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Abstract— Kinodynamic RRT planners are considered to be
general tools for effectively finding feasible trajectories for high-
dimensional dynamical systems. However, they struggle when
holonomic constraints are present in the system, such as those
arising in parallel manipulators, in robots that cooperate to
fulfill a given task, or in situations involving contacts with
the environment. In such cases, the state space becomes an
implicitly-defined manifold, which makes the diffusion heuristic
inefficient and leads to inaccurate dynamical simulations. To
address these issues, this paper presents an extension of the
kinodynamic RRT planner that constructs an atlas of the
state-space manifold incrementally, and uses this atlas both to
generate random states and to dynamically steer the system
towards such states. To the best of our knowledge, this is
the first randomized kinodynamic planner that explicitly takes
holonomic constraints into account. We validate the approach
in significantly-complex systems.

I. INTRODUCTION

The motion planning problem has been a subject of active

research since the early days of robotics [1]. Although it can

be formulated in simple terms—find a feasible trajectory to

move a robot between two states—and despite the significant

advances in the field, it is still an open problem in many

respects. The complexity of the problem arises from the

multiple constraints that have to be taken into account, like

potential collisions with static or moving objects in the

environment, loop-closure constraints, dynamic equations,

torque and velocity limits, or energy and time execution

bounds, to name a few. Often, such a complexity is managed

by relaxing some of the constraints. For example, while

obstacle avoidance is a fundamental issue, lazy approaches

initially disregard it [2]. Other approaches concentrate on

kinematic feasibility [3], which is already a challenging

issue by itself. In these and other approaches, dynamic

constraints such as speed, acceleration, or torque limits are

neglected, with the hope that they will be enforced in a post-

processing stage, using dynamic time-scaling methods for

example [4]. Decoupled approaches, however, may not lead

to solutions satisfying all the constraints. It is not difficult to

find situations in which a kinematically-feasible path cannot

be transformed into a time-parametric trajectory compatible

with the system dynamics. For this reason, substantial efforts

have also been devoted to obtaining so-called kinodynamic

planners, which directly synthesize state trajectories simul-

taneously compatible with as many kinematic and dynamic
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constraints as possible [5], [6], [7], [8].

Among all kinodynamic planning approaches, the rapidly-

exploring random tree (RRT) method [6] has emerged as

one of the most successful algorithms. Kinodynamic RRT

planners are conceptually simple, easy to implement, and

effective, even in high dimensions. Often, such planners are

thought to be quite general, being able to accommodate most

of the motion planning constraints needed in practice. While

it is true that kinodynamic RRTs cover many situations, they

suffer from an important limitation: they assume that the state

space can be described parametrically, or, in other words, that

the robot state can be represented by means of independent

generalized coordinates. Although parametric state spaces

arise frequently, for example in single-body robots, or in

articulated robots with tree topology, holonomic constraints

may also appear that relate the state space coordinates

in nontrivial ways. This occurs, for example, in systems

with closed kinematic chains, in robots in contact with the

environment, or when geometric constraints are needed to

fulfill a given task. In these cases, the robotic system is

said to be constrained, because its state space is a manifold

implicitly-defined by a system of nonlinear equations.

Standard kinodynamic RRT methods are in trouble on

constrained systems: their diffusion heuristic becomes ineffi-

cient, they may fail to find feasible motions when they exist,

and easily produce simulations that violate the holonomic

constraints. A goal of this paper is to show that these diffi-

culties can all be circumvented if the differential geometric

structure of the state space is considered inside the planner.

While some approaches treat holonomic constraints [9], [10],

[11], [12], [13], [14], none of them considers the dynamics of

the system into the planner. This paper extends the methods

in [14] to obtain a randomized kinodynamic planner that

simultaneously enforces holonomic and dynamic constraints.

This planner can also be seen as an extension of the one in [6]

to deal with holonomic constraints.

