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Abstract— An inherent trade-off exists in simulation model
development and use: a trade-off between the level of detail
simulated and the simulation model’s computational cost. It is
often desirable to simulate a high level of detail to a high degree
of accuracy. However, due to the nature of design optimization,
which requires a large number of design evaluations, the appli-
cation of such simulation models can be prohibitively expensive.

This paper presents an optimization framework consisting
of a series hybrid optimization algorithm, in which a global
search optimizes a submarine propulsion system using low-
fidelity models and, in order to refine the results, a local search
is used with high-fidelity models.

I. INTRODUCTION

In this paper the optimization of a submarine propulsion
system is tackled, see Fig. 1. The optimization has multiple
objectives, such as the maximization of the efficiency of each
component (propeller, gear box, electric motor, AC generator,
steam turbine) while minimizing the total energy consumption
and peak motor power across a range of velocity profiles or
scenarios. By setting velocity profiles a priori we can go
beyond design-point performance-based optimization, where
we design for a single operating point, and instead design for a
range of operating conditions. Four mission scenarios (Escort,
Reconnaissance, Combat, Deterrence) are used to represent
typical operating conditions a submarine experiences at sea.
Mission scenarios were created in consultation with a leading
company in the UK defense sector.

The detailed simulation of submarine propulsion systems is
computationally expensive, due to its multi-disciplinary nature
and the number of different devices simulated within the
system, as shown in Fig. 1. The optimization process requires
many simulations runs, so reducing the computational cost is
highly desirable.

One approach to reducing computational cost while main-
taining a high level of detail and accuracy in the final design
is to employ multi-fidelity simulation, which combines the use
of both “cheap” low-fidelity models, such as efficiency maps,
and higher-fidelity models, which are more computationally
expensive due to the nature of the numerical methods used to
solve the equations which represent the model. An issue that
arises in this approach is the question of when to switch from
global (low-fidelity) to local (higher-fidelity) optimization in
order to minimize the overall computational cost without
reducing the quality of the final design. This question is
addressed in this paper. The higher-fidelity model and the
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series hybrid optimization method are presented, and complete
results are presented in Section V.

II. MULTI-FIDELITY SIMULATION MODELLING

Multi-fidelity simulation modelling has received consider-
able attention over the past few years, especially in the com-
putational fluid dynamics (CFD) and finite element analysis
(FEA) communities where simulation costs are very high.
Examples of multi-fidelity modelling in the CFD community
include airfoil design [2], [3], [4] and aircraft design [5];
Hutchinson et al. [6] linked a high-fidelity CFD aerody-
namic model with a low-fidelity simple algebraic model in
the optimization of a high speed civil transport wing. FEA
applications include structural synthesis and design [7], [8]
and multi-phase material design [9]. Haftka [10] uses a high-
fidelity FEA model with a crude low-fidelity FEA model to
optimize structural cross-sections to maximize a structure’s
buckling load. In each case low-fidelity models are used to
approximate the behaviour of the high-fidelity models for
use during optimization, resulting in significant reductions in
optimization time compared to the use of high-fidelity CFD
and FEA models. This approach can also be applied to other
simulation environments to reduce the computational cost of
the optimization process.

Low-fidelity models can be roughly divided into three
categories [4]: data fitting, typically using interpolation or
regression of the high-fidelity model [7], for example Kriging
[9], [11], [12] and Knowledge Based Neural Networks [13],
[2]; reduced-order models, derived using techniques such as
modal analysis [8] and proper orthogonal decomposition [14];
and multi-fidelity (also known as variable-fidelity, or variable
complexity models) [3], [15]. In the latter case, a physics-
based model of reduced computational cost (and usually of
lower accuracy) is used in conjunction with the high-fidelity
model. The lower-fidelity hierarchical model can be based on
the same physical model as the higher-fidelity model but with
a lower tolerance, a coarser grid or step size, or it can be
a simpler engineering model. The following sections describe
such choices made for the various parts of a multi-disciplinary
submarine propulsion system model. Practical choices must be
made to allow the multi-objective optimization to yield useful
detail in an acceptable time.
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Fig. 1. Information flow within the propulsion system simulation.
TABLE 1

III. APPROACH

In [1] Skinner et al. introduced a method for performing a
conceptual comparison study of different submarine propul-
sion systems and an approach to generate a set of optimal
preliminary designs. Four topologies were considered. In this
paper, for reasons of space, only one topology, the Electric
Drive, will be considered.

For a conceptual comparison study it is desirable to have
relatively inexpensive simulation models that help facilitate
global search across a very broad design space. The use
of higher-fidelity simulation models, in this case, would be
prohibitively expensive. Once the design landscape has been
mapped and an impression gained of the performance of each
concept, it is then desirable to explore the selected concept’s
design space in more detail. This is where higher-fidelity
simulation models can be utilised. Here, the quasi-static
simulation models introduced in [1] are used with a global
optimization method, the multi-objective Genetic Algorithm
(MOGA) as detailed previously in [16], and higher-fidelity
simulation models are used with a multi-objective Tabu Search
(MOTS) algorithm [17]. The MOTS method is chosen for its
local search attributes, which allow it to explore the Pareto
front locally, while retaining the multi-objective nature of the
problem. Thus the conceptual, preliminary and detailed design
phases can be combined in a single optimization process.

The best point at which to switch model fidelity must be
decided. The change in optimization method also requires that
the number of designs carried forward is limited. For research
purposes, the quality of the developing Pareto front in each run
can be estimated by comparing the results against the Pareto
front produced using the archive of results as a reference set.

In the sections that follow, higher-fidelity simulation models
are introduced for a number of system components (propeller,
electric motor, steam turbine), and the low-fidelity simulation
models are calibrated against the new higher-fidelity models to
give a set of multi-fidelity simulation models. A schematic of
the information flow within the propulsion simulation model
is presented in Fig. 1. Inverse simulation is employed.

A. Design Space Mapping

According to Robinson et al. [4] multi-fidelity optimization
methods had, until that time (2006), been applicable only to
models where both the low-fidelity f(x ;) and high-fidelity
models g(zp) are defined over the same design space, i.e.
r; = xpg. Difficulties arise when the two design spaces
differ, in both dimensionality and content, i.e. x  # xp. For
example, in aircraft design a high-fidelity CFD model may

DESIGN VARIABLES: LOW-FIDELITY AND HIGHER-FIDELITY DESIGN
SPACE FOR PROPELLER, ELECTRIC MOTOR, STEAM TURBINE AND AC

GENERATOR
Model || Decision Variables
Propeller dprop, propeller diameter

Ag /Ao, propeller blade-area ratio
P/ D, pitch-diameter ratio
Z , number of propeller blades

Electric Motor | Pg s, maximum power

Steam Turbine Lgs, steam turbine power
€poiler» boiler superheat factor

Dboiler boiler pressure

Peondensers condenser pressure

| AC Generator || Lacgen, AC generator rated power |

require a detailed description of the aircraft geometry, while
the low-fidelity model may only require higher-level design
variables, such as wing area, aspect ratio and sweep.

The design space of the submarine propulsion multi-fidelity
simulation models employed in the following sections are
defined over the same design space dimensionality, to avoid
difficulties in mapping or inappropriate constraining of the
design. Nonetheless, the high-fidelity design space is evaluated
in more detail than its low-fidelity equivalent. Details of the
design variables used are given in Table I. Mapping between
low and high fidelity is achieved by inserting the low-fidelity
design variables directly into the higher-fidelity design space,
thus allowing the optimization to refine the values.

The low-fidelity models are derived and calibrated in the
form of efficiency maps, for the steam turbine, fgp, and
propeller, fp.op, With data coming from the higher-fidelity
models. Four design parameters are considered in each case:

Nprop = fprop(dprop; AE/A07 P/Dv Z)
nst = fST (LST; €boiler pboilempcondenser) (€))

The efficiency maps are lookup tables in four dimensions
with 20 points spread linearly, and simple linear interpolations
are performed. An efficiency map for the induction motor
was not necessary, since the well-known per-phase equivalent
circuit model has approximately the same computational cost
as an efficiency map with interpolation.

No empirical design space mapping algorithms are therefore
needed, nor any elaborate model management strategy to
facilitate the mapping of the design space. This is beneficial to



both the overall computational cost of the optimization process
and the complexity of its implementation.

B. Objective Functions

Six objective functions are considered here with the design
variables detailed in Table 1. The six objective functions (2)
are evaluated for four velocity profiles or mission scenarios.
Constraints are added to check the allowability of the size of
the electric motor, generator and steam turbine and the dryness
of the steam turbine cycle, giving a total of 24 objectives and
5 constraints. The optimization problem is thus clearly multi-
objective, and any attempt to reduce the number of objectives
would not be appropriate for a multi-role submarine.

maximize F) = 7prop, propeller efficiency
maximize Fy =ngys, electric motