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Abstract—Energy constraint for V2G frequency regulation is 

illustrated in terms of state-of-charge (SOC) of the pertaining 

vehicle battery. Actual regulation signal is investigated, and 

energy deviation caused by a single regulation signal is obtained. 

With the derived energy deviation model, a probability 

distribution of successful regulation is estimated. Random walk 

theory is employed for stochastic analysis of the distribution. For 

the derived probability distribution, an approximation to the 

normal distribution is made to perform practical calculation on a 

digital computer. Estimated probability distribution is averaged 

over the unit contract time, usually an hour, to yield a weight 

function that represents the energy constraint. Finally, 

simulations are provided to with various parameters. 

Keywords-component; V2G; Regulation; Battery; Optimal 

Control;  Smart Grid 

I.  INTRODUCTION 

Success of the hybrid electric vehicles (HEVs) and global 

warming crisis are accelerating the propagation of the electric 

vehicles (EVs). Especially, plug-in type electric vehicles such 

as plug-in hybrid electric vehicle (PHEV) charge the battery 

directly from power grid at slow rate, and thus the vehicles 

keep plugged-in for most of the parking time. To utilize the 

huge energy storages for grid side benefit, several applications 

have been investigated [1-3]. In particular, frequency 

regulation is considered as one of the most promising and 

practical V2G service [4]. 
In the previous work of the authors, an aggregator was 

developed to perform an optimal control of each vehicle for the 
V2G frequency regulation [5]. During the development, they 
deployed a weight function to reflect an energy constraint 
caused by lack of the energy capacity of the battery. Although 
energy deviation caused by the regulation is zero-mean in the 
long term, the regulation could still be restricted depending on 
the current state-of-charge (SOC) in short-term. For instance, a 
vehicle with fully charged battery cannot accommodate 
regulation down at all since it requires charging of the battery. 
If SOC is 90%, the battery can accommodate both of the 
regulation up and down, but regulation may soon be incapable 
due to the small margin to full-charge. If the battery has more 
margin than a certain value, however, regulation would not be 
restricted at all.  

In [5], the energy constraint was intuitively devised as a 
linearly decreasing weight function after a marginal point. The 

marginal point was employed to distinguish the boundary 
region of SOC where the energy constraint exists from the 
energy constraint free region in the middle range. Fig. 1 depicts 
the weight functions for regulation up and down, respectively. 
The marginal point, however, was left to be obtained 
experimentally. Moreover, the validity of the weight function 
was not thoroughly investigated. 

In this paper, we derive the weight functions mathematical 
y to reflect the energy constraint more precisely. Specifically, a 
physical impact of the energy capacity is investigated 
quantitatively and is represented with respect to SOC through a 
stochastic analysis. In section 2, real-world regulation signal is 
analyzed to build an energy deviation model. Using the result, 
probability of successful regulation is estimated in the 
following section. During the estimation, random walk theory 
is employed, and the probability is approximated to the normal 
distribution for the calculation. Finally, simulations are 
provided with various parameter configurations in section 4. 

 

 

Figure 1.  Conventional weight functions representing the energy constraint. 

II. MODELING OF REGULATION SIGNAL DISTRIBUTION 

Regulation signal is calculated and dispatched by a grid 
operator’s computer system (usually referred to as the Energy 
Management System, or EMS). As shown in Fig. 2, the nature 
of regulation is that the fluctuations of power changes between 
positive and negative, which correspond to discharging and 
charging respectively, are fairly frequent to avoid a large 
cumulative energy deviation [2]. However, there are cases 
when the demands from the EMS may require extended 
periods at the upper or lower limit of the contracted regulation 
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power. Fig. 2 depicts a statistical distribution of regulation 
signals from PJM. The x-axis represents ratio of actually 
requested power capacity to the contracted size, while the y-
axis is normalized call rate. At a glance, the pattern of Fig. 2 
seems as if they follow typical curve of the normal distribution. 
Due to the intensive calls at both ends, however, it is difficult 
to represent the signal with conventional probability 
distributions. Nevertheless, the calls are evenly distributed 
between positive and negative, and thus it is possible to 
approximate the original distribution to the Bernoulli 
distribution with the success probability of 0.5 in terms of 
energy deviation. Consequently, Fig. 2 can be redrawn as Fig. 
3. From the perspective of energy capacity, the converted 
signal is identical with the original one. In the following 
section, this converted distribution is used to build a stochastic 
model of the probability distribution of successfully carrying 
out the regulation. 

 

 

Figure 2.  Distribution for the ratio of actually dispatched power to the 

contracted power capacity.  
(Sampled data during June 01-06, 2007 for every 5 minutes from PJM) 

III. ENERGY CONSTRAINT FORMULATION 

The energy capacity of a battery can be described in terms 
of the battery state-of-charge (SOC). For each of regulation up 
and down, SOC represents totally opposite aspects. Regulation 
up signal results in discharge of the battery. Thus, the higher 
the SOC is, the more the battery can accommodate regulation 
up signal, and vice versa for regulation down.   

 

 

Figure 3.  Approximated Bernoulli distribution of Fig. 2. Note that the scale 

of y-axis is different from Fig. 2 and the expected ratio is set to eqaul for both 
positive and negative signal. 

If we assume that aggregator allocates the given regulation 
to the vehicles in proportion to the power capacity of each 
vehicle, Fig. 3 still holds for individual vehicle because it 
merely indicates the dispatched ratio to the contracted power 
capacity. Considering that the regulation signal is periodically 
sent, energy deviation of a vehicle caused by each regulation 
signal can be described as follows: 

][][][ kWPCAPhINTVkWhE                 (1) 

where  is utilization rate of the contracted power capacity 

which is depicted in Fig. 3. INTV is signal period from grid 
operator and PCAP is power capacity that the vehicle is in 
charge for each regulation call. PCAP is generally maximum 
power capacity of the vehicle battery. Note that we assumed 
symmetric power capacity between charge and discharge. 
Otherwise, (1) should be separated for regulation up and down 
with corresponding PCAP. 

TABLE I.  EXAMPLE CONDITIONS  

Items Value 

  0.215 

INTV [h] 0.001 hour (= 3.6 sec) 

PCAP [kW] 20 kW 

Battery Size [kWh] 4.3 kWh 

 

As an example, assume that a plug-in hybrid electric vehicle is 
performing V2G regulation under the conditions described in 
TABLE 1. The vehicle is expected to charge or discharge 
0.0043kWh (= 20001.0215.0  ) for every regulation signal. 

Since the battery size (maximum energy capacity) of this 
vehicle is 4.3kWh, the maximum signal count that the vehicle 
can afford for the continuous limit signals is 1000 times. In 
other words, the minimum affordable time of the vehicle for 
the extreme case would be up to 1 hour (1000 times of signal = 



3600 seconds = 1 hour). Although such long-term biased signal 
is unrealistic, the chance of failure for providing the regulation 
is certainly not zero. In most cases, SOC of the battery is in the 
somewhere around middle range, and thus it is more likely to 
have less energy capacity than the battery size. Typically, the 
affordable time of the regulation is directly related to the 
current SOC. Consequently, empty battery would have the 
maximum success probability for regulation down, and the 
least for regulation up. Likewise, a battery with 50% SOC can 
accommodate both of the regulation up and down with same 
success probability, but it is more likely to fail than the empty 
battery for regulation down. 

 

 

Figure 4.  Trajectory of the SOC performing V2G regulation. Initial SOC is 

95%, ΔE and battery size is 0.0043kWh and 43kWh respectively. 

From the discussion so far, SOC deviation could be represented 
in terms of regulation signal. With evenly distributed regulation 
signals between up and down, we can employ the theory of 
random walk to illustrate the probability distribution of SOC 
trajectory. Fig. 4 shows the simulated trajectory of SOC with 
the initial value of 95% with the conditions described in 
TABLE 1. Even with the fairly distributed, short term 
(=3.6sec) regulation signals, it is highly likely to hit the upper 
limit due to the small margin for the regulation down. To 
address it in a quantitative manner, distribution of the success 
probability for regulation up and down should be estimated in 
terms of SOC. At any moment, regulation is affordable only 
when the battery has room for the expected amount of 
deviation in SOC. From the result of (1), the SOC deviation by 
a regulation signal can be calculated as: 
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Regulation is affordable only when 1000  SOCSOC . 