The rest of the paper is organized as follows. Section II

formulates the motion planning problem on constrained

robotic systems with dynamic constraints. Then, Section III

illustrates the mentioned difficulties of the classic kinody-

namic RRT method [6] when applied to such systems. Sec-

tions IV and V show how this method can be duly extended

to overcome these difficulties. The idea is to construct an

atlas of the state space incrementally, and then use this atlas

to efficiently push the growing of the tree towards unexplored

regions, while at the same time performing accurate dynamic

simulations. The planner is validated on a number of test

cases in Section VI, and Section VII finally concludes the

paper, discussing points for further attention.
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Fig. 1. Drawbacks of the standard RRT method when applied to constrained systems. See the text for details. Note that, on the right figure, the RRT
easily diverges from X , as revealed by the fact that it often gets hidden beneath the gray surface.

II. PROBLEM FORMULATION

Let us describe a robot configuration by means of a tuple qqq

of nq generalized coordinates, which determine the positions

and orientations of all links at a given instant of time. We

restrict our attention to constrained systems, i.e., those in

which qqq must satisfy a system of ne nonlinear equations

ΦΦΦ(qqq) = 000 (1)

encompassing all holonomic constraints to be taken into

account, either inherent to the robot design (like closed kine-

matic chains) or necessary for task execution (like geometric

or contact constraints imposed on the end-effector). Then,

the configuration space C of the robot, or C-space for short,

is the nonlinear variety C = {qqq : ΦΦΦ(qqq) = 000}, which may be

quite complex in general. Under mild conditions, however,

we can assume that the Jacobian ΦΦΦqqq(qqq)= ∂ΦΦΦ/∂qqq is full rank

for all qqq ∈ C, so that C is a smooth manifold of dimension

dC = nq−ne. By differentiating Eq. (1) with respect to time

we obtain

ΦΦΦqqq(qqq) q̇qq = 000, (2)

which delimits the feasible velocity vectors q̇qq at a given

qqq ∈ C. Now, let FFF(xxx) = 000 denote the system formed by

Eqs. (1) and (2), where xxx = (qqq, q̇qq) ∈ R
2nq . While [14] op-

erates in C, our planning problem will take place in the state

space

X = {xxx : FFF(xxx) = 000}. (3)

Since ΦΦΦqqq(qqq) is full rank, X is also a smooth manifold of

dimension dX = 2 dC , which implies that the tangent space

of X at xxx,

TxxxX = {ẋxx ∈ R
2nq : FFFxxx(xxx) ẋxx = 000}, (4)

is well-defined and dX -dimensional for any xxx ∈ X .

We shall encode the forces and torques of the actuators

into an action vector uuu of dimension nu. Given a starting state

xxxs ∈X , and the vector uuu as a function of time, uuu = uuu(t), the

time evolution of the constrained system is determined by a

differential-algebraic equation of the form

{

FFF(xxx) = 000,

ẋxx = ggg(xxx,uuu).

(5)

(6)

Eq. (5) forces the states xxx to remain in X , while Eq. (6)

models the dynamics of the system, and can be obtained from

the multiplier form of the Euler-Lagrange equations [15].

For each value of uuu, Eq. (6) defines a vector field over X ,

which can be used together with Eq. (5) to integrate the robot

motion forward in time, using proper numerical methods.

To model the fact that the actuator forces are limited in

practice, we assume that uuu takes values in some bounded

subset U of R
nu , which indirectly limits the acceleration of

the system. During its motion, moreover, the robot cannot

incur in collisions with itself or with the environment, which

reduces the feasible states xxx to those lying in a subset

Xfree ⊆ X of non-collision states, which should always fulfill

any existing limits on qqq and q̇qq.

With the previous definitions, the planning problem we

confront can be phrased as follows. Given two states of

Xfree, xxxs and xxxg, find an action trajectory uuu = uuu(t) ∈ U such

that the trajectory xxx = xxx(t) determined by Eqs. (5) and (6)

for xxx(0) = xxxs fulfills xxx(t f ) = xxxg for some time t f > 0, and

xxx(t) ∈ Xfree for all t ∈ [0, t f ].

