Defines p(o|s) for a fixed 'o'.
Instantiates the observation model for a particular observation 'o'.
The CS_CO_ObsModel defines p(o,s) via Kernel smoothing: using a double
Gaussian on 's' and on 'o'. From here:
p(o|s)=p(o,s)/p(s)
Where we assume p(s) as uniform.
The output is not normalized.
See also CS_CO_ObsModel
0001 function p=GetObsModelFixedO(OM,o)
0002 % Defines p(o|s) for a fixed 'o'.
0003 %
0004 % Instantiates the observation model for a particular observation 'o'.
0005 % The CS_CO_ObsModel defines p(o,s) via Kernel smoothing: using a double
0006 % Gaussian on 's' and on 'o'. From here:
0007 % p(o|s)=p(o,s)/p(s)
0008 % Where we assume p(s) as uniform.
0009 %
0010 % The output is not normalized.
0011 %
0012 % See also CS_CO_ObsModel
0013
0014 w=OM.w.*cellfun(@(x)(Value(x,o)),OM.gO);
0015 ps=UniformProbability(OM.S);
0016 p=GMixture(w,OM.gS)/ps;
0017