
A Singularity-Robust LQR Controller for Parallel Robots

Ricard Bordalba, Josep M. Porta, and Lluís Ros

Abstract— Parallel robots exhibit the so-called forward singu-
larities, which complicate substantially the planning and control
of their motions. Often, such complications are circumvented
by restricting the motions to singularity-free regions of the
workspace. However, this comes at the expense of reducing the
motion range of the robot substantially. It is for this reason
that, recently, efforts are underway to control singularity-
crossing trajectories. This paper proposes a reliable controller
to stabilize such kind of trajectories. The controller is based
on the classical theory of linear quadratic regulators, which we
adapt appropriately to the case of parallel robots. As opposed to
traditional computed-torque methods, the obtained controller
does not rely on expensive inverse dynamics computations.
Instead, it uses an optimal control law that is easy to evaluate,
and does not generate instabilities at forward singularities.
The performance of the controller is exemplified on a five-bar
parallel robot accomplishing two tasks that require the traversal
of singularities.

I. Introduction

Parallel robots may be advantageous because of their
stiffness, precision, and the efficiency of their movements [1].
These assets come at a high cost however: their workspace
tends to be limited, and the planning and control of their
motions are rather involved. Their closed kinematic chains
and passive joints give rise to forward singularities [2], [3],
in which the system becomes underactuated [4]. In such
configurations, thus, the system will be unable to follow
arbitrary accelerations. Actually, for some accelerations, the
inverse dynamic problem will yield extremely large motor
torques.

It is important to note, however, that singularity-crossing
motions can safely be executed if the kinodynamic con-
straints of the robot are respected [4], [5], [6], [7]. This
is a key finding, because the motion capabilities of the
robot can be greatly enlarged if such motions are allowed.
A recent planner, in fact, is able to generate singularity-
crossing motions [8], [9]. This planner relies only on for-
ward dynamics, and thus obtains trajectories that fulfill all
kinodynamic constraints, even at the forward singularities.
These trajectories are “open loop” though, and thus they need
to be stabilized a posteriori with a feedback controller. The
purpose of this paper is to complete this task, in order to
achieve stable trajectory trackings, even in the presence of
disturbances or dynamic model inaccuracies.

This work has been partially funded by the Spanish Ministry of
Economy and Competitiveness under projects DPI2014-57220-C2-2-P and
DPI2017-88282-P.

Ricard Bordalba, Josep M. Porta, and Lluís Ros are with the In-
stitut de Robòtica i Informàtica Industrial, CSIC-UPC, Barcelona, Spain
{rbordalba,porta,ros}@iri.upc.edu

As in serial manipulators, the majority of parallel robots
are stabilized with computed-torque (CT) control meth-
ods [10]. These employ inverse dynamics and feedback
linearization to obtain a closed-loop system with easy-to-tune
control parameters. CT laws are effective because they tend
to produce global basins of attraction towards the desired
trajectory. However, the inverse dynamic problem has to
be solved at each iteration of the control loop. This is an
expensive step that may prevent the design of high-frequency
controllers in time-critical tasks. Moreover, CT controllers
fail perilously near singularities because, as mentioned be-
fore, the inverse dynamics is generally unsolvable at such
configurations. A possible workaround is to use multi-control
architectures [11], which in the proximity of a singularity
switch from a classical CT law to a controller based on
virtual constraints. The solution is elegant, but the switching
from one controller to the other depends on a heuristic
parameter that needs to be tuned experimentally. This process
can be costly, or even harmful to the machine.

The controller we introduce does not present the previous
limitations. As we shall see, the classical theory of linear
quadratic regulators can be extended to cope with closed
kinematic chains, providing a single-structure controller that
is easy to tune, and does not resort to feedback linearization.
Since such a controller does not rely on inverse dynamics,
it can be used to stabilize a trajectory even at a forward
singularity. The resulting feedback laws, moreover, are cheap
to evaluate and produce optimal actions that minimize tra-
jectory errors and control efforts. Our work is inspired
on recent developments in humanoid control [12], [13],
but our arguments and context of application are different.
Notice that in a humanoid robot all joints are actuated, and
thus, forward singularities are rarely an issue. Instead, these
singularities arise naturally in parallel robots, and must be
analyzed and carefully considered.

The rest of the paper is structured as follows. Section II
formalizes the problem dealt with in this paper. Section III
recalls a few results from the theory of linear quadratic
regulators [14], and explains why this theory cannot be
directly applied to parallel robots. Section IV shows how
to circumvent this issue by extending the theory to the case
in which we wish to stabilize the robot at a fixed point. This
extension is based on expressing the equations of motion in
local coordinates. This paves the way to Section V, which
extends the theory to the more complex case of trajectory
stabilization. Section VI illustrates the performance of the
obtained controllers in several test cases, and compares the
results with those of CT control laws. Section VII, finally,
provides the paper conclusions.



II. Problem Statement

Let us describe a robot configuration by means of a tuple
q = (a, r) of nq generalized coordinates, where a contains
the na actuated degrees of freedom of the robot, and r

encompasses the nr remaining coordinates in q. In parallel
robots the coordinates in q are not independent. Instead, they
must satisfy a system of nr nonlinear equations

Φ(q) = 0 (1)

expressing all kinematic loop-closure constraints of the sys-
tem. By differentiating Eq. (1) with respect to time, and
letting Φq = ∂Φ/∂q, we obtain

Φq Ûq = 0, (2)

which delimits the feasible velocity vectors Ûq at a given
configuration q. The system formed by Eqs. (1) and (2)
determines the feasible states x = (q, Ûq) ∈ R2nq of the robot.
Hereafter, this system will be compactly written as

F(x) = 0, (3)

and the state space of the robot will be defined as the
nonlinear manifold

X = {x : F(x) = 0}, (4)

which is of dimension dX = 2 na in general.
Let us now encode the forces and torques of the actuators

into an action vector u of dimension na. The equations of
motion of the parallel robot can then be written in the form

Üq = f (q, Ûq, u), (5)

which can be obtained, for instance, from the Euler-Lagrange
equations with multipliers [15]. By applying the change of
variables v = Ûq, the state dynamics can be written as a first
order differential equation of the form

Ûx = g(x, u) =

{

Ûq = v

Ûv = f (x, u)
(6)

Since parallel robots are constrained multibody systems, their
time evolution is determined by the differential-algebraic
equation formed by Eqs. (3) and (6) [15]. Note that for each
value of u, Eq. (6) defines a vector field over the X manifold
of Eq. (3).

With the previous definitions, the control problem that we
address can be stated as follows. Given time parametric state
and action planned trajectories

x = x0(t)

u = u0(t)
(7)

satisfying Eqs. (3) and (6) for all time instants t ∈ [0, t f ], we
wish to design a control law

u = π(x, t) (8)

so that the closed-loop system

Ûx = g(x, π(x, t)) (9)

is stable along x0(t). This implies that the integral curves
of Eq. (9) must be convergent to x0(t) for arbitrary initial
conditions in the neighborhood of such trajectory.

In the rest of the paper we shall assume that the Jacobian

Fx(x) =

[

Φq 0
dΦq

dt Φq

]

(10)

is full rank at all states x of the reference trajectory x0(t),
which is the case for generic robot geometries [2]. This
means that the state space X will have a well-defined
tangent space at such points, which is necessary for the
control method we propose. Note that this assumption
does not exclude forward singularities, i.e., the subjacobian
Φr = ∂Φ/∂r can still be rank deficient.

III. Linear Quadratic Regulators

To address the problem just posed, we propose a controller
that, for the system in Eq. (6), minimizes the additive cost
function

J =

∫ t f

0

[

x̄⊤(t)Q x̄(t) + ū⊤(t) R ū(t)
]

dt, (11)

where x̄ = x − x0(t), ū = u − u0(t), Q is a positive
semi-definite matrix penalizing deviations from the planned
trajectory x0(t), and R is a positive-definite matrix penalizing
deviations from the planned actions u0(t).

