in execution time
and in memory footprint at loop closure, and constant otherwise.
The approach relies on a state representation that combines the
Kalman and the information-based state representations. The
strategy is valid for any SLAM system that maintains constraints
between robot poses at different time slices. This includes both
Pose SLAM, the variant of SLAM where only the robot trajectory
is estimated, and hierarchical techniques in which submaps are
registered with a network of relative geometric constraints.

Index Terms—State recovery, Kalman filter, Information filter,
Pose SLAM, Hierarchical SLAM.

I. INTRODUCTION

Seminal solutions to the Simultaneous Localization and

Mapping (SLAM) problem relied on the Extended Kalman Fil-

ter (EKF) to estimate the mean absolute position of landmarks

and the robot pose and their associated covariance matrix. This

has quadratic memory and computational cost, limiting its use

only to small areas [16].

Instead of using the mean and the covariance, Gaussians

can be represented using the information vector and the

information matrix. In SLAM, the information matrix turns

out to be approximately sparse, i.e., the matrix entries for

distant landmarks are very small and the matrix can be

sparsified with a minimal information loss, trading optimality

for efficiency [17]. Efficiency without information loss is

possible estimating the entire robot path along with the map,

an approach typically referred to as full SLAM [3], [10], [13].

Exact sparsification is also possible if only a set of variables is

maintained; either by keeping a small set of active landmarks

kidnapping and relocating the robot [19], by decoupling the

estimation problem maintaining the map only [20], or as it is

done in Pose SLAM, by maintaining only the pose history [5],

[11]. In Pose SLAM, landmarks are only used to obtain

relative measurements linking pairs of poses. When working

with sensors that are able to identify many landmarks per

pose, Pose SLAM produces more compact maps than the other

exactly sparse approaches.

Due to their small memory footprint, sparse representa-

tions enable SLAM solutions that scale nicely for very large

maps. However, the information-based representation have

some drawbacks from the estimation point of view. Off-line

information-based SLAM approaches [3], [6], [14] obtain the

maximum likelihood solution from the constraints encoded in

the information matrix. The optimization iteratively approxi-

mates the mean solving a sequence of linear systems using

the previously estimated mean as a linealization point for the

constraints. This process assumes data association for granted,

somehow limiting its applicability. On-line information-based

approaches rely either on variants of the batch methods [10]

or, more commonly, on filtering [5], [8] using the Extended

Information Filter (EIF) as the estimation tool of choice. These

on-line systems do not only have to recover the mean to evalu-

ate the Jacobians, but also need to address the data association

problem. Data association might be tackled without relying on

the filtered pose priors [2]. The process, however, is prone to

perceptual aliasing and it is often convenient to rely on filter

estimates to limit the search space. In this case, false positives

can be avoided performing prior-based data association tests

that use cross covariances between match candidates. Again,

those cross covariances are not directly available from the

estimates of the information-based representations.

The EKF and the EIF applied to SLAM are radically

different in nature. While in the former the estimate includes

all the necessary data for linearization and data association,

the latter is advantageous from the point of view of memory

footprint. In this paper, we propose a combination of these

two filters with the aim of getting the best of the two worlds:

reduced memory complexity and easy access to the mean and

the relevant blocks of the covariance matrix.

The work presented in this paper improves the formal-

ization of the state estimation technique in [9], where we

adopted an extended information filter approach. Here we

definitively abandon this paradigm and propose a novel mixed

Kalman-information filter. The strategy is valid for any SLAM

approach that maintains constraints between robot poses at

different time slices. This includes both Pose SLAM and

submapping techniques in which submaps form a network of

relative geometric constraints. For the sake of simplicity we

center the discussion in the first case, but all the results are

directly applicable to the second one as well.

The paper is structured as follows. In Section II, we

formalize the Pose SLAM problem and describe its solution

via EKF and EIF. In Section III we describe a combination

of the two filters that allows state estimation in linear time

and space complexities. Section IV describes a refinement of

the presented approach that allows updates in constant time

during open loop traverse. This is relevant in Pose SLAM

2

approaches that carefully select the loops to close in order to

avoid inconsistency as much as possible [8] or in hierarchical

SLAM where submaps are scarcely re-visited [4]. With this

enhancement the linear time complexity when closing a loop

is amortized over long periods yielding an almost constant

time state update. Section V presents results both with sim-

ulated data and with real datasets that validate the presented

approach. Concluding remarks are given in Section VI.

II. POSE SLAM FORMULATION

In the incremental form of Pose SLAM, the objective is

to estimate the trajectory of the robot, xn = {x0, . . . , xn},
with xi the robot pose at time i that can be defined in SO(2) or
in SO(3) in any parametrization. Using a Bayesian recursion,

the trajectory, xn, is updated given a set of observations, zn,

of the relative displacement between the current robot pose

and previous poses along the path

p(xn|zn,xn−1) ∝ p(xn|xn−1) p(zn|xn).

The observations can be split in two disjoint groups, a set of

observations between the current robot pose and the immediate

previous one, un, and a set of observations linking the current

pose with any other pose but the previous one, yn. With this,

the probabilistic model becomes

p(xn|zn,xn−1) ∝ p(xn|xn−1) p(un,yn|xn)

∝ p(xn|xn−1) p(un|xn) p(yn|xn)

∝ p(xn|xn−1,un) p(yn|xn). (1)

The estimation problem in Eq. (1) corresponds to the SLAM

operations of augmenting the state, p(xn|xn−1,un), and up-

dating the robot path using relative observations, p(yn|xn).
Assuming Gaussian distributions, the probabilities in Eq. (1)

can be parametrized either in terms of their mean and co-

variance, xn ∼ N (µn,Σn), or in terms of the information

vector and matrix, xn ∼ N−1(ηn,Λn), with ηn = Λnµn,

Λn = Σ−1

n , and in which the estimation workhorses are the

extended Kalman and information filters, respectively.

Note that simultaneous observations are independent and

thus observations linking the same pair of poses can be fused

before using them to update the filter. In particular, we can

assume the set un to include a single element, un.

A. EKF State Estimation

The observation un ∼ N (µu,Σu) is used to augment the

state with a new pose. The state transition model is given by

xn = f(xn−1, un)

≈ f(µn−1, µu) + Fn (xn−1 − µn−1
) + Wn(un − µu)

with Fn and Wn the Jacobians of f with respect to xn−1 and

un, evaluated at µn−1 and µu, respectively. The EKF augments

the state as

µn =

[

µ
1:n−1

xn

]

, (2)

Σn =

[

Σ1:n−2 1:n−2 Σ1:n−2 n−1 Fn

F⊤

n Σn−1 1:n−2 Fn Σn−1 n−1 F⊤

n + Q

]

, (3)

with Q = WnΣuW
⊤

n and where Σn−1 n−1 is used to denote

the block of Σn−1 corresponding to the (n − 1)-th pose, and

µ
1:n−1

and Σ1:n−1 1:n−1 indicate the blocks ranging from the

first to the (n − 1)-th pose.

Each set of measures yn = {yi
n, . . . , yk

n} constrains the

relative position of the last pose to some other poses from

the robot trajectory forming loops. The measurement model

for each of these constraints is

yi
n = h(xi, xn)

≈ h(µi, µn) + H(xn − µn) + vn,

where h gives xi − xn in the reference frame of xi, and H is

H = [0 . . .0 Hi 0 . . . 0 Hn] , (4)

with Hi and Hn the Jacobians of h with respect to xi and xn,

and vn ∼ N (0,Σy) the measurement white noise.

The information from observation yi
n is merged into the

filter applying the following increments

∆µ = K (yi
n − h(µi, µn)), (5)

∆Σ = −K H Σn (6)

to µn and Σn, respectively, where K is the Kalman

gain, K = Σn H⊤ S−1, and with S the innovation matrix,

S = H Σn H⊤ + Σy .