III. DRAWBACKS OF THE STANDARD RRT METHOD

Observe from the previous section that, in contrast to

[6], we allow the presence of Eq. (1) in the formulation

of our planning problem, which makes it more general and

challenging at the same time. In the literature, the suggested



way to handle this equation is to differentiate it twice, and

use it in conjunction with the Euler-Lagrange equations

with multipliers to obtain the explicit form of the motion

equation [16, Sec. 13.4.3.1.]. In fact, this is the process that

we follow to obtain Eq. (6). However, the application of the

standard RRT method to this equation alone, disregarding

Eq. (5), presents the following drawbacks.

On the one hand, the random samples used to guide the

RRT extension would not be generated on X , but in the

larger ambient space R
2nq , which results in an inefficient

exploration of X [14], [17]. This can be seen in Fig. 1(a), in

which a partial RRT has been grown on X . Clearly, there is a

high probability of producing an ambient space sample xxxrand

such that the nearest RRT node, xxxnear, will only be expanded

slightly towards a new node xxxnew.

On the other hand, note that the standard RRT method

would only use Eq. (6) to simulate the motion of the system,

treating it as an ordinary differential equation. However,

from multibody mechanics it is known that the motion of a

constrained system can only be predicted reliably if Eq. (5) is

also taken into account during the integration of Eq. (6) [18].

Otherwise, the inevitable errors introduced when discretizing

Eq. (6) will make the trajectory xxx(t) increasingly drift away

from X as the simulation progresses. This phenomenon is

shown in Fig. 1(b) for a four-bar pendulum modeling a

swing-boat ride. The pendulum has to be moved from the

starting to the goal states indicated (points 1 and 2 of X ),

both with zero velocity. As shown, an RRT built by the

method in [6] easily diverges from X as the planner proceeds

(e.g., around points 3, 4, and 5) and, as a result, the query

states cannot be connected reliably.

IV. MAPPING AND EXPLORING THE STATE SPACE

We will next see that the sampling and drift issues just

mentioned can both be circumvented by constructing an atlas

of X . The atlas will provide us with a means to sample the X
manifold, instead of the larger ambient space. In addition, the

atlas charts will permit the integration of Eqs. (5) and (6) as

a true differential-algebraic equation, guaranteeing a driftless

simulation of the robot motions along the tree branches.

These ideas will then be used in Section V to implement

an RRT planner for constrained systems.

A. Atlas construction

Formally, an atlas of X is a collection of charts map-

ping X entirely, where each chart c is a local diffeomorphism

ϕϕϕc from an open set Vc ⊂ X to an open set Pc ⊆ R
dX

[Fig. 2(a)]. The Vc sets can be thought of as partially-

overlapping tiles covering X , in such a way that every xxx∈X
lies in at least one set Vc. The point yyy = ϕϕϕc(xxx) provides the

local coordinates, or parameters, of xxx in chart c. Since each

map ϕϕϕc is a diffeomorphism, its inverse map ψψψc =ϕϕϕ−1
c exists

and gives a local parameterization of Vc.

To construct ϕϕϕc and ψψψc we shall use the so-called tangent

space parameterization [15], [19]. In this approach, the map

yyy = ϕϕϕc(xxx) around a given xxxc ∈ X is obtained by projecting xxx
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Fig. 2. (a) An atlas is a collection of maps ϕϕϕ providing local coordinates
to all points of X . (b) The projection of the points xxx ∈ X to TxxxcX leads
to specific instances of ϕϕϕc and ψψψc.

orthogonally to TxxxcX [Fig. 2(b)]. Thus ϕϕϕc becomes

yyy =UUU⊤c (xxx− xxxc), (7)

where UUUc is a 2nq× dX matrix whose columns provide an

orthonormal basis of TxxxcX . The map xxx = ψψψc(yyy) is implicitly

determined by the system of nonlinear equations

FFF(xxx) = 000,

UUU⊤c (xxx− xxxc)− yyy = 000,
(8)

which, for a given yyy, can be solved for xxx using the Newton-

Raphson method (if xxx is close to xxxc).

Assuming that an atlas has been, the problem of sampling

X boils down to sampling the Pc sets, since the yyy values can

always be projected to X using the map xxx = ψψψc(yyy). Also,

the atlas allows the conversion of the vector field defined

by Eq. (6) into one in the coordinate spaces Pc. The time

derivative of Eq. (7), ẏyy =UUU⊤c ẋxx, gives the relationship between

the two vector fields, and allows writing

ẏyy =UUU⊤c ggg(ψψψc(yyy),uuu), (9)

which is Eq. (6), but expressed in local coordinates. This

equation still takes the full dynamics into account, and forms

the basis of the so-called tangent-space parameterization

methods for the integration of differential-algebraic equa-

tions [20]. Given a state xxxk and an action uuu, xxxk+1 is estimated

by obtaining yyyk = ϕϕϕc(xxxk), then computing yyyk+1 using a



discrete form of Eq. (9), and finally getting xxxk+1 = ψψψc(yyyk+1).
The procedure guarantees that xxxk+1 ∈ X by construction,

which makes the integration compliant with all kinematic

constraints in Eq. (5).

B. Incremental atlas and RRT expansion

One could build a full atlas of the implicitly-defined state

space and then use its local parameterizations to define a

kinodynamic RRT. However, the construction of a full atlas

is only feasible for low-dimensional state spaces. On the

other hand, only part of the atlas is necessary to solve a

given motion planning problem. Thus, a better alternative is

to combine the construction of the atlas and the expansion of

the RRT [14]. In this approach, a partial atlas is used to both

generate random states and grow the RRT branches. Also, as

described next, new charts are created as the RRT branches

reach unexplored areas of the state space.

Suppose that xxxk and xxxk+1 are two consecutive steps along

an RRT branch, whose parameters in the chart defined at xxxc

are yyyk and yyyk+1, respectively. Then, a new chart at xxxk

is generated if Eq. (8) cannot be solved for xxxk+1 using

the Newton-Raphson method, or if any of the following

conditions is met

‖xxxk+1− (xxxc +UUUc yyyk+1)‖> ε , (10)

‖yyyk+1− yyyk‖

‖xxxk+1− xxxk‖
< cos(α), (11)

‖yyyk+1‖> ρ , (12)

where ε , α , and ρ are user-defined parameters. The three

conditions are introduced to ensure that the chart domains Pc

capture the overall shape of X with sufficient detail. The first

condition limits the maximal distance between the tangent

space and the manifold X . The second condition ensures

a bounded curvature in the part of the manifold covered

by a local parameterization, as well as a smooth transition

between charts. Finally, the third condition is introduced to

ensure the generation of new charts as the RRT grows, even

for (almost) flat manifolds.

C. Chart coordination

Since the charts will be used to generate samples, it is

important to reduce the overlap between new charts and those

already in the atlas. Otherwise, the areas of X covered by

several charts would be oversampled. To avoid so, the set

of valid parameters for each chart c, Pc, is defined as the

intersection of a ball of radius σ centered at the origin of

R
dX and a number of half-planes, all defined in TxxxcX . The

set Pc is progressively bounded as new neighboring charts

are created around chart c. If, while growing an RRT branch

using the local parameterization provided by TxxxcX , a chart

is created at a point xxxk with parameter vector yyyk in Pc, then

the following inequality

yyy⊤yyyk−
‖yyyk‖

2

2
≤ 0 (13)

with yyy ∈ R
dX , is added to the definition of Pc (Fig. 3).

A similar inequality is added to Pk, the chart at xxxk, by

‖yyyk‖
2

σσ yyyk yyyc

R
dXR

dX

Pc Pk

Fig. 3. Bounding of the parameter sets Pc and Pk of the two neighboring
charts in Fig. 2. Note that yyyc = ϕϕϕk(xxxc) and yyyk = ϕϕϕc(xxxk).