Unfortunately, for general nonlinear systems Ûx = g(x, u),
no solution is known for the mentioned controller. However,
for linear time-varying systems

Ûx = A(t)x + B(t)u (12)

with independent variables x, the solution is given by the
linear quadratic regulator (LQR) [14]. The result is the
optimal controller

u = π(x, t) = u0(t) − K(t) x̄ (13)

where K (t) = R−1B⊤S(t), and S(t) is the solution to the
differential Riccati equation

− ÛS = SA(t) + A⊤(t)S − SB(t)R−1B⊤(t)S + Q(t). (14)

We can solve for S(t) by integrating this equation nu-
merically backwards in time using the terminal condition
S(t f ) = Q [14].

Despite being restricted to the linear case, this solution is
powerful, as one can always apply it to the time-varying
linearization of Ûx = g(x, u) along x0(t), u0(t). Such an
approach has been shown to provide effective controllers on
general nonlinear systems [14].

Note however that the result cannot be directly applied to
parallel robots, because their x variables are not independent.
In fact, if we obtain Eq. (12) by direct linearization of
Eq. (6) we will find that the system is neither controllable
nor stabilizable in the traditional sense, since it ignores
the constraint in Eq. (3) [12]. One might argue that the
differential equations could always be expressed in terms
of minimal task- or joint-space coordinates, but then we
would be faced with the singularities introduced by such



X

x

x0
y Tx0

X

Fig. 1. The tangent space parameterization.

coordinates [2]. The route taken in this paper is robust to
such singularities because, as we shall see, we employ a time-
varying parameterization of x that is always well-defined.

IV. Stabilization at a Fixed Point

Consider the reference trajectory to be x0(t) = x0∀t, where
x0 is a fixed point of Ûx = g(x, u) for u = u0, i.e., g(x0, u0) =

0. We propose to use the tangent space local parametrization
to find a set of minimal coordinates and then apply LQR
techniques using such coordinates. Let the tangent space of
X at x0 be

Tx0
X = { Ûx ∈ R2nq : Fx(x0) Ûx = 0}. (15)

The tangent space can be used to define a local diffeomor-
phism ϕ from an open neighborhood of x0 in X to and open
set of RdX . The map y = ϕ(x) provides the local coordinates,
or parameters, of x. This map is obtained by projecting x

orthogonally to Tx0
X [Fig. 1]:

y = U⊤ x̄, (16)

where U is a 2nq × dX matrix whose columns provide an
orthonormal basis of Tx0

X , i.e., U⊤U = IdX , where IdX is
the identity matrix of size dX . This basis can be computed
efficiently using the QR decomposition of Fx at x0. Since
the map ϕ is a diffeomorphism, its inverse map ψ = ϕ−1

exists and is implicitly determined by the system of nonlinear
equations

F(x) = 0,

U⊤ x̄ − y = 0,
(17)

which, for a given y ∈ RdX , can be solved for x using the
Newton-Raphson method (if x is close to x0).

The time derivative of Eq. (16) gives the expression of
the vector field defined by Eq. (6) in local coordinates of the
tangent space [Fig. 2(a)]:

Ûy = U⊤ Ûx = U⊤ g(ψ(y), u) = g̃(y, u). (18)

The resulting system may not be stable at the fixed point
and thus, our goal is to find a feedback law to stabilize
it [Fig. 2(b)].

Since we wish asymptotic convergence to the fixed point,
we are in the context of infinite-horizon optimal control.
Therefore, we set the terminal time t f of the cost in Eq. (11)

to infinity. Moreover, by using y = U⊤ x̄, this cost can be
rewritten in terms of the local coordinates y:

J =

∫ ∞

0

[

y⊤(t) Q̃ y(t) + ū⊤(t) R ū(t)
]

dt, (19)

where Q̃ = U⊤QU .
To obtain an LQR solution, we linearize Eq. (18) around

the fixed point to get a linear time-invariant system in tangent
space coordinates,

Ûy = Ãy + B̃ū, (20)

where

Ã =
∂ g̃

∂y
= U⊤ ∂g

∂x

∂ψ(y)

∂y
,

and

B̃ =
∂ g̃

∂u
= U⊤ ∂g

∂u
.