Measurements yi
n result from the data association process.

Instead of directly comparing the sensor readings for the

current pose with all those along the trajectory, data association

is generally tested on a limited region of the trajectory. To

identify poses that are close enough to the current one so

that the corresponding sensor readings are likely to match

(i.e., to produce yi
n observations), we can estimate the relative

displacement, d, from the current robot pose, xn, to any

other previous pose in the trajectory, xi, as a Gaussian with

parameters

µd = h(µi, µn), (7)

Σd = [Hi Hn]

[

Σii Σin

Σ⊤

in Σnn

]

[Hi Hn]⊤, (8)

where Σin is the cross correlation between the i-th and the

current poses. Only poses whose relative displacement, d, is

likely to be inside sensor range need to be considered for

sensor registration.

Whereas the EKF estimation maintains all the data neces-

sary for linearization and for data association, its drawback is

that storing and updating the whole covariance matrix entails

quadratic cost both in memory and in execution time.

B. EIF State Estimation

In the EIF form of Pose SLAM the state is augmented as

ηn =





η
1:n−2

ηn−1 − Fn
⊤Q−1 (f(µn−1, µu) − Fn µn−1)

Q−1 (f(µn−1, µu) − Fn µn−1)



 ,

Λn =

2

4

Λ1:n−2 1:n−2 Λ1:n−2 n−1 0

Λn−1 1:n−2 Λn−1 n−1 + F⊤

n
Q−1Fn −F⊤

n
Q−1

0 −Q−1Fn Q−1

3

5

.

(9)

3

The information from observation yi
n is fed to the filter by

adding the following increments

∆η = H⊤ Σ−1

y ((yi
n − h(µi, µn) + Hµn),

∆Λ = H⊤Σ−1

y H (10)

to ηn and Λn, respectively.

Equation (9) defines a block-tridiagonal matrix and Eq. (10)

only adds off-diagonal elements to the positions corresponding

to the two poses directly related by the observation yi
n,

preserving the sparsity of Λ. Thus, the memory requirements

for the information-based representation can be considered

linear with the number of poses for practical purposes.

Notice, however, that the Jacobians above have to be

evaluated at the state mean which is not directly available

in the information representation. Moreover, the displacement

measure in Eqs. (7) and (8) used for data association requires

marginalising out some blocks of the covariance matrix (its

block diagonal and the last column) which are also not

available in the information representation. On the one hand,

the mean can be recovered solving the following linear system

Λn µn = ηn,

that using sparse Cholesky factorization [1] can be solved

in linear time for realistic problems. On the other hand, the

covariance can be recovered solving

Λn Σn = I,

with I the identity matrix. Sparse Cholesky factorization also

allows to solve this system efficiently but with quadratic

memory cost to store Σn, which is not sparse. This quadratic

memory cost can be alleviated by solving n independent

systems, one for each block column of the covariance matrix,

Ti, i ∈ {1, . . . , n}
Λn Ti = Ii (11)

where Ii is the sparse block column matrix with an identity

block only at the position corresponding to pose i. In this

way space complexity is linear, but time complexity is still

quadratic.

III. POSE SLAM WITH A MIXED

KALMAN-INFORMATION REPRESENTATION

To obtain a state recovery strategy that scales linearly both

in execution time and in memory usage we propose a mixed

Kalman-information representation. We store the state mean,

µn, the block-diagonal and the block-last column of the co-

variance matrix, Dn and Tn respectively, and the information

matrix Λn. The mean is used to evaluate Jacobians, Dn

and Tn are used for data association, and Λn stores in a

very compact way the full set of correlations between all

poses that are necessary to propagate the effects of each loop

closure all over the trajectory. Neither the rest of entries in

Σn nor the information vector ηn are maintained. The largest

stored element is Λn that, as mentioned before, scales linearly

with the number of states. Therefore, the whole representation

scales linearly.

