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A General Method for the Numerical Computation

of Manipulator Singularity Sets
Oriol Bohigas, Dimiter Zlatanov, Lluı́s Ros, Montserrat Manubens, Josep M. Porta

Abstract—The analysis of singularities is central to the devel-
opment and control of a manipulator. However, existing methods
for singularity set computation still concentrate on specific classes
of manipulators. The absence of general methods able to perform
such computation on a large class of manipulators is problematic,
because it hinders the analysis of unconventional manipulators
and the development of new robot topologies. The purpose
of this paper is to provide such a method for non-redundant
mechanisms with algebraic lower pairs and designated input
and output speeds. We formulate systems of equations describing
the whole singularity set and each one of the singularity types
independently, and show how to compute the configurations
in each type using a numerical technique based on linear
relaxations. The method can be used to analyze manipulators
with arbitrary geometry and it isolates the singularities with the
desired accuracy. We illustrate the formulation of the conditions
and their numerical solution with examples, and use three-
dimensional projections to visualize the complex partitions of
the configuration space induced by the singularities.

Index Terms—Singularity set computation, non-redundant ma-
nipulator, linear relaxation, branch-and-prune method.

I. INTRODUCTION

IN robot singularities either the forward or the inverse

instantaneous kinematic problem becomes indeterminate,

and the properties of the mechanism change dramatically,

often detrimentally. Despite the importance of such critical

configurations, the rich literature on singularity analysis does

not provide a method to explicitly compute the singularity

set, and to identify the various singularity types in it, on

manipulators of a general architecture. Most works on the topic

focus on particular classes of singularities, and restrict their

attention to specific robot designs [1]–[13].

The efforts on characterizing all possible singularity types

date back to the nineties [14]–[19]. Based on an input-output

velocity equation, a general singularity classification was at-

tempted in [14], but it was soon seen that this classification

overlooks cases where the motion of the mechanism cannot

be described solely with the input and output speeds [15].

This led Zlatanov to define a general manipulator model in

terms of differentiable mappings between manifolds, giving
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rise to a rigorous mathematical definition of kinematic sin-

gularity [16, 18]. Using the model, six different singularity

types were identified, corresponding to the distinct kinematic

phenomena that may occur in a singularity.

Although the conditions for the presence of singularities

of all types were given in [17, 18], the formulation of these

conditions into a form amenable for computation had not been

achieved yet. The goal of the present work is to address this

task by defining systems of equations describing all singularity

types, and proposing a numerical procedure able to solve

them. The methodology is general and applicable to virtually

any relevant mechanism geometry. It allows the complete

singularity set to be obtained with the desired accuracy, and

each of its singularity types to be computed independently.

The approach was preliminarily introduced in [20] and

is now presented and illustrated in thorough detail. The

guiding principle is the importance of a complete charac-

terization of the manipulator motion in order to identify all

possible singular phenomena. For each such phenomenon we

present, simply and rigorously, the definition, the mechanical

significance, the algebraic conditions, and the computation

of the corresponding singularity subset. Special emphasis is

placed on illustrating concepts and procedures with clear and

comprehensible examples. Also, since a full knowledge of a

mechanism’s special configurations is key to understanding

its motion capabilities, the paper exemplifies the use of three-

dimensional projections to reveal and visualize the complex

singularity-induced partition and interconnectedness of the

configuration space.

The rest of the paper is organized as follows. Section II

briefly recalls the definition of singular configuration, and

provides systems of equations characterizing the whole sin-

gularity set of a manipulator. These systems can already be

used to isolate the set, as done in [21] for the planar case, but

additional systems are provided in Section III to independently

compute the configurations belonging to each one of the six

singularity types identified in [16, 18]. The derivation and

application of these systems is next illustrated in Section IV

on a simple example admitting an analytical approach. In

general, a numerical method is needed to solve the equations,

and Section V provides one based on a branch-and-prune

strategy and linear relaxations. Section VI demonstrates the

performance of the method with the analysis of a planar and a

spatial manipulator. Finally, Section VII summarizes the main

conclusions of the paper, and suggests points for future work.
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II. CHARACTERIZATION OF THE SINGULARITY SET

Every configuration of a manipulator can be described

by a tuple q of scalar generalized-coordinate variables. For

manipulators with closed kinematic chains, or when a joint

does not admit a global parametrization, the configuration

space is given by the solution set of a system of non-linear

equations

Φ(q) = 0, (1)

which expresses the assembly constraints imposed by the

joints [22]. In addition, the feasible instantaneous motions of

the manipulator can be characterized by a linear system of

equations

Lm = 0, (2)

where L is a matrix that depends on the configuration q, and

m is the so-called velocity vector of the manipulator [18]. The

vector m takes the form m =
[

Ω
oT,ΩaT,ΩpT

]

T, where Ω
o,

Ω
a, and Ω

p provide the output, input, and passive velocity

vectors, respectively. Typically, Ω
o encodes the velocity of

a point and/or the angular velocity of an end-effector body,

and Ω
a and Ω

p encompass the actuated and unactuated joint

speeds. Such a system, called the velocity equation in [18],

can be obtained for any manipulator [23], and therefore it can

be used for the practical identification of singularities.

In this paper we assume that the manipulator is non-

redundant. This implies that the dimensions of Ω
o and Ω

a

are equal to the global mobility n of the mechanism, defined

as the dimension of the configuration space, i.e., as the

maximum dimension of its tangent space, wherever such a

space exists [24].

In general, the instantaneous kinematic analysis of a manip-

ulator addresses two main problems:

• The forward instantaneous kinematics problem (FIKP):

find m given the input velocity Ω
a.

• The inverse instantaneous kinematics problem (IIKP):

find m given the output velocity Ω
o.

Note that, contrary to what is assumed elsewhere [14], in both

cases it is required to find all velocity components of m, not

just those referring to the output or input velocities, respec-

tively. Following [18], a configuration is said to be nonsingular

when both the FIKP and the IIKP have unique solutions for

any input or output velocity, and singular otherwise.

Let LI , LO, and LP be the submatrices of L obtained

by removing the columns corresponding to the input, output,

and both the input and output velocities, respectively. It is

easy to see that the singular configurations are those in which

either LI or LO is rank deficient. If a matrix is rank deficient,

its kernel has to be non-null and, in particular, it must include

a vector of unit norm. Thus, all singularities can be determined

by solving the following two systems of equations:

Φ(q) = 0

LT

I ξ = 0

‖ξ‖2 = 1







,

Φ(q) = 0

LT

Oξ = 0

‖ξ‖2 = 1







. (3)

The first equation of each system constrains q to be a

feasible configuration of the mechanism, and the second and

third equations enforce the existence of a nonzero vector in

A

A

B B

C

C

D

O

vA

vB

vC

X

Y

L1

L2

ωA

ωB

ωC

ωD

Fig. 1. Left: A 1-DOF mechanism with three sliders. The prismatic joints
at A and B are on a line perpendicular to the axis of the prismatic joint at C.
Right: A 4-bar mechanism. The angular velocities indicated refer to relative
motions, e.g., ωB is the angular velocity of link BC relative to link AB.

the kernel of the corresponding matrix. Note that ‖ξ‖2 can be

any consistent norm, for instance ξTDξ, with D a diagonal

matrix with the proper physical units. There is no need for

the norm to be invariant with respect to change of frame

or units. In short, the condition ‖ξ‖2 = 1 only serves to

guarantee that ξ is not 0. The solutions of the system on

the left in Eq. (3) include all singularities where the FIKP

is indeterminate (forward singularities), while the solutions of

the system on the right include all singularities where the IIKP

is indeterminate (inverse singularities).

Now, depending on the cause of the degeneracy, six substan-

tially different types of singularities can be recognized. These

are redundant input (RI), redundant output (RO), impossible

input (II), impossible output (IO), increased instantaneous

mobility (IIM), and redundant passive motion (RPM) singular-

ities. Each of the six types corresponds to a different change in

the kinematic properties of the manipulator, and it is therefore

desirable to know whether a configuration belongs to a given

type, and to compute all possible configurations of that type.

III. CHARACTERIZATION OF THE SINGULARITY TYPES

The definitions of each one of the six singularity types

are recalled next. Following each definition, a system of

equations characterizing the configurations of the type is

derived. The 3-slider and 4-bar mechanisms of Fig. 1 are used

to illustrate the different singularity types on mechanisms with

prismatic and revolute joints. Each mechanism has one degree

of freedom and, unless otherwise stated, the input and output

velocities are those of points A and B, vA and vB , for the

3-slider mechanism, and the angular velocities of links AB

and DC, ωA and ωD, for the 4-bar mechanism.

Redundant Input

A configuration is a singularity of RI type if there exist an

input velocity vector Ω
a 6= 0, and a vector Ω

p, that satisfy

the velocity equation (2) for Ωo = 0, i.e., such that

LO

[

Ω
a

Ω
p

]

= 0,
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TABLE I
THE SIX SINGULARITY TYPES EXEMPLIFIED WITH 3-SLIDER AND 4-BAR MECHANISM CONFIGURATIONS

RI, IO RO, II RPM IIM

ωB

L1 < L2

vA

L1 > L2

vB vC

L1 = L2

vA

vB

A

B

C

D

ωA

A

B

C

D

ωD

A B

C

C

D

ωB A B

CD

ωA

ωD

with Ω
a 6= 0. Since such a vector exists whenever there exists

a unit vector with Ω
a 6= 0, q is a singularity of RI type if,

and only if, the system of equations

Φ(q) = 0

LOξ = 0

‖ξ‖2 = 1







(4)

is satisfied for some value of ξ =
[

Ω
aT,ΩpT

]

T with Ω
a 6= 0.

Two examples of these singularities are provided in Table I,

first column. In the top configuration, vA can have any value,

while vC must be zero and, thus, point B cannot move. In the

bottom configuration the output link DC cannot move, since

the velocity of point C must be zero, while ωA, can have any

value.

Redundant Output

A configuration is a singularity of RO type if there exist an

output velocity vector Ω
o 6= 0, and a vector Ω

p, that satisfy

the velocity equation for Ωa = 0, i.e., such that

LI

[

Ω
o

Ω
p

]

= 0,

with Ω
o 6= 0. Following a similar reasoning as above, q is of

RO type if, and only if, it satisfies the equations

Φ(q) = 0

LIξ = 0

‖ξ‖2 = 1







, (5)

for some value of ξ =
[

Ω
oT,ΩpT

]

T with Ω
o 6= 0.

The 3-slider and the 4-bar mechanisms in the second column

of Table I are shown in a singularity of RO type. On the former,

the instantaneous output vB can have any value while point A

must have zero velocity. The same happens on the latter,

where the input link AB is locked while the instantaneous

output, ωD, can have any value.

Impossible Output

A configuration is a singularity of IO type if there exists

a vector Ω
o 6= 0 in the output-velocity space for which

the velocity equation cannot be satisfied for any combination

of Ω
a and Ω

p. This means that there is a nonzero vec-

tor
[

Ω
oT,0T,0T

]

T that cannot be obtained by projection of

any vector
[

Ω
oT,ΩaT,ΩpT

]

T belonging to the kernel of L.

In order to derive the system of equations for this type, let

V = [v1, . . . ,vr] be a matrix whose columns form a basis of

the kernel of L. Then, all vectors
[

Ω
oT,0T,0T

]

T that can be

obtained by projection of some vector of the kernel of L are

those in the image space of the linear map given by

A =
[

In×n 0
]

V ,

where n is the dimension of Ωo. Thus, a singular configuration

is of IO type if the map is not surjective, i.e., if A is

rank deficient. In this situation it can be seen that there

exists a unit vector Ω
o∗ in the kernel of AT and, hence, a

vector
[

Ω
o∗T,0T,0T

]T

in the kernel of V T. Such a vector

is orthogonal to all vectors v1, . . . ,vr, so it must belong to

the image of LT. In conclusion, there must exist a nonzero

vector Ωo∗ satisfying

LTu =





Ω
o∗

0

0



 ,

for some vector u, which can be chosen of unit norm.

Therefore a configuration q is an IO type singularity if, and

only if, it satisfies

Φ(q) = 0

LTu =
[

Ω
o∗T

0
T

0
T

]T

‖u‖2 = 1











, (6)

with Ω
o∗ 6= 0. For all solutions of this system, the obtained

value of Ω
o∗ corresponds to a non-feasible output at the

corresponding configuration.
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The configurations in the first column of Table I are also

singularities of IO type because any nonzero output is impos-

sible in them.

Impossible Input

A configuration is a singularity of II type if there exists an

input velocity vector Ωa 6= 0 for which the velocity equation

cannot be satisfied for any combination of Ωo and Ω
p. Follow-

ing a similar reasoning as for the IO type, a configuration q is

a singularity of II type if, and only if, there exists a nonzero

vector Ωa∗ such that

LTu =





0

Ω
a∗

0



 ,

for some vector u, which can also be chosen of unit norm.

Thus, a configuration q will be a singularity of II type if, and

only if, it satisfies

Φ(q) = 0

LTu =
[

0
T

Ω
a∗T

0
T

]T

‖u‖2 = 1











, (7)

with Ω
a∗ 6= 0.

The 3-slider and the 4-bar mechanisms in the second column

of Table I are also in singularities of II type since any nonzero

input is impossible in these configurations.

Redundant Passive Motion

A configuration is a singularity of RPM type if there exists a

vector Ωp in the input-velocity space that satisfies the velocity

equation for Ωa = 0 and Ω
o = 0, i.e., such that

LPΩ
p = 0,

with Ω
p 6= 0. This will happen when the kernel of LP is

nonzero and, thus, the following system of equations

Φ(q) = 0

LPΩ
p = 0

‖Ωp‖2 = 1







(8)

encodes all RPM type singularities q.

Two examples of these singularities are provided in Table I,

third column. In the 3-slider mechanism, both the input A

and the output B must have zero velocity, while the velocity

of point C can be nonzero. A 4-bar mechanism with a kite

geometry, as shown in the table, can collapse so all joints

lie on a single line and B and D coincide. If the input and

output are the velocities at joints A and C, ωA and ωC , the

mechanism can move from the configuration shown in gray,

maintaining zero-velocity at both the input and output joints.

Nonzero velocity is present only at the passive joints B and D.

Hence, both mechanisms are shown in a singularity of RPM

type.

Increased Instantaneous Mobility

A configuration is a singularity of IIM type if L is rank defi-

cient. In fact, these are configurations where the instantaneous

mobility is greater than the number of degrees of freedom.

The definition directly allows to write the system of equations

Φ(q) = 0

LTξ = 0

‖ξ‖2 = 1







, (9)

which will be satisfied for some ξ by a configuration q if, and

only if, it is a singularity of IIM type. These are also called

configuration-space singularities, because they correspond to

points where the tangent space is ill-defined, and thus, both

the FIKP and IIKP become indeterminate for any definition

of input or output on the given velocity variables.

The mobility of the 3-slider and the 4-bar mechanisms in

the fourth column of Table I increases from 1 to 2 at the

shown configurations and, thus, they exhibit a singularity of

IIM type.

