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Abstract—This article describes the parameterization of a
simple, dynamic single cell battery model for cell and system
simulation. It is shown how to parameterize the model based
on basic electrical tests and publicly available data such as data
sheets. The performance of the parameterized model is validated
with test results gained from two different cycles with the li-Tec
HEA 40 High Energy Cell. Additionally, it is shown how the
model can be extended to consider basic aging effects.

Index Terms—Lithium-ion battery, battery model, impedance,
parameter extraction, aging.
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[. INTRODUCTION °©

Applications of batteries are increasing rapidly in every part Fig. 1. Basic electrical battery model.
of life and it is only a matter of time until the number of hybrid
electric vehicles (HEV), cars with range extenders or even
pure electric cars exceed the number of cars with conventional
power train. The more applications arise the greater is the needt commonly used electrical battery model is shown in
for powerful batteries which leads directly to the litnium iorfigure [1 [3], [8]. This model avoids solving a system of
technology [[1]. coupled, time-varying partial differential equations which oc-

Prototyping, by using the results from previous simulatiour typically in electrochemical models1[6]. It has more
is a common used technique to reduce time consuming ted#€ct relation between the model parameters and the battery
because some of these tests can be simulated if an accupgfgavior than pure mathematical models, which do not need
model exists. It is usually much cheaper to perform virtu@ny system knowledge (black box approach) [7]. Therefore it
tests since no expensive test and measurement equipmer@ffgrs a good tradeoff between performance, complexity and
required and parallel use of the same simulation-model at t#gability.
same time on different workstations is possible. The components of the model are

Many battery models with various focus and applications « Vo the voltage source, which characterizes the open
have already been proposéd [2], but the implementation and circuit voltage (OCYV),
the parameterization is mostly complicated and time consum- Fs the ohmic impedance of the contacts, the electrodes
ing. Therefore, this article is focused on an electrical battery ~as well as the electrolyte and
model with good tradeoff between performance, complexity « Rp, Cp which characterize the transient response of the
and parameterization work][3]. The model is explained in battery electrodes.
detail and moreover, it is shown how to parameterize it with Figure[2 exemplarily shows the ideal Nyquist plot of the
data gained from basic electrical tests and publicly availabl@ernal impedance for this basic battery model. The same
data. The parameterized model is compared with test resuftiormation is contained in the step response of a current step
gained from a real life cycle and a standard dischargirapplied to the internal impedance. Figlidle 3 shows a current
procedure with the li-Tec HEA 40 High Energy Celll [4].step of40 A and the calculated step response of the internal
Finally, the main aging effects can be taken into account in @anpedance[[8]. The most difficult task for implementation is
extended version of the model to assure the accuracy of tting the correct parameters for the model specially when
model for long term application. some components are varying during simulation. Therefore an
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Fig. 3. \oltage response when a rectangular current puldg:ef = 40 A

is applied to the battery impedance of the basic battery modéh wis a value between zero and one and describes the available
Rg = 0.6m{, Rp = 0.7mQ andCp = 70000F. charge based on the rated capaocity;,. The actual rated
capacityCy is the available charge in a fully charged cell.

- . . One cycle is defined as the double rated capacity charge
initial start value and a second parameter which considers Eransfer %/0 or from the cell (Coulomb counter). S’hisycan bg

o e e W narging, staing rom aryOc, un dicharge ol
as degscribedyin sectian V| 9 imit DV L, charging until charging voltage limi€'V L and
' discharging again untifOC,,. Equivalent treated is charging,

1. M ODELING starting from SOCs to CV L, discharging untilDV L and
The simulation language used for this approach is Modeqharglng untilSOCs. Therefore
ica/Dymola because of the simple and object-oriented possi 1 tg
bility to model interdisciplinary relations [9]. CycleNr = CycleNry + 5O -/|IBatt(t)| dt  (3)
TUN
0

A. Parameters and output variables

The input parameters for the basic model are is defined since also part-cycles have to be considered.

The OCV is a function of theSOC and although it could

Cn the rated capacity ir\h, . .

CycleNrg the initial number of cycles, be defined by a polynomial

SOCx, OCVx S/Oi?;\rlgjse ta;l%grg)étnatlon of th&CV in Uo(SOC) = ag + ar - SOC + ... +a, - SOC™, (4)

SOCy the initial state of charge, experience showed that the result is not satisfying with 3

Rso the ohmic resistance of the electrolyteand polynomials tend to oscillate with higher grafde| [10]. A
and the contacts if2 at SOC = 0, better approach would make use splines but the best result

krssoc the coefficient for the change éfs over has been gained (regarding error and effort) with a linear
SOC in €, interpolation between several supporting points, whiehadso

Rpo the ohmic resistance of the electrodes inery easy to measure. Figlre 4 shows the measured supporting

Qat SOC =0, points and the interpolation for the li-Tech HEA40 céll [4] .
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could be disabled by setting the responsibjevalue to zero.

When serially connected cells with differefity are stressed
with the same discharging current, their voltage shapeappe IV. PARAMETRIZATION
different even if theOCV shape is the samgl(5).

The internal impedance varies with differe$tOC' as shown  The rated capacity’y can be deduced from the data sheet
in figure [6 for the cell used in this study. Although thef the battery manufacturer or measured [4]. The shape of the
measured impedance behavior from the cell (figile 6) d3C'V versusSOC curve can either be extracted from data
not completely the same as from the model (figure 2), ongheet or measured. The initial number of cyclégcleNr,
Rs, Rp and Cp are considered in the modeRs can be as well as the initial State of Chargg0OC),, are experiment
implemented as specific parameters while the determination of the othelis wi

_ be described in the following.
Rs(S0C) = Rso + krssoo - SOC. ®) The impedance parameters can be obtained by performing

Rp andCp) can be modeled in the same manner if necessaan electrical impedance spectroscopy measurement as de-

The model would not get much more complicated if thecribed in literature[[12]. If no impedance spectrometer is
linear interpolation folRs(SOC), Rp(SOC) andCp(SOC) available the parameters can also be found by applying a
(if implemented) is replaced with polynomials or lookuplesb current pulse and measuring the voltage response as shown
but the accuracy would be improved only slightly and thim figure[3 and 7 (assuming linearity of the system). With
amount of parameters then increases a lot. If in the presépt.,, the step height of the current and the initial voltage
implementation, a parametek,() is not available, its effect responseV,., the serial ohmic resistance can be estimated
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Fa B S d alteration e R o SO The imped current profile. The power and current profile are shown in

e éxtrgst%?ffem;t\%ﬁggg step ré’sggncel’w?t‘f]e; step et e figure[I. The current profile is repeated starting from tte fu
charged cell until discharging voltage limi2V' L is reached.
Figure[® andT2 shows that the error, related to the measured

for a specificSOC with voltage, between the simulated and the measured voltage sta

below 0.5% forSOC = [1,0.1] and below 1.5% during the

Rs = Vs‘e”, (6) entire discharging process. The same approach is performed
Lstep with a less dynamic cycle [11] to show the properness of the
While Rp can be found from model (figure_ID anf13). During the whole test the cell was
Viinal in a climate chamber with an ambient temperaturd@sfC to
Rp = Ton Rs, (7) minimize temperature effects (figurel14).
step

. _ _ All results thus demonstrate, that the model, parametérize
rearranging the equation for the time constant of the expongyith measurements or values from data sheets, is able to

tial curve delivers reproduce sophisticated real life cycles.
Rs + Rp
Cp=r- R (8) VI. INCLUSION OF AGING EFFECTS IN FUTURE WORK
S - 4iD

Figure[8 shows the resistive and capacitive data deduced fré" Aging effects
current pulse experiments on the li-Tec HEA40 battery (Bgur Research on aging aspects of Li-ion battery behavior is stil
[7) and the implemented curves f&s, Rp andCp. in an early stage. Tests are very time and cost consuming and

A battery is a nonlinear device and the measurement currémany parameters influence the results in a complex manner.
rate influences the result. This is the reason why the pasametAlthough the main aging mechanisms are well knolvr [14], it
in figure [8 are slightly different from those deduced fronis hardly possible to model all the relevant process esfhgcia
impedance spectrometer measurement (fiflire 6). when a system-oriented simulation is preferred.

Basically, there is a difference between calendar aging and
aging due to cycling. Li-ion cells typically have a calentifa-

For a realistic validation of the parameterized model, théme of approximately 2 to 4 years. In this time the internal
current profile gained from the FTP72 cycle is applied to thienpedance increases and the rated capddéitydecreases [15].
model as well as to the real cell (li-Tech HEA40). The FTP7Zhe end of life £OL) is defined to be reached when the rated

V. VALIDATION
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Fig. 9. Comparison of the measured and simulated cell voltagenvelipplying the FTP72 current profile from figlird 11 contirslpuepeated (top). The
error refers to the measured voltage (bottom).
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B. Extension of the model

In the extended model, a linear reduction of the capacity
Fig. 13. Detail of the comparison from figuie] 10 80C ~ 0.5. Cy and a linear growth of the internal resistanBg over
the number of cycle€'ycle Nr can be taken into account as

shown in figurd_Ib[[17].

The additional input parameters for the model are

capacity is reduced bg0% from the initial value. Further- Cno the initial rated capacity in\h,

more, the rated capacity is not only altered with increasing ., the aging coefficient of the rated capacity in

cycle number but is also influenced by some other factors Ah/CycleNr,

(discharging current, temperature, cycle shape, etc.). Rso the initial ohmic resistance of the electrolyte
The ohmic impedance mainly increases due to changes and the contacts if2 at SOC = 0,

of the electrolyte (e.g. electrolyte consumption), thecele Fkrscycenr the aging coefficient fofzs over CycleNr

trolyte/electrode interface and changes of the contads-res in €.

tance [16]. The additional output variables are



Cn
Rs

the actual capacity of the cell iAh,
the actual ohmic resistance of the electrolyte and thﬁ]
contacts{?,

The rated capacity’y decreases froni'y depending on
the cycle numbeCycle Nr due to aging by means of

Cn(CycleNr) = ke - CycleNT + Cio

(2]

9 @

The parametek, can usually be extracted from data sheet[4]
Taking aging due to cycling into accourif] (5) can be extendeld!
to
[6]
Rs(CycleNr,SOC) = Rso+

kRSCycleN'r - CycleNr + kRsSOC -S0C. (10)

[7]
VIl. CONCLUSION

A cell model for dynamic cell and system simulation !
including the parameterization has been presented. Thelmod
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