During state augmentation, µn is enlarged with Eq. (2), the

new blocks of Dn and Tn are computed using the relevant

parts of Eq. (3) and Λn is extended as in Eq. (9). Augmenting

the mean block-vector, µn, and the block-vector of diagonal

covariance entries, Dn, can be done in constant time since only

a new block is added. However, state augmentation produces

a new block column Tn with n − 1 elements. Therefore

updating Tn has linear computational cost. Data association

can be carried out at the same time Tn is updated, with linear

complexity as well.

When establishing a link between the last pose and any i-th

pose from the trajectory one can realize that, due to the sparse

form of the Jacobian H in Eq. (4), Eqs. (5) and (6) do not use

the full covariance matrix but only Dn, Tn and the i-th block

columns of the covariance matrix, Ti. Notice that Ti is the

only element missing from our representation. However, it can

be obtained in linear time by solving the system in Eq. (11).

Furthermore, applying Cholesky decomposition to the in-

verse of the Kalman innovation S−1 = V⊤V we define the

block column matrix

B = ΣH⊤V⊤,

that considering Eq. (4) becomes

B = [Ti Tn]

[

H⊤

i

H⊤

n

]

V⊤.

With this, the mean can be updated as in Eq. (5) with

K = B V and the block diagonal entries of the new covari-

ance matrix can be updated adding the following increment to

Dn

∆D = −







B1 B⊤

1

...

Bn B⊤

n






,

where Bi is the i-th block row of B. Moreover, Tn is updated

with

∆T = −B B⊤

n.

Finally, the information matrix is updated as in Eq. (10).

This process is applied for all loops closed at the same

time slice. In practice and due to sensor limitations, a bounded

number of loops per step are closed and, therefore, the whole

state update process scales linearly in time and memory.

The new approach avoids quadratic memory requirements

of an EKF by maintaining the state in information form while,

at the same time, it allows direct access to the mean and the

covariance entries needed for data association. In this way,

the proposed filtering scheme gets the best of the two worlds,

Kalman state availability and information filter sparsity.

IV. OPEN LOOP STATE RECOVERY

IN CONSTANT TIME

The mixed Kalman-information approach presented above

can be applied regardless of the number of asserted loop

closures, giving linear time execution per time slice. However,

in many cases loops are scarcely closed. For instance in

Pose SLAM, in order to avoid filter inconsistency as much

as possible, it is desired to close only highly informative

4

loops [8]. The same happens in hierarchical SLAM where

many loops are formed inside local maps but few are formed

at the inter-map level. In these cases, the robot operates most

of the time in exploration mode, when the most expensive step

is that of updating Tn. However, in this situation this cost can

be reduced by factoring Tn as

Tn = Φn Gn.

This factorization can be updated in constant time as follows.

Suppose a loop closure occurred at time l and that at that

time the procedure presented in the previous section is used

to compute Tl. At this point we define Φl = Tl and Gl = I,

with I the identity matrix. After the loop is closed, when the

robot moves to a new pose xn, n > l, we compute Φn and

Gn as

Φn =

[

Φ1:n−1

Σn−1 n−1 G−1

n−1

]

,

Gn = Gn−1 Fn,

where Σn−1 n−1 is the last block of Dn−1, and Fn is the

Jacobian of the state transition function f at time n. With

this factorization we do not need to store Tn since by book-

keeping Φn and Gn, any block of Tn can be computed in

constant time when required in the data association process.

The constant time open loop update prompts the necessity

to perform data association in times better than linear. This can

be done, for instance, in logarithmic time per iteration using

a KD-tree [18] or even in constant time using grid techniques

when covariances are bounded [15].

V. EXPERIMENTS AND RESULTS

This section describes experiments to validate the presented

Kalman-information filtering approach applied to Pose SLAM,

first using synthetic data and then using a real dataset obtained

form a public repository.

In the first experiment, we simulate a robot moving about

0.8m per step looping around two concentric ellipses, the first

with semi-axes 10m and 6m and the second with semi-axes

20m and 6m. In the simulation, the motion of the robot is

measured with an odometric sensor whose error is 5% of

the displacement in x and y, and 0.0175 rad in orientation.