Note that
∂ψ(y)
∂y can be computed in closed form. Consider

the mapping

y = ϕ(x) = U⊤ (x − x0) . (21)

Lets now use the inverse mapping x = ψ(y) to rewrite
Eq. (21) as

y = U⊤ (ψ(y) − x0) . (22)

If we compute the partial derivative of both side of Eq. (22)
with respect to y, we have

IdX = U⊤ ∂ψ(y)

∂y
. (23)

Thus,
∂ψ(y)
∂y must be U .

From the theory of Section III, the optimal control that
minimizes the cost in Eq. (19) for the system in Eq. (20) is
given by

u = π(y) = u0 − K̃ y, (24)

which can be written in terms of the x variables as

u = π(x) = u0 − K̃U⊤ x̄. (25)

Since we are solving an infinite horizon control problem,
the solution of Eq. (14) reduces to the algebraic Riccati
equation [14]

0 = SÃ + Ã
⊤
S − SB̃R−1B̃

⊤
S + Q̃, (26)

which can be solved using generalized eigenvalue meth-
ods [16].

V. Trajectory Stabilization

Now consider the general case of stabilizing an arbitrary
trajectory x0(t), u0(t). Since this trajectory is now time-
varying, the tangent space basis U(t) and the mappings
ψ(y, t) and ϕ(x, t) are also time-varying along x0(t).



(a)

(b)

X

Tx0
X

Tx0X

(y space)

(y space)

0

0

x0

Fig. 2. (a) A vector field Ûx = g(x, u) on X can be locally expressed in
tangent-space coordinates. The field is action varying, but we draw it for a
given value of u only. (b) If, as in (a), x0 is a fixed point for some u = u0,
we can design a feedback law to stabilize the system at x0.

As in the previous section, we also write the vector field
in local coordinates, which can be done by differentiating
Eq. (16):

Ûy = ÛU
⊤
(t) x̄ + U⊤(t) Û̄x

= ÛU
⊤
(t) [ψ(y, t) − x0(t)]+

U⊤(t) [g(ψ(y, t), u) − g(x0(t), u0(t))]

= g̃(y, u, t).

(27)

Note that the resulting vector field is now action- and time-
varying [Fig. 3(a)], and our goal is to stabilize this system
to make it convergent to the desired trajectory [Fig. 3(b)].

Noting that the terminal time t f is the trajectory time, we
rewrite the finite-horizon cost in local coordinates as

J =

∫ t f

0

[

y⊤(t) Q̃(t) y(t) + ū⊤(t) R ū(t)
]

dt . (28)

where Q̃(t) = U⊤(t) Q U(t).
Now we linearize Eq. (27) about x0(t), u0(t) to obtain:

Ûy = Ã(t) y + B̃(t) ū, (29)

(a)

(b)

Tx1
X

Tx2
X

Tx3
X

Tx4
X

Tx5
X

x1

x2

x3

x4

x5

X

t

xi,0

xi

Fig. 3. (a) The linearization of the system along a trajectory yields a time
(and action) varying vector field. At each time, the field is drawn for a single
value of u only. (b) Our goal is to design a feedback law stabilizing the
system along the desired state-time trajectory.

where

Ã(t) =
∂ g̃

∂y
= ÛU

⊤
(t)
∂ψ(y, t)

∂y
+ U⊤(t)

∂g

∂x
U(t)

and

B̃(t) =
∂ g̃

∂u
= U⊤(t)

∂g

∂u
.

Note that
∂ψ(y,t)

∂y = U(t).
The tangent space basis U(t) could be computed from a

QR decomposition of Fx(t). However, this approach does not
guarantee that the time-varying basis is continuous, which is
needed to obtain ÛU(t). Therefore, both U(t) and ÛU(t) can be
computed considering the following identities:

U⊤(t) U(t) = I,

Fx(t) U(t) = 0,
(30)

which can be differentiated to obtain:

ÛU
⊤
(t) U(t) + U⊤(t) ÛU(t) = 0, (31)

ÛFx (t) U(t) + Fx(t) ÛU(t) = 0. (32)

From Eq. (32), ÛU(t) can be isolated to obtain

ÛU(t) = −F+x (t)
ÛFx (t) U(t), (33)

where F+x(t) is the pseudoinverse of Fx (t), which requires
the Jacobian Fx (t) to be full rank ∀t. Then, U(t) can be



q1

q2

q3

q4

q5

gravity

x

y

E

d

LL

ll

Fig. 4. Top: Geometry of a five-bar robot. Middle: the RAPI-MOD model
by Gridbot technologies. Bottom: the workspace of the robot (in grey) and
its forward singularity locus (in red). Two near-singular configurations are
shown in the right.

obtained integrating Eq. (33) from U(0) enforcing Eq. (30)
at each integration step.

Then, from the results in Section III, the optimal control
that minimizes the cost in Eq. (28) for the system in Eq. (29)
is given by

u(t) = π(y, t) = u0(t) − K̃(t) y, (34)

which in terms of the x variables results in

u = π(x, t) = u0(t) − K̃ (t) U⊤(t) x̄. (35)

E
rr

or
[r

ad
]

t [s]

Ext. Force

Fext

P

E

Fig. 5. Left: A weight stabilization task. The robot has to keep an end-
effector load at position E , counteracting bounded disturbances applied
(Fext ). Right: The error responses of all joints angles shown over time,
drawn with different colors. The force disturbances are applied (and kept
constant) during the grey time windows. An animation of the motion can
be seen in youtu.be/LNoFYAW209Q.

VI. Test Cases

We next illustrate the performance of the previous LQR
controllers in a five-bars robot with the geometry shown in
Fig. 4 (top). The angles q1 and q5 are actuated, which allow
us to control the position E of the end-effector. The remain-
ing angles q2, q3, and q4 are passive. Various versions of this
robot have been used both in research and industry [17], [18].
Fig. 4 (middle), for example, shows the RAPI-MOD model
from Gridbot technologies. In our version, the base distance
is d = 0.6472 [m], and the proximal and distal link lengths
are L = 1.14 [m] and l = 0.9 [m]. With these dimensions, the
workspace of point E is the grey area of Fig. 4 (bottom-left).
This figure also shows the positions of E for which a forward
singularity is encountered (in red). We recall from [17] that
such singularities appear whenever q3 is either 0 or π.

Because of the complications introduced by forward sin-
gularities, programmers tend to restrict the motion of these
robots to singularity-free regions of the workspace [19].
From Fig. 4 (bottom) it is obvious, however, that the motion
capabilities would be further enlarged if singularity-crossing
motions could be controlled. The following examples show
that the proposed LQR controller is successful in achieving
such goal. In all examples, the mass of each link is 0.5 [kg]
and the end-effector is transporting a load of 1 [kg]. The
moments of inertia of the proximal and distal links (with
respect to their center of gravity) are of 0.0541 [kg·m2] and
0.0338 [kg·m2], respectively.

A. Weight Stabilization at a Forward Singularity

In this example, the robot has to keep its load of 1 [Kg]
at the upright configuration of Fig. 5 (left). The two distal
links are coincident in such a pose. Thus the robot will move
very close to the singularity all of the time, which renders
computed-torque methods inapplicable to the situation. The
task is difficult because the upper two links can fall down by
gravity under the slightest disturbances. Without feedback,
therefore, the robot is at an unstable fixed point, and thus
the example is ideal to test the controller of Section IV.

To show the robustness of this controller, we simulate
the effect of an horizontal disturbance force Fext applied

https://youtu.be/LNoFYAW209Q


1 2 3 4 5 6 7

8 9 10 11 12 13 14

Fig. 6. A weight-throwing task. The robot picks an object in a lower position (snapshot 1) and performs successive swing-up motions to throw it
from an upper position (snapshot 14). The robot crosses the forward singularity twice (snapshots 4 and 9). An animation of the motion can be seen in
youtu.be/LNoFYAW209Q.

q
[r

ad
]

q
[r

ad
]

t [s]

t [s]
q1
q2
q3
q4
q5

Ext. Force

Singularity

q0

Fig. 7. Comparison of the LQR controller (upper plot) with a standard CT
controller (lower plot) in a trajectory stabilization task under disturbances
and singularity crossing. An animation of the motion can be seen in
youtu.be/LNoFYAW209Q.

to point E every 3 seconds. Every disturbance is maintained
during 0.2 seconds, and its magnitude is randomly selected
in the range (−15, 0) [N]. Fig. 5 (right) shows the evolution
of all joint angle errors during the application of these
disturbances, which occur at the time windows shown in grey.
As we see, the LQR controller compensates the disturbances
and returns the robot to the desired position in all cases. See
youtu.be/LNoFYAW209Q for an animation of the task.

The convergence rate of the controller can be tunned by
changing the Q and R matrices of Eq. (11). The plot of Fig. 5
was obtained with

Q =

[

kq I5 0

0 kv I5

]

(36)

and
R = ku I2, (37)

where kq = 300, kv = 10 and ku = 2. The size of these
matrices agrees with the fact that q = (q1, . . . , q5) in this
robot (and thus nq = 5) and only two joints are actuated (i.e.
na = 2).

B. A Weight Throwing Task

We next compare the performance of the LQR and CT
controllers on tracking a trajectory across forward singulari-
ties. The reference trajectory x0(t) and its action history u0(t)

have been obtained with the planner in [8], and correspond to
a weight-throwing task illustrated in Fig. 6. The robot has to
pick a heavy ball in the lowest position of its workspace (first
snapshot) and has to successively increase its velocity so as
to throw it from an upper position (last snapshot). The robot
goes twice across forward singularities (snapshots 4 and 9).
Thus its control may be loosed at such configurations.

The tracking results of the LQR and CT controllers are
compared in Fig. 7. In both cases, the robot is subject to the
same disturbances. These are applied to the end-effector, and
take place during the grey time windows indicated. The time
instants in which the singularities are crossed are indicated
with a black vertical line. The reference trajectories for all
angles qi are drawn with discontinuous lines. As we see, the
CT controller can counteract the applied disturbances before
meeting the first singularity. At the forward singularity,
however, the inverse dynamic problem produces unbounded
torques. The control of the robot is lost, and the rest of
the trajectory cannot be tracked anymore. The CT controller
has been implemented in the active joint space, and thus

https://youtu.be/LNoFYAW209Q
https://youtu.be/LNoFYAW209Q
https://youtu.be/LNoFYAW209Q


q1(t) and q5(t) can reliably be tracked, but note that the
remaining angles evolve differently because of configuration-
space bifurcations. On the contrary, the LQR controller
is quite robust to disturbances and singularity crossings.
Even if an external force is applied right before the second
singularity, the LQR controller is able to converge to the
desired trajectory. A video showing the two experiments can
be found in youtu.be/LNoFYAW209Q.

VII. Conclusions

This paper proposes the adaptation of an LQR controller
to treat the closed-kinematic chains that arise in parallel
robots. We use the tangent space local parametrization to
find a set of minimal coordinates for the system in order
to formulate the LQR controller in such coordinates. With
this technique, we are able to stabilize both a fixed point
and a preplanned trajectory. This controller can cope with
forward singularities, whereas existing CT controllers cannot.
Specifically, we are able to stabilize these singularity under
significant disturbances at the end-effector. In contrast, the
CT method produces unbounded torque at these points,
which results in a trajectory that cannot be fully tracked
anymore once the singularity is reached.

Our current efforts are focused on the implementation and
validation of the proposed approach in a real robot.

References

[1] L.-W. Tsai, Robot Analysis: the Mechanics of Serial and Parallel

Manipulators. Wiley-Interscience, 1999.
[2] O. Bohigas, M. Manubens, and L. Ros, Singularities of robot mech-

anisms: numerical computation and avoidance path planning, ser.
Mechanisms and Machine Science. Springer, 2016, vol. 41.

[3] ——, “Singularities of non-redundant manipulators: A short account
and a method for their computation in the planar case,” Mechanism

and Machine Theory, vol. 68, pp. 1–17, 2013.
[4] S. Briot and V. Arakelian, “Optimal force generation in parallel manip-

ulators for passing through the singular positions,” The International

Journal of Robotics Research, vol. 27, no. 8, pp. 967–983, 2008.
[5] C. K. Kevin Jui and Q. Sun, “Path tracking of parallel manipulators

in the presence of force singularity,” Journal of dynamic systems,

measurement, and control, vol. 127, no. 4, pp. 550–563, 2005.
[6] S. K. Ider, “Inverse dynamics of parallel manipulators in the presence

of drive singularities,” Mechanism and Machine Theory, vol. 40, no. 1,
pp. 33–44, 2005.

[7] M. Özdemir, “Removal of singularities in the inverse dynamics of
parallel robots,” Mechanism and Machine Theory, vol. 107, pp. 71–
86, 2017.

[8] R. Bordalba, L. Ros, and J. M. Porta, “Randomized Kinodynamic
Planning for Constrained Systems,” in IEEE International Conference

on Robotics and Automation, 2018.
[9] R. Bordalba, J. M. Porta, and L. Ros, “Randomized kinodynamic

planning for cable-suspended parallel robots,” in Cable-Driven Parallel

Robots. Springer, 2018, pp. 195–206.
[10] F. Aghili, “A unified approach for inverse and direct dynamics of

constrained multibody systems based on linear projection operator: ap-
plications to control and simulation,” IEEE Transactions on Robotics,
vol. 21, no. 5, pp. 834–849, 2005.

[11] R. B. Hill, D. Six, A. Chriette, S. Briot, and P. Martinet, “Crossing type
2 singularities of parallel robots without pre-planned trajectory with a
virtual-constraint-based controller,” in IEEE International Conference

on Robotics and Automation (ICRA), 2017, pp. 6080–6085.
[12] M. Posa, S. Kuindersma, and R. Tedrake, “Optimization and stabi-

lization of trajectories for constrained dynamical systems,” in IEEE

International Conference on Robotics and Automation, 2016, pp.
1366–1373.

[13] S. Mason, N. Rotella, S. Schaal, and L. Righetti, “Balancing and
walking using full dynamics lqr control with contact constraints,” in
Humanoid Robots (Humanoids), 2016 IEEE-RAS 16th International

Conference on, 2016, pp. 63–68.
[14] F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal control. John

Wiley & Sons, 2012.
[15] F. A. Potra and J. Yen, “Implicit numerical integration for Euler-

Lagrange equations via tangent space parametrization,” Journal of

Structural Mechanics, vol. 19, no. 1, pp. 77–98, 1991.
[16] W. F. Arnold and A. J. Laub, “Generalized eigenproblem algorithms

and software for algebraic Riccati equations,” Proceedings of the IEEE,
vol. 72, no. 12, pp. 1746–1754, 1984.

[17] F. Bourbonnais, P. Bigras, and I. A. Bonev, “Minimum-time trajectory
planning and control of a pick-and-place five-bar parallel robot,”
IEEE/ASME Transactions on Mechatronics, vol. 20, no. 2, pp. 740–
749, 2015.

[18] “RAPI-MOD: Ultrafast scara robot.” [Online]. Available:
http://gridbots.com/rapi_mov.html

[19] R. Bordalba, L. Ros, and J. M. Porta, “Randomized planning of
dynamic motions avoiding forward singularities,” in Advances in Robot

Kinematics, 2018, pp. 170–178.

https://youtu.be/LNoFYAW209Q
http://gridbots.com/rapi_mov.html

	Introduction
	Problem Statement
	Linear Quadratic Regulators
	Stabilization at a Fixed Point
	Trajectory Stabilization
	Test Cases
	Weight Stabilization at a Forward Singularity
	A Weight Throwing Task

	Conclusions
	References