IV. AN ILLUSTRATIVE EXAMPLE

To exemplify how the previous systems can be used to

obtain the configurations of each singularity type, consider

the 3-slider mechanism in Fig. 1. Let (xP , yP ) denote the

coordinates of points P ∈ {A,B,C} relative to the reference

frame OXY in the figure, and let L1 and L2 be the lengths

of the connector links. Clearly, a configuration of the mecha-

nism can be described by the tuple q = (yA, yB , xC) because

xA = xB = yC = 0 in any configuration. Since the distances

from A to B and from B to C must be kept equal to L1

and L2, Eq. (1) is

yA
2 + xC

2 = L1
2

yB
2 + xC

2 = L2
2

}

, (10)

from which we realize that the C-space corresponds to the

intersection of two cylinders in the space of yA, yB , and xC .

The velocity equation in Eq. (2) could now be obtained

using the revolute- and prismatic-joint screws [18], but a

more compact expression can in this case be derived by

differentiating Eq. (10). Taking vA and vB as the input and

output velocities, the differentiation yields

Lm =

[

0 2yA 2xC
2yB 0 2xC

]





vB
vA
vC



 = 0,

so that LI , LO, and LP are, respectively,
[

0 2xC

2yB 2xC

]

,

[

2yA 2xC
0 2xC

]

,

[

2xC
2xC

]

.

Any of the systems in Eqs. (3)-(9) can now be written,

and note that they can be solved analytically in this case. For

example, if L1 = L2 = 1, the C-space has a single connected

component composed of two ellipses intersecting on the xC
axis (Fig. 2a), and the solutions of the systems in Eq. (3) reveal

that the singularity set has six isolated configurations, marked

in red in Fig. 2a-bottom, with the following values of q:

(0, 0, 1), (0, 0,−1), (−1,−1, 0)
(1, 1, 0), (1,−1, 0), (−1, 1, 0).
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yB
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yB
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xC

xC

xC
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(a) (b)

Fig. 2. Configuration space (in blue) and singularities (red dots) of the 3-slider mechanism for L1 = L2 (a) and L1 > L2 (b) with some examples of
singular configurations depicted. In this mechanism, the configuration space corresponds to the intersection of two cylinders at right angles.

All of these configurations satisfy both systems in Eq. (3), so

that both the FIKP and the IIKP are indeterminate in them. It

turns out, moreover, that the four configurations with xC = 0
satisfy the systems in Eqs. (6), (7) and (8), meaning that

they are singularities of IO, II, and RPM type. The other two

configurations, which lie in the xC axis, are singularities of

RI, RO, and IIM type because they satisfy the systems in

Eqs. (4), (5) and (9). These two configurations are in fact

C-space singularities, i.e., points where the tangent space is

ill-defined. The C-space self-intersects at these points, and

presents a bifurcation that allows to change the mode of

operation from both sliders moving on the same side of the

horizontal axis, yAyB ≥ 0, to one slider moving on each side,

yAyB ≤ 0.

The topology of the C-space changes when L1 6= L2. It

no longer presents any bifurcation, and is instead formed by

two connected components (Fig. 2b). By solving Eq. (3) for

L1 = 1 and L2 = 0.8, for example, eight singularities are

obtained:

(1, 0.8, 0), (−1,−0.8, 0), (1,−0.8, 0), (−0.6, 0, 0.8),
(−1, 0.8, 0), (0.6, 0,−0.8), (0.6, 0, 0.8), (−0.6, 0,−0.8).

As before, the configurations with xC = 0 are singularities

of IO, II, and RPM type, but the other four configurations are

of RO and II type, and there are no singularities of IIM type.

In this case, to change the operation mode from yA ≥ 0 to

yA ≤ 0 the mechanism has to be disassembled.

It must be noted that if a singularity identification were

attempted by means of an input-output velocity equation, for

instance yAvA = yBvB , which holds for all configurations,

then the singularities with xC = 0 would not be detected.

V. ISOLATING THE SINGULARITY SETS

In the previous example, it was possible to solve all systems

in Eqs. (3)-(9) analytically, because they are simple, but this

is not the case in general. The need to resort to a numerical

method is often imperative in complex manipulators, where

such systems are typically big and define positive-dimensional

singularity sets. This section provides such a method by

adapting a branch-and-prune strategy introduced earlier for

position and workspace analysis [25, 26]. The method is

based on formulating the systems in a quadratic form, then

defining an initial box bounding all points of the solution

sets, and finally exploiting the special form of the equations to

iteratively remove portions of the box that contain no solution.

This approach is advantageous because our solution sets can

be of dimensions 0, 1, 2, or higher, and they are defined in

the real field. Alternative approaches like homotopy methods

are mainly designed to isolate zero- or one-dimensional solu-

tions, and they must compute the roots in the complex field,

which may increase the solution dimension unnecessarily [27].

Methods based on elimination exhibit similar drawbacks, and

easily explode in complexity with the problem size [28].
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A. Equation formulation

In order to formulate the equations, note that the structure

of all systems in Eqs. (3)-(9) is very similar. The first line is

always Eq. (1), because all solution points must correspond

to feasible configurations of the manipulator. The second line

always involves L or one of its sub-matrices, and the third

line constrains the norm of some vector. For a manipulator

involving non-helical lower pairs, the formulation proposed

in [25] makes Eq. (1) directly adopt the form of a polynomial

system of quadratic equations, and allows writing the com-

ponents of L using linear terms only [23]. Thus, the second

equation of all systems will be quadratic too, and the third

equation is directly a quadratic expression. The helical pair

could also be treated using the developments in [25], but its

treatment is here omitted for ease of explanation.