A second sensor is able to establish a link between any

two poses closer than ±3m in x and y, and ±0.26 rad in

orientation, respectively. This sensor has a noise covariance of

Σy = diag(0.2, 0.2, 0.009)2. The simulation is implemented

in Matlab running under Linux on a Intel Core 2 at 2.4 GHz.

Fig. 1 shows the result obtained when incorporating all

possible loop closure links. We compare the loop closure state

update proposed in this paper with the two alternative methods

described in Section II-B. Fig. 2 shows the execution time

and the memory footprint for the three approaches. The blue

dotted-lines depict the time and memory requirements when

recovering the whole covariance matrix Σ. The red dashed-

lines show the time and memory requirements for the strategy

which recovers each block column of the covariance matrix

solving a sequence of linear systems, one at a time. The results

corresponding to the method introduced in Section III are

−20 −15 −10 −5 0 5 10 15 20

−10

−5

0

5

10

x(m)

y
(m

)

Fig. 1. Simulated trajectory when closing all possible loops. The trajectory
is shown in red and the links forming loops are shown in green.

0 50 100 150 200 250 300 350 400 450 500
10

−2

10
−1

State dim.

T
im

e
(s

)

Column−wise

Whole cov. matrix

Our method

(a) Execution time.

0 50 100 150 200 250 300 350 400 450 500

10
−2

10
−1

10
0

State dim.

M
em

o
ry

 (
M

b
)

Column−wise

Whole cov. matrix

Our method

(b) Memory footprint.

Fig. 2. Execution time and memory footprint for different state recovery
strategies when closing a loop in the simulated experiment.

shown in green. In all cases, linear systems are solved using

supernodal sparse Cholesky factorization [1]. Note from the

plot that the time needed to recover the whole Σ is smaller

than that of solving separate systems per each block column

of Σ due to the extra cost of defining the different linear

systems to be solved in this second case. However, the memory

requirements to solve the whole Σ increase much faster than

when solving the systems column-wise. The method that

recovers the whole Σ is too memory demanding to be applied

to large mapping problems. In contrast, the execution time

and memory usage of our strategy outperforms the two other

methods in both aspects, time and memory usage.

When carefully selecting the loops to be closed using for

instance, information-based criteria [8], the robot operates

most of the time in open loop. Thus, we can take advantage

5

−20 −15 −10 −5 0 5 10 15 20

−10

−5

0

5

10

x(m)

y
(m

)

Fig. 3. Simulated trajectory when carefully selecting the loops to close using
information-based criteria. The trajectory is shown in red and the loop closure
links in green.

20 40 60 80 100 120 140 160
0

0.002

0.004

0.006

0.008

0.01

No. steps

E
x
ec

.
T

im
e

(s
)

Fig. 4. Amortized execution time when controlling the number of loop
closures in the simulated experiment.

of the factorization proposed in Section IV. Fig. 3 shows the

result of a simulation of the same experiment as that in Fig. 1

when using this strategy. Fig. 4 shows the amortized cost, ci

for each step, i, computed as

ci =
1

i

i
∑

k=1

tk, (12)

where tk only includes the time for filter related operations (in-

cluding the time to compute µ, D, Φ, and Λ) at time slice k,

disregarding the cost of sensor registration. As expected, the

plot indicates that the amortized time is almost constant for

the entire experiment.

To test the performance of the proposed approach in larger

problems, we used the Intel dataset from [7]. The dataset

includes 26915 odometry readings and 13631 laser scans.

The laser scans are used to generate sensor-based odometry

and to assert loop closures aligning them using an ICP

scan matching algorithm [12]. The robot odometry and the

laser scan match are modelled with noise covariances Σu =
diag(0.05, 0.05, 0.03)2 and Σy = diag(0.05, 0.05, 0.009)2,
respectively. Finally, the covariance of the initial pose is set to

Σ00 = diag(0.1, 0.1, 0.09)2. Due to its large size, this dataset

is typically pre-processed and reduced to about 1000 poses

with about 3500 loop closure links [10]. By carefully selecting

the most informative loops [8] we only establish about 100

links. Fig. 5 shows the final estimated trajectory in this case.