Algorithm 1: The top-level pseudocode of the planner

1 PLANNER(xxxs,xxxg)
input : The query states, xxxs and xxxg.
output: A trajectory connecting xxxs and xxxg.

2 Ts← INITRRT(xxxs)
3 Tg← INITRRT(xxxg)
4 A← INITATLAS(xxxs,xxxg)
5 repeat
6 xxxrand ← SAMPLE(A,Ts)
7 xxxnear← NEARESTSTATE(Ts,xxxrand)
8 xxxnew← CONNECT(A,Ts,xxxnear,xxxrand)
9 xxx′near← NEARESTSTATE(Tg,xxxnew)

10 xxx′new← CONNECT(A,Tg,xxx
′
near,xxxnew)

11 SWAP(Ts,Tg)
12 until ‖xxxnew− xxx′new‖< β

13 RETURN(TRAJECTORY(Ts,xxxnew,Tg,xxx
′
new))

projecting xxxc to Txxxk
X . The parameter σ must be larger

than ρ to guarantee that the RRT branches in chart c

will eventually trigger the generation of new charts, i.e., to

guarantee that Eq. (12) eventually holds.

V. PLANNER IMPLEMENTATION

Algorithm 1 gives the top-level pseudocode of the planner

we propose. It can be seen that, at this level, the algorithm

is almost identical to the one proposed in [6], the only

difference being that we use an atlas A of X in our case

(initialized in line 4 with one chart centered at xxxs and another

at xxxg) to support the lower-level sampling and simulation

tasks. As in [6], the algorithm implements a bidirectional

RRT where one tree is extended (line 8) towards a random

sample (generated in line 6) and then the other tree is

extended (line 10) towards the state just added to the first

tree. The process is repeated until the trees become connected

with a user-specified accuracy (parameter β in line 12).

Otherwise, the trees are swapped (line 11) and the process

is repeated. Tree extensions are always initiated at the state

in the tree closer to the target state (lines 7 and 9). Different

metrics can be used without affecting the overall structure of

the planner. As in [6], we shall use the Euclidean distance

in state space for simplicity.

A. Sampling

The atlas A is key to implement the SAMPLE method

of Algorithm 1. The procedure employed is described by

Algorithm 2. Initially, one of the charts covering the tree T



is selected at random with uniform distribution (line 3). A

vector yyyrand of parameters is then randomly sampled inside

a ball of radius σ centered at the origin of R
dX (line 4),

repeating this sampling if necessary until yyyrand falls inside

the set Pc for the selected chart. The procedure finally returns

the point xxxrand = xxxc +UUUc yyyrand corresponding to the ambient

space coordinates of yyyrand (line 7). Notice that this point lies

on the tangent space TxxxcX , instead of on X , because the

tangent space point is enough to steer the tree towards the

unexplored regions.

Observe that, initially, the set Pc is the mentioned ball of

radius σ centered at the origin of R
dX . However, as new

neighboring charts are successively created around a given

chart (as described in Sec. IV-A), the set Pc is incrementally

reduced by the addition of the limiting hyperplanes given by

Eq. (13). Thus, the sets Pc of fully-surrounded charts become

much smaller than the original ball of radius σ , and their

probability of being sampled decreases considerably. Charts

that lie at the borders of the RRT, on the contrary, have fewer

neighboring charts (and thus a larger Pc set), resulting in a

higher probability of being sampled. In this way, the growing

of the tree is biased towards regions outside the currently-

explored state space.

B. Tree extension

Algorithm 3 tries to connect a given state xxxnear with a

goal state xxxrand . The procedure simulates the motion of the

system (line 6) for a set of actions, which can be selected at

random or taken from a predefined set (line 5). The action

that yields a new state xxxnew closer to xxxrand is added to the

RRT with an edge connecting it to xxxnear (line 13). The action

uuunew generating the transition from xxxnear to the new state xxxnew

is also stored in the tree so that an action trajectory can be

returned after planning. This process is repeated as long as

there is progress towards xxxrand .

Algorithm 4 summarizes the procedure used to simulate

a given action, uuu, from a particular state, xxxk. The simulation

is carried out while the path is not blocked by an obstacle

or by a workspace limit (line 8), while the goal state is not

reached (with accuracy δ ), or for a maximum time span, tm
(line 5). At each simulation step, the key procedure is the

NEXTSTATE method (line 7), which provides the next state,

xxxk+1, given the current one, xxxk, and the action to simulate, uuu.

This is implemented by integrating Eq. (6) using local

coordinates, as explained in Section IV-A. Any numerical

Algorithm 2: Generate a guiding state xxxrand .

1 SAMPLE(A,T )
input : The atlas, A, the tree currently extended, T .
output: A sample on the atlas.

2 repeat
3 c← RANDOMCHARTINDEX(A,T )
4 yyyrand ← RANDOMONBALL(σ)
5 until yyyrand ∈ Pc

6 xxxrand ← xxxc +UUUc yyyrand

7 RETURN(xxxrand)

integration method, either explicit or implicit, could be used

to discretize Eq. (9). We here apply the trapezoidal rule,

as it yields an implicit integrator whose computational cost

(integration and projection to the manifold) is similar to the

cost of using an explicit method of the same order [15].

Also, it gives more stable and accurate solutions over long

time intervals. Using this rule, Eq. (9) is discretized as

yyyk+1 = yyyk +
h

2
UUU⊤c (ggg(xxxk,uuu)+ggg(xxxk+1,uuu)), (14)

where h is the integration time step. The value xxxk+1 in

Eq. (14) is unknown, but it can be obtained using Eq. (8) as

FFF(xxxk+1) = 000,

UUU⊤c (xxxk+1− xxxc)− yyyk+1 = 000.
(15)

Now, both Eq. (14) and Eq. (15) are combined to form

FFF(xxxk+1) = 000,

UUU⊤c (xxxk+1−
h
2
(ggg(xxxk,uuu)+ggg(xxxk+1,uuu))− xxxc)− yyyk = 000,

(16)

where xxxk, yyyk, and xxxc are known and xxxk+1 is the unknown

to determine. Any Newton method can be used to solve

this system, but the Broyden method is particularly adequate

since it avoids the computation of the Jacobian of the system

at each step. Potra and Yen [15] gave an approximation of

this Jacobian that allows finding xxxk+1 in few iterations.

For backward integration, i.e., when extending the RRT

with root at xxxg, the time step h in Eq. (16) is negative. In

any case, h is adjusted so that the change in parameter space,

‖yyyk+1−yyyk‖, is bounded by δ , with δ ≪ ρ . This is necessary

to detect the transitions between charts, which can occur

either because the next state triggers the creation of a new

chart (line 12), or because it is not in the part of the manifold

covered by the current chart (line 14) and, thus, it is in the

part covered by a neighboring chart (line 15).

Algorithm 3: Try to connect xxxnear with xxxrand .

1 CONNECT(A,T,xxxnear,xxxrand)
input : An atlas, A, a tree, T , the state from where to extend

the tree, xxxnear, and the random sample to be reached,
xxxrand .

output: The updated tree.

2 dre f ←‖xxxnear− xxxrand‖
3 repeat
4 dnew← ∞
5 foreach uuu ∈U do
6 xxx← SIMULATEACTION(A,T,xxxnear,xxxrand ,uuu)
7 d←‖xxx− xxxrand‖
8 if d < dnew then
9 xxxnew← xxx

10 uuunew← uuu
11 dnew← d

12 if xxxnew /∈ T then
13 T ← ADDACTIONSTATE(T,xxxnear,uuunew,xxxnew)

14 if dnew ≤ dre f then
15 dddre f ← dddnew

16 xxxnear← xxxnew

17 until dnew > dre f

18 RETURN(T )



Algorithm 4: Simulate an action.

1 SIMULATEACTION(A,T,xxxk,xxxg,uuu)
input : An atlas, A, a tree, T , the state from where to start

the simulation, xxxk, the state to approach, xxxg, and the
action to simulate, uuu.

output: The last state in the simulation.

2 c← CHARTINDEX(xxxk)
3 FEASIBLE← TRUE

4 t← 0
5 while FEASIBLE and ‖xxxk− xxxg‖> δ and |t| ≤ tm do
6 yyyk← ϕϕϕc(xxxk)
7 (xxxk+1,yyyk+1,h)← NEXTSTATE(xxxk,yyyk,uuu,FFF,UUUc,δ )
8 if COLLISION(xxxk+1) or OUTOFWORKSPACE(xxxk+1) then
9 FEASIBLE← FALSE

10 else
11 if ‖xxxk+1− (xxxc +UUUc yyyk+1)‖> ε or

‖yyyk+1− yyyk‖/‖xxxk+1− xxxk‖< cos(α) or ‖yyyk+1‖> ρ
then

12 c← ADDCHARTTOATLAS(A,xxxk)

13 else
14 if yyyk+1 /∈ Pc then
15 c← NEIGHBORCHART(A,c,yyyk+1)

16 t← t +h
17 xxxk← xxxk+1

18 RETURN(xxxk)

C. Probabilistic completeness

The planner presented is probabilistically complete. Pro-

viding a formal proof of this point would be lengthy, and

we only sketch the main arguments. Note that the subset

of X that is parameterized by a partial atlas can be densely

sampled using the procedure described in Section V-A. Thus,

the proof of probabilistic completeness given in [6] for

parametric state spaces also holds within this subset. This

implies that our planner will be probabilistically complete if,

and only if, it is able to extend the atlas to fully parameter-

ize X . This will certainly be achieved if necessary, since the

procedure described in Section IV-A ensures that new charts

are generated each time the RRT branches approach the

border of the subset of X parameterized at a given moment.

The fact that RRT is biased towards such borders (Sec. V-A)

ensures that they will eventually be reached, unless the

planning problem has been solved before. As shown in [19],

the expansion of the atlas will only stop when the atlas has

no border, i.e., when it fully covers X .

VI. TEST CASES

The planner has been implemented in C and integrated

into the CUIK Suite [21]. We next illustrate its performance

in three test cases of increasing complexity (See Fig. 4

and https://youtu.be/yV7bDj5zFUs). The first test case was

already used in Section III. It consists of a planar four-

bar pendulum with limited motor torque that has to move a

load. The robot may need to oscillate several times to move

from the stable to the unstable equilibrium states shown in

Fig. 1(b). The second test case is a planar five-bar robot

Fig. 4. Test cases used to validate the planner: a four-bar pendulum (top,
left), a five-bar robot (top, right), and a Delta robot (bottom).

equivalent to the Dextar prototype [22], but with an added

spring to enhance its compliance. The goal here is to move

the load from one side to the other of a wall, with null initial

and final velocities. Unlike in the first case, collisions with

the two walls will easily occur here, and thus they should

be avoided. In the third case, a Delta robot moves a heavy

load in a pick-and-place scenario, while avoiding obstacles.

It picks up the load from a conveyor belt with an initial

velocity, and places it at rest inside a box on a second belt. In

contrast to typical Delta robot applications, here the weight

of the load is considerable, which increases dynamics effects

substantially.

In this paper, relative joint angles are used to formulate

Eq. (5), while the Euler-Lagrange equations with multipliers

are used to formulate Eq. (6).

Table I summarizes the problem dimensions, parameters,

and performance statistics of all test cases. As the three

robots involve nq = 4, 5, and 15 joints, and each independent

kinematic loop introduces 3 or 6 constraints (depending on

whether the robot is planar or spatial), the dimensions of

the C-space are dC = 1, 2, and 3, respectively. The robots

respectively have nu = 1, 2, and 3 of their base joints

actuated, while the remaining joints are passive. The set U
is discretized into a finite number of actions, which are

randomly chosen at every iteration with uniform distribution

between −τmax and τmax.

In all test cases the parameters are set to tm = 0.1,

δ = 0.05, σ = dC , ρ = σ/2, cos(α) = 0.1, and ε = 0.1.

Table I gives the value of β which, as in [6], is problem-

specific. The table also shows the performance statistics on

an iMac with an Intel i7 processor at 2.93 Ghz with 8 CPU

cores, which are exploited to run lines 6 to 11 of Algorithm 3

https://youtu.be/yV7bDj5zFUs


TABLE I

TEST CASE DIMENSIONS, PARAMETERS, AND PERFORMANCE STATISTICS OF THE PLANNER.

Robot nq ne dC dX No. of actions τmax [Nm] β No. of samples No. of charts Plan. Time [s] t f [s]

Four-Bars

4 3 1 2 3 16 0.1 272 197 1.0 3.37
4 3 1 2 3 12 0.1 421 260 1.6 6.30
4 3 1 2 3 8 0.1 615 388 2.2 5.83
4 3 1 2 3 4 0.1 1989 1381 7.4 11.42

Five-Bars 5 3 2 4 5 0.2 0.25 6306 291 9.2 32.90

Delta 15 12 3 6 7 1 0.5 1670 83 17.4 8.79

Fig. 5. From left to right, the state manifold (in blue), and the trajectory obtained (green) for a maximum torque τmax of 16, 12, 8, and 4 [Nm].

in parallel. The statistics include the number of samples

and charts, as well as the planning time and the trajectory

time t f in seconds, all averaged over ten runs. The planner

successfully connected the starting and goal states in all runs.

For the sake of comparison, we tried to solve the same test

cases with the RRT method in [6], but the planner didn’t

succeed in any of them.

In the case of the four-bar mechanism, results are included

for decreasing values of τmax. As reflected in Table I, the

lower the torque, the harder the planning problem. The

solution trajectory on the state-space manifold (projected in

one position and two velocity variables) can be seen in Fig. 5

for the different values. Clearly, the number of oscillations

needed to reach the goal is successively higher. The trajectory

obtained for the most restricted case is shown in Fig. 6, top.

In the five-bars robot, although it only has one more link

than the previous robot, the planning problem is significantly

more complex. This is due to the narrow corridor created

by the obstacle to be overcome. Moreover, the motors have

a severely limited torque taking into account the spring

constant. In order to move the load in such conditions, the

planner is forced to increase the momentum of the load

before overpassing the obstacle, and to decrease it once it

has passed it so as to reach the goal configuration with

zero velocity (Fig. 6, middle). This increased complexity is

reflected by the high ratio between the number of samples

and charts. This shows that, from a given point, the planner

has charted the whole of Xfree and, after that, is trying to

find a way through the narrow corridor.

Finally, the table gives the same statistics for the problem

on the Delta robot. The planning time is higher because the

robot is spatial and it has a state space of dimension 6 in an

ambient space of dimension 30. Moreover, it involves more

holonomic constraints than in the previous cases, and has

to avoid collisions with itself and with the environment (the

conveyor belts, the boxes and the supporting structure). Also,

given the velocity of the belt, the planner is forced to reduce

the initial momentum of the load before it can place it inside

the box (Fig. 6, bottom).

VII. CONCLUSIONS

This paper has proposed an RRT planner for dynamical

systems subject to holonomic constraints. Dealing with such

constraints presents two major hurdles: the generation of

random samples in the state space and the driftless simulation

over such space. We have seen that both issues can be

addressed by relying on local parameterizations. The result

is a planner that navigates the state space manifold following

the vector fields defined by the dynamic constraints on

such manifold. The proposed method can successfully solve

significantly complex problems.

To scale to even more complex problems, several aspects

of the proposed RRT planner need to be improved. Probably

the main issue is the metric used to measure the distance

between states. This is a general issue of all sampling-based

kinodynamic planners, but in our context it is harder since

the metric should not only consider the vector fields defined

by the dynamic constraints, but also the curvature of the state

space manifold defined by the holonomic constraints. Using

a metric derived from geometric insights provided by the kin-

odynamic constraints might result in substantial performance

improvements. Also, global optimization methods should be

developed to obtain trajectories involving minimum-time or

energy consumption [23], [24].



Fig. 6. Snapshots of the trajectories obtained by the planner for the three test cases. See https://youtu.be/yV7bDj5zFUs.
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