Written in the previous way, any one of the systems only

involves monomials of the form xi, x
2

i , or xixj , where xi
and xj refer to any two of their variables. Thus, by introducing

changes of variables of the form xk = x2i and xl = xixj , it

is possible to expand the systems into the form

Λ(x) = 0

Γ(x) = 0

}

, (11)

where x is a vector encompassing the variables of the original

system and the newly-introduced xk and xl ones, Λ(x) = 0

is a collection of linear equations in x, and Γ(x) = 0 is

a collection of scalar quadratic equations In the systems of

Eqs. (4)-(7) there is a vector that must be different from zero,

but since the technique can also handle non-strict inequalities

as explained below, this later condition can be enforced by

setting

‖Ωa‖2 ≥ ǫ (12)

for systems (4) and (7), and

‖Ωo‖2 ≥ ǫ (13)

for systems (5) and (6), where ǫ is a sufficiently small value.

By using these inequalities, whose terms are also quadratic,

some singularities might be overlooked, but ǫ can be made

arbitrarily small, reducing the set of missed solutions to a

negligible size.

B. Initial bounding box

It can be shown that all variables in the systems can only

take feasible values within bounded intervals. For example,

from the results in [25] one can readily define such intervals

for the variables in q, and the vector in the last line of each

system has all of its components in the range [−1, 1]. In the

case of Eq. (6), the feasibility intervals for the entries of Ωo∗

can be readily obtained by mapping the known intervals

using AT

ou = Ω
o∗, where Ao is formed by the columns

of L corresponding to the output velocity vector. A similar

mapping, but using the columns of the input velocity, allows

the determination of feasibility intervals for Ω
a∗ in Eq. (7).

Finally, by propagating the intervals of the previous variables

through the expressions xk = x2i and xl = xixj , it is

straightforward to define bounded intervals for the xk and xl
variables.

(a) (b)

A1
A3

A2

B1

B2

B3

B4

xk

xl

xj
xi

xi

ui

ui

vi

vi

uj

vj

Fig. 3. Polytope bounds within box Bc for a parabola (a) and for a hyperbolic
paraboloid (b).

In conclusion, from the Cartesian product of all such

intervals it is possible to define an initial box B bounding

the location of all points x satisfying Eq. (11).

C. Numerical solution

The algorithm for solving Eq. (11), together with Eqs. (12)

or (13) in the case of Eqs. (4)-(7), applies two operations on B:

box shrinking and box splitting. Using box shrinking, portions

of B containing no solution are eliminated by narrowing

some of its defining intervals. This process is repeated until

either (1) the box is found to contain no solution and is

marked as empty, (2) the box is “sufficiently” small and

can be considered a solution box, or (3) the box cannot be

“significantly” reduced. In the latter case, the box is bisected

via box splitting and the whole process is recursively applied

to the resulting sub-boxes until all box sides are below a given

threshold σ.

The crucial operation in this scheme is box shrinking, which

is implemented as follows. The solutions falling in some

sub-box Bc ⊆ B must lie in the linear variety defined by

Λ(x) = 0. Thus, we may shrink Bc to the smallest possible

box bounding this variety inside Bc. The limits of the shrunk

box along dimension xi can be found by solving the linear

programs

LP1: Minimize xi, subject to: Λ(x) = 0,x ∈ Bc

LP2: Maximize xi, subject to: Λ(x) = 0,x ∈ Bc.

However, observe that Bc can be further reduced because

the solutions must also satisfy all equations xk = x2i and

xl = xixj in Γ(x) = 0. These equations can be taken into

account by using their linear relaxations [25]. Note that, if

[vi, ui] denotes the interval of Bc along dimension xi, then:

1) The portion of the parabola xk = x2i lying inside Bc is

bound by the triangle A1A2A3, where A1 and A2 are

the points where the parabola intercepts the lines xi = vi
and xi = ui, and A3 is the point where the tangent lines

at A1 and A2 meet (Fig. 3a).

2) The portion of the hyperbolic paraboloid xl = xixj
lying inside Bc is bound by the tetrahedron B1B2B3B4,

where the points B1, . . . , B4 are obtained by lifting the

corners of the rectangle [vi, ui] × [vj , uj ] vertically to

the paraboloid (Fig. 3b).
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Fig. 4. Progression of the numerical algorithm on computing the configuration space of the 3-slider mechanism for L1 = L2. From left to right the sequence
shows four stages of the computation, with the computed singularities of the mechanism shown overlaid in the right plot (in red). The method provided in
this paper allows computing such boxes directly, without needing to isolate the whole configuration space. The boxes were magnified for clarity, because the
box shrinking process yields too small boxes to be discerned.

Thus, linear inequalities corresponding to these bounds can

be added to LP1 and LP2. This usually produces a much

larger reduction of Bc, or even its complete elimination if one

of the linear programs is found unfeasible. In this step, the

inequalities needed to model the conditions in (12) or (13)

can also be taken into account by adding them to the linear

programs.

As it turns out, the previous algorithm explores a binary tree

of boxes whose internal nodes correspond to boxes that have

been split at some time, and whose leaves are either solution or

empty boxes. The collection B of all solution boxes is returned

as output, and it is said to form a box approximation of the

singularity set, because it forms a discrete envelope of the

set whose accuracy can be adjusted through the σ parameter.

Notice that the algorithm is complete, in the sense that it will

succeed in isolating all solution points accurately, provided

that a small-enough value for σ is used.

The application of the method to the 3-slider mechanism

can be seen in Fig. 4. The figure shows box approximations

of the C-space in blue color, obtained by applying the method

to Eq. (10) only. The red boxes correspond to singular con-

figurations obtained by solving the systems in Eqs. (4)-(9).

D. Computational cost

The computational cost of the algorithm can be evaluated by

analyzing the cost of one iteration, and the number of iterations

to be performed, both in terms of the number of bodies (nb)

and joints (nj) of the manipulator. On the one hand, we can

consider that an iteration includes the box shrinking process

for a given box. This involves solving 2 nx linear programs,

where nx is the number of variables in Eq. (11). Since nx
depends linearly on nb and nj , and Karmarkar’s bound for

the complexity of linear programming is O(n3.5x ) [29], we can

conclude that the cost of one iteration is worst-case polynomial

in nb and nj . On the other hand, it is difficult to predict how

many iterations will be required to isolate all solutions. The

number of iterations largely depends on the chosen σ, and

on the dimension d of the singularity subset considered. For

d = 0 the algorithm is quadratically convergent to the roots.

For d ≥ 1, the cost is inversely proportional to σ in the best

case. For a fixed σ, however, the amount of solution boxes

grows exponentially with d, so that an initial guess on the

execution time is usually made on the basis of d only. The

value of d can be estimated by noting that the singularity set

is typically of codimension one relative to the C-space, and

using the Grübler-Kutzbach formula on nb and nj to determine

the C-space dimension. Detailed properties of the algorithm,

including an analysis of its completeness, correctness, and

convergence order, are given in [25].

VI. TEST CASES

The performance of the approach is next illustrated in two

test cases. The results were obtained using a parallelized

version of the method implemented in C [30]. Table II sum-

marizes the main performance data on the various singularity

sets analyzed. For each set we indicate its dimension (d), the

number of equations (Neq) and variables (Nvar) in its defining

system, the number of solution boxes returned by the method

(Nboxes), the accuracy threshold assumed (σ), the ǫ parameter

where applicable, and the time required to compute the set (t),

in seconds, on a Xeon processor grid able to run 160 threads

in parallel.

A. A planar manipulator

The 2-DOF mechanism shown in Fig. 5 is used to illustrate

the computation of each one of the singularity sets in detail.

TABLE II
PERFORMANCE DATA ON THE REPORTED TEST CASES

Sing. Set d Neq-Nvar Nboxes σ ǫ t (s)

Planar

RI 1 19-20 14903 0.01 10
−5

12

RO 1 19-20 12773 0.01 10
−5

12

IO 1 19-20 14906 0.01 10
−5

14

II 1 19-20 13062 0.01 10
−5

13

RPM 0 19-18 8 0.01 - 4

IIM - 21-20 0 0.01 - 2

Spatial
fixed ori. 2 25-27 146420 0.02 - 79

fixed pos. 2 37-39 195982 0.25 - 2554
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The inputs of the manipulator are the joint velocities of A

and E, and the output is the velocity of point G. By gathering

the loop-closure equations of the mechanism, and introducing

two further equations to include the position of G, Eq. (1) can

be formulated as follows

cos θA + cos θB − 2 cos θD − 1 = 0

sin θA + sin θB − 2 sin θD = 0

2 cos θD + 3

2
cos θC + 2 cos θG − 3 cos θE − 1 = 0

2 sin θD + 3

2
sin θC + 2 sin θG − 3 sin θE = 0

−x+ 2 cos θD + 3

2
cos θC = 0

−y + 2 sin θD + 3

2
sin θC = 0



































(14)

where θA, θB , θC , θD, θE and θG are the counterclockwise

angles of links AB, BC, CG, DC, EF , and GF , respectively,

relative to the ground, and x and y are the coordinates of

point G relative to a fixed frame centered in D. The velocity

equation of the manipulator may now be obtained by differen-

tiating Eq. (14) with respect to all variables, but it could also

be obtained using the twist loop equations, or by any other

means. In order to achieve the desired quadratic formulation,

the changes of variables cτ = cos θτ and sτ = sin θτ can

now be applied for all τ ∈ {A,B,C,D,E,G}. Since the

variables cτ and sτ represent the cosine and sine of a variable,

the circle equations c2τ + s2τ = 1 need also to be introduced

into the systems, for every angle θτ .

Given that the manipulator has two degrees of freedom,

its configuration space is a surface, which is shown projected

onto the x, y, and θA variables in Fig. 6. This surface was

obtained from the computation of all solutions of Eq. (1)

using the same numerical technique presented in the previous

section. Note that by fixing x, y, and θA, there are still two

possible positions of point F , so that most of the points in this

projection correspond, in fact, to two different configurations

of the manipulator. Only the points where E, F , and G are

aligned represent a single configuration, and these are exactly

the boundaries of the two “holes” that the surface presents.

The singularity set is generally of lower dimension than the

configuration space, so that only curves or points are to be

expected in the solution set of all systems of equations. The

result of the computation of each singularity type is shown

in Figs. 7 and 8, projected onto the output and one input

A

B

C

D

E

F

X

Y

G(x, y)

ωA ωE

Fig. 5. A 2-DOF planar manipulator. The link dimensions are AB = AD =
BC = DE = 1, CD = FG = 2, CG = 1.5 and EF = 3.

x

y

θA

π
3

5π
3

Fig. 6. Two-dimensional configuration space of the manipulator in Fig. 5
computed at σ = 0.1. Two holes can be seen, whose boundary corresponds
to configurations where E, F , and G are aligned.

(x, y, θA), and onto the output only, respectively. In Fig. 7, the

configuration space is shown in blue, separated in two parts

so that a cross-section can be seen, but both parts are actually

connected through π and −π as shown in Fig. 6. The gray

area in Fig. 8 represents all attainable positions of point G,

i.e., the workspace of the manipulator.

As it turns out, this manipulator contains no IIM configura-

tions, and the computation of this type of singularity gives no

box as output. On the contrary, there are eight distinct RPM

singularities, which in these projections appear coincident in

pairs as four orange boxes, corresponding to the two possible

locations of F . Using a different projection, for instance onto

(θA, θE , θD), the eight boxes appear separated.

The green curves correspond to singularities that are both of

RI and IO type. These configurations can be seen to contour

the two “holes” of the configuration space in this projection.

The red curves correspond to configurations simultaneously

belonging to the RO and II type. Even if the curves for

RI and IO seem to coincide everywhere, there are some IO

configurations that are not of RI type, and the same happens

for II and RO singularities, respectively. This is illustrated in

Fig. 7 with a close-up on the left that shows only the output

of computing RI singularities. These gaps on the curves of

RI and RO, which can be found by properly adjusting the ǫ

parameter, coincide with the location of the RPM singularities

and, hence, the RPM singularities are also of II and IO type

(but not of RI or RO type). Fig. 8a shows an example of an

(RPM, II, IO) singularity, while Fig. 8b and Fig. 8c show

examples of (RI, IO) and (RO, II) singularities, respectively.

Figure 7 also shows yellow (arcs of) curves that correspond

to configurations where points D, B and G are aligned. For

each yellow-marked triple (x, y, θA), with D, B and G

collinear, there are two possible locations of point C. In con-

trast, point C is uniquely determined for any other (x, y, θA).

Thus, a point on a yellow curve corresponds to four different
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x

y

θA

−π

π

Fig. 7. The singular configurations of the mechanism in Fig. 5 shown overlaid onto a projection of its configuration space. Different colors are used to
identify the several singularity types encountered: green for the RI, and IO types, red for the RO and II types, and orange for the RPM type.

x

y

D

(a)

(b)

(c)

Fig. 8. A projection of the plot in Fig. 7 to the (x, y) plane. (a) A singularity of RPM, IO, and II type. (b) A singularity of RI and IO type. (c) A singularity
of RO and II type.

configurations, because each of points C and F can have two

positions. As is visible in the figure, these are the points of

self-intersection of the projection of the configuration space

on the (x, y, θA) space. The four configurations for each

point can be identified with the two sides (“in” and “out”)

of the two sheets that intersect. The configuration space

itself has no self-intersections as there are no configuration-

space, or IIM-type, singularities. The yellow points are only

singularities of the projection map. The four orange vertices

of the yellow curve arcs in Fig. 7 correspond to the eight

configurations where D, B, G, and C are collinear. These are

the mechanism’s RPM-type singularities. They are branching

points for the inverse kinematics solution, because point C

can move in two different ways out of such a configuration.
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θA5π
3

π
3

θD

17π
12

7π
12

θE

π
4

7π
4

Fig. 9. A projection of the configuration space and the computed singularities to the (θA, θE , θD) space, together with two configurations where C, G,
and F are aligned. Green corresponds to the RI and IO types, red to the RO and II types, and orange to the RPM type. There are no singularities of IIM type.

The other configurations where the working mode changes are

those where E, F , and G are aligned.

Using the same color code, Figs. 9 and 10 show the

projection of the results onto the the 3-dimensional space of

the two input angles and one passive joint angle (θA, θE , θD)

and onto the 2-dimensional input space only. The eight RPM

singularities appear separated. As before, for fixed values of

θA, θE , and θD, there are still two possible locations of

point C in general, and almost all points in this projection

correspond to two distinct configurations of the manipulator. It

can be seen that the configuration space presents four “holes”

in these projections. These four contours are made of those

configurations where G, C, and F are aligned and there is only

one possibility for C. Note that none of these “holes” coincides

with one in the previous projection, but, once again, crossing

each curve allows the transition between two different working

modes. One can imagine the two working modes as the two

“sides” of the surface of the configuration-space projection.

To “get to the opposite side”, i.e., to change working mode,

the motion curve must “go through a hole”.

B. A spatial manipulator

To illustrate the method on a spatial manipulator, we next

apply it to the Stewart-Gough platform. For the sake of con-

ciseness we concentrate on computing the forward singularity

locus only, which is the most relevant and representative of

the kind of complexity to be confronted in the spatial case.

This amounts to formulating and solving the left system in

Eq. (3) using the proposed approach.

The platform consists of a moving plate connected to a

fixed base by means of six legs, where each leg is a universal-

prismatic-spherical chain (Fig. 11, left). The six prismatic

θA

θE

Fig. 10. A projection of the plot in Fig. 9 to the (θA, θE) space.

joints are actuated, allowing to control the six degrees of free-

dom of the platform, and the remaining joints are passive [31].

The assembly constraints can be formulated as follows.

Let Ai and Bi be the center points of the universal and

spherical joints. Let also F1 and F2 be fixed and mobile

reference frames, centered in O and P respectively. Then, the

constraints imposed by each leg on the moving plate can be

written as

pF1 = aF1

i + did
F1

i −RbF2

i , (15)

‖dF1

i ‖2 = 1, (16)

where pF1 , aF1

i , and bF2

i are the position vectors of

points P , Ai, and Bi in the indicated frames, and dF1

i is a
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Ai

Bi

di

O

P

x

y
z

φ

θ

ψ

Fig. 11. Left: The Stewart-Gough platform. Center and right: Slices of its forward singularity set for a constant orientation given by φ = −2◦, θ = 30◦,
and ψ = −87◦, and for the fixed position p

F1 = [10, 10, 10]T. The position and orientation variables of the platform have been limited to the ranges
[−100, 100] and [−90◦, 90◦] respectively.

unit vector along the i-th leg, expressed in frame F1. Also, di
is the length of the leg, representing the displacement of the

prismatic joint, and R is the rotation matrix providing the

orientation of F2 relative to F1. The pose of the platform is

given by (pF1 ,R).

In this case, Eq. (1) is the system formed by Eqs. (15)

and (16) for all legs, together with the conditions

‖s‖2 = 1, s · t = 0,
‖t‖2 = 1, s× t = wi,

which force R = [s, t,w] to represent a valid rotation.

The velocity equation can be obtained by writing the

expression of the output twist T̂ following each leg

T̂ = Ωa
i Ŝ

a
i +

5
∑

j=1

Ωp
i,jŜ

p
i,j , (17)

where Ŝa
i and the Ŝ

p
i,j are the unit twists of the active and the

five passive joints of the i-th leg, respectively. By gathering

Eqs. (17) for all legs, we obtain a 36 × 42 matrix L, and a

velocity vector m containing the six components of the output

twist, the six active velocities of the prismatic joints, and

the 30 passive joint velocities of the universal and spherical

joints. This results in a relatively large system of equations,

but by multiplying each side of Eq. (17) by a unit screw

reciprocal to all passive joint twists of the leg, we can conclude

that the forward singularities are the configurations for which

the conventional screw Jacobian J is singular [18, 32]. This

condition is advantageous because J is only 6 × 6, and

generally produces a much smaller system.

For some configurations, the space of reciprocal screws of

a given leg may be of dimension larger than one, and Eq. (17)

should be multiplied by a whole basis of reciprocal screws

of the leg [33]. In the Stewart-Gough platform this can only

happen when the center of the leg’s spherical joint is in the

plane of the two revolute-joint axes of the universal joint,

resulting in a singularity of RPM type. Since joint limits and

other constraints typically exclude such singularities in real

platforms, we will not compute them here.

Two slices of the forward singularity locus are shown in

Fig. 11, computed at a constant orientation and at a constant

position of the platform. Alternative slices could also be

obtained if desired, simply by fixing a different set of pose pa-

rameters. The geometric dimensions assumed here correspond

to the academic manipulator studied in [6]. The Euler angles φ,

θ, and ψ are those for which R = Rz(ψ)Ry(θ)Rx(φ), which

also coincide with the ones assumed in [6]. From the results

in Table II we note that it is computationally much harder to

compute the constant position slice. This agrees with the fact

that the system to be solved is much larger, and its equations

are highly non-linear, in comparison to those of the constant

orientation slice.

VII. CONCLUSIONS

This paper has proposed a method for the numerical compu-

tation and detailed classification of the entire singularity set of

a lower-pair manipulator with arbitrary geometry. Systems of

equations have been defined to compute the set, and each one

of the singularity subsets identified in [18]. To solve any of the

systems, a numerical method based on linear relaxations has

been proposed, which can obtain a box approximation of the

solution set with the desired accuracy, even in the presence of

self-intersections or dimension changes in the set [23, 34]. The

approach is based on a recursive segmentation and reduction of

the search space, and is particularly practical and useful on low

degree-of-freedom manipulators like the one in Section VI-A.

This example has been chosen for its high illustrative value,

since it allows a clear analysis and presentation of the results in

a moderate-dimensional case. It also shows how complex can

be the topology of the configuration space and its singularity-

induced partitions. As demonstrated in Section VI-B, the anal-

ysis of manipulators with higher-dimensional singularity sets

does not add fundamental difficulties to the method, other than

increasing the computation times, as with any other method.

The detailed interpretation and visualization of the singularity

sets of these and other manipulators will be the subject of

future work. Additional work is envisaged to also extend the

developments to deal with redundant manipulators [18, 35].
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from the Universitat Politècnica de Catalunya, Spain.
From 2001 to 2003 he held a postdoctoral position at
the University of Amsterdam, doing research in au-
tonomous robot localization using vision. Currently,
he is an Associate Researcher of the Spanish Na-
tional Research Council at the Institut de Robòtica i
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