Fig. 5. Filtered trajectory using encoder and laser odometry of the Intel
dataset. The blue arrow indicates the final pose of the robot and the black
ellipse the associated covariance at a 95% confidence level.

Fig. 6 shows the execution time and memory footprint

at each step using the different state recovery strategies for

loop closure discussed in this paper: recovering the whole Σ,

recovering it column-wise, and the method proposed in this

paper. The result confirms that for larger SLAM problems,

our method clearly outperforms the two other methods both in

memory usage and in execution time. The result also confirms

that the hypothesis behind our approach hold even for large

problems where the robot re-traverses many times the same

places.

Fig. 7 shows the amortized time for the whole execution on

the Intel experiment when using a restrictive policy for loop

closure. The amortized cost is almost constant which makes

the total cost of the SLAM system linear with the number

of iterations, taking into account state estimation but without

considering sensor registration.

VI. CONCLUSIONS

The problem of estimating a set of reference frames with

relative constraints between them is a fundamental problem

in SLAM. It appears, for instance, in Pose SLAM where

reference frames are attached to each one of the poses along

the robot trajectory or in hierarchical SLAM where reference

frames are attached to each submap. When assuming Gaussian

distributions, the Kalman and the information filters are the

two alternative filtering schemes that have been applied to this

problem. In the Kalman filter the mean and the covariance are

directly available for linearization and data association, but

at the cost of quadratic memory and time complexity. The

information filter offers linear memory cost, but to linearize

the state transition and observation models and to perform

prior-based data association, the mean and the covariance

need to be recovered from the information vector and the

information matrix. This can only be achieved at the cost

of quadratic memory (when recovering the whole covariance

6

500 1000 1500 2000 2500 3000 3500

10
−1

10
0

10
1

State dim.

T
im

e
(s

)

Column−wise

Whole cov. matrix

Our method

(a) Execution time.

500 1000 1500 2000 2500 3000 3500

10
−1

10
0

10
1

10
2

State dim.

M
em

o
ry

 (
M

b
)

Column−wise

Whole cov. matrix

Our method

(b) Memory footprint.

Fig. 6. Execution time and memory footprint for different state recovery
strategies when closing a loop in the Intel experiment.

2000 4000 6000 8000 10000 12000
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

No. steps

E
x
ec

.
T

im
e

(s
)

Fig. 7. Amortized execution time when controlling the number of loop
closures in the Intel experiment.

matrix) or quadratic execution time (when recovering the

marginal covariances for each pose one at a time).

In this paper we proposed a mixed Kalman-information

approach in which we store and maintain the state mean,

the relevant block entries of the covariance matrix (its block

diagonal and its block last column) and the information matrix.

The mean and the covariance entries are used to linearize

the system when necessary and to perform data association.

The information matrix stores in a very compact way the

whole set of correlations between the poses. The result is

an estimation mechanism that scales linearly both in memory

and in execution time. Moreover, both in Pose SLAM and in

hierarchical mapping, it is typical to operate most of the time

in open loop while exploring new areas or when defining new

submaps, as well as to establish only few constraints between

the current robot pose (or current submap) and previous poses

(or submaps). We have shown that this particular property can

be exploited to derive a system whose amortized cost per step

is constant instead of linear. The presented results using both

simulated experiments and standard SLAM data sets validate

the approach.

ACKNOWLEDGMENT

This work has been partially supported by the Spanish

Ministry of Science and Innovation under a Juan de la Cierva

Postdoctoral Fellowship to V. Ila and the projects DPI-2007-

60858, DPI-2008-06022, MIPRCV Consolider-Ingenio 2010,

and the EU URUS project IST-FP6-STREP-045062.

REFERENCES

[1] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam. Algo-
rithm 887: CHOLMOD, supernodal sparse Cholesky factorization and
update/downdate. ACM T. Math. Soft., 35(3), 2008.

[2] M. Cummins and P. Newman. FAB-MAP: Probabilistic localization and
mapping in the space of appearance. Int. J. Robot. Res., 27(6):647–665,
2008.

[3] F. Dellaert and M. Kaess. Square root SAM: Simultaneous localization
and mapping via square root information smoothing. Int. J. Robot. Res.,
25(12):1181–1204, 2006.

[4] C. Estrada, J. Neira, and J.D. Tardós. Hierarchical SLAM: Real-time
accurate mapping of large environments. IEEE Trans. Robot., 21(4):588–
596, Aug. 2005.

[5] R. M. Eustice, H. Singh, and J. J. Leonard. Exactly sparse delayed-state
filters for view-based SLAM. IEEE Trans. Robot., 22(6):1100–1114,
Dec. 2006.

[6] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard. A tree param-
eterization for efficiently computing maximum likelihood maps using
gradient descent. In Robotics: Science and Systems III, Atlanta, Jun.
2007.

[7] A. Howard and N. Roy. The robotics data set repository (Radish).
http://radish.sourceforge.net, 2003.

[8] V. Ila, J. Andrade-Cetto, R. Valencia, and A. Sanfeliu. Vision-based
loop closing for delayed state robot mapping. In Proc. IEEE/RSJ Int.

Conf. Intell. Robots Syst., pages 3892–3897, San Diego, Nov. 2007.
[9] V. Ila, J. M. Porta, and J. Andrade-Cetto. Information-based compact

Pose SLAM. IEEE Trans. Robot., 2009. To appear.
[10] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Incremental

smoothing and mapping. IEEE Trans. Robot., 24(6):1365–1378, 2008.
[11] K. Konolige and M. Agrawal. FrameSLAM: from bundle adjustment to

realtime visual mapping. IEEE Trans. Robot., 24(5):1066–1077, 2008.
[12] F. Lu and E. Milios. Globally consistent range scan alignment for

environment mapping. Auton. Robot., 4(4):333–349, 1997.
[13] M. Montemerlo and S. Thrun. FastSLAM: A Scalable Method for the Si-

multaneous Localization and Mapping Problem in Robotics, volume 27
of Springer Tracts in Advanced Robotics. Springer, 2007.

[14] E. Olson, J. Leonard, and S. Teller. Fast iterative optimization of pose
graphs with poor initial estimates. In Proc. IEEE Int. Conf. Robot.

Automat., pages 2262–2269, Orlando, May 2006.
[15] L. M. Paz, J. D. Tardós, and J. Neira. Divide and conquer: EKF SLAM

in O(n). IEEE Trans. Robot., 24(5):1107–1120, 2008.
[16] R. C. Smith and P. Cheeseman. On the representation and estimation of

spatial uncertainty. Int. J. Robot. Res., 5(4):56–68, 1986.
[17] S. Thrun, Y. Liu, D. Koller, A. Y. Ng, Z. Ghahramani, and H. Durrant-

Whyte. Simultaneous localization and mapping with sparse extended
information filters. Int. J. Robot. Res., 23(7-8):693–716, Jul. 2004.

[18] J. Uhlmann. Introduction to the algorithmics of data association in
multiple-target tracking. In M. E. Liggins, D. E. Hall, and J. Llinas,
editors, Handbook of Multisensor Data Fusion. CRC Press, Boca Raton,
2001.

[19] M. R. Walter, R. M. Eustice, and J. J. Leonard. Exactly sparse
extended information filters for feature-based SLAM. Int. J. Robot.

Res., 26(4):335–359, 2007.
[20] Z. Wang, S. Huang, and G. Dissanayake. D-SLAM: A decoupled

solution to simultaneous localization and mapping. Int. J. Robot. Res.,
26(2):187–204, 2007.

