Defines p(o|s) for a fixed 's'.
Instantiates the observation model for a particular state 's'.
The CS_CO_ObsModel defines p(o,s) via Kernel smoothing: using a double
Gaussian on 's' and on 'o'. From here:
p(o|s)=p(o,s)/p(s)
Where we assume p(s) as uniform.
Observe that the output vector is normalized. In this way we do not
need to explicitly compute the normalization factor, p(s).
See also CS_CO_ObsModel
0001 function p=GetObsModelFixedS(OM,s)
0002 % Defines p(o|s) for a fixed 's'.
0003 %
0004 % Instantiates the observation model for a particular state 's'.
0005 %
0006 % The CS_CO_ObsModel defines p(o,s) via Kernel smoothing: using a double
0007 % Gaussian on 's' and on 'o'. From here:
0008 % p(o|s)=p(o,s)/p(s)
0009 % Where we assume p(s) as uniform.
0010 %
0011 % Observe that the output vector is normalized. In this way we do not
0012 % need to explicitly compute the normalization factor, p(s).
0013 %
0014 % See also CS_CO_ObsModel
0015
0016 w=OM.w.*cellfun(@(x)(Value(x,s)),OM.gS);
0017 p=Normalize(GMixture(w,OM.gO));
0018