From the random walk analysis, the probability that regulation 
down is manageable at n-th signal starting at a given SOC can 
be described as follows:  
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Considering hourly regulation market, success probability of 
the regulation down for 1 hour with a given initial SOC can be 
represented as follows: 
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where INTV is interval between the regulation signals as 
defined in (1). 

Meanwhile, (3) includes n-th power of two, as well as factorial 
of the n. Since signal period of the regulation is in the order of 
seconds, the reciprocal of INTV can reach up to more than a 
thousand, and so is n. Consequently, it is practically impossible 
to calculate the probability from (3) directly. Coincidently, 
however, (3) is in the form binomial distribution with success 
probability of 1/2. With the large enough n, it is well known 
that the binomial distribution can be given by the normal 
distribution as: 

))1(,(),( pnpnpNpnB                           (5) 

where p is success probability of each Bernoulli trial. As a 
result, (3) can be represented in the form of the normal 
distribution as follows: 
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From the same reasoning, the success probability of regulation 
up can be obtained as follows: 
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The functions 
RDW  and 

RUW  represent expected probability 

that the aggregator can successfully manage regulation request 
during the unit contract time. Therefore, these functions 
directly can be used as weight functions to reflect the energy 
constraint. However, the exact form of the weight function may 
vary depending on the required usage. For example, one may 
need 0)100(WRD  to indicate that the fully charged battery is no 

worth in terms of regulation down. In our case, )100(WRD
 is not 



zero because )100,(PRD n never yields zero for any n. From (3) 

and (4), it can be inferred that the minimum of )100,(PRD n is 0.5 

when SOC is 100, and hence 5.0)100(WRD  . In this case, the 

value between )100(WRD
 and )0(WRD

 can be normalized to 

conform to 0 and 1, and vice versa for regulation up. 

IV. SIMULATION 

As seen in (1), energy deviation is proportional to the 
utilization rate and power capacity of the vehicle battery. That 
is, if the grid operator calls for the regulation with more 
intensive power capacity, the energy deviation would increase 
as well. Likewise, a vehicle with bigger power capacity is 
allocated with bigger portion for each regulation call, and 
hence the greater energy deviation. As a result, with fixed 
battery size (in terms of energy capacity, Ah), it can be inferred 
that the energy constraint would be severer as the energy 
deviation is increased, and it should be reflected to the derived 
weight function as well.  

 

 

Figure 5.  Weight functions for regulation down. Four different parameter 

configurations are used.  

For verification, we actually derived the weight function with 
various parameters for regulation up and down, respectively. 
Fig. 5 illustrates weight functions for regulation down. Four 
different parameter configurations were used. As expected, as 

 and PCAP get bigger, the curve remains below one (1.0) in 

wider range, representing stronger energy constraint. 
Specifically, the one with smallest energy deviation condition 
(  =0.215, PCAP = 20 kW) remains constant as 1.0 before 

92% of SOC. Contrarily, the one with biggest energy deviation 
remains below 1.0 between 35% and 100%. That is, a V2G 
vehicle under this condition may suffer the energy constraint 
within this wide range. Moreover, the minimum of all curves 
are 0.5 at 100% of SOC as discussed in the previous section. 
The probability that regulation down signal will come is 50% 
for any moment. Thus, a fully charged battery can still have 
50% of chance of managing the regulation signal. 

Fig. 6 illustrates weight functions for regulation up. In this case, 
all the discussion we made for regulation down works exactly 
the same. Only the direction is opposite.   

 

 

Figure 6.  Weight functions for regulation up. The same four parameter 

configurations are used as in Fig. 5. 

V. CONCLUSION 

We estimated the energy constraint in terms of remained 
battery state-of-charge (SOC) in a quantitative manner. Using 
the facts that the regulation signals are periodic and symmetric 
between positive and negative, the probability of successfully 
carrying out a regulation signal was derived. It was averaged to 
form a weight function so that it can be reflected to a cost 
function to rate the current value of regulation. The derived 
equations are analyzed, and the result was verified through 
actual simulations. One may analyze and model the energy 
constraint from different perspective resulting in different 
weight functions. It could be meaningful to compare those 
results by actually applying the weight functions to the cost 
function for the V2G regulation control in the other work of the 
authors [5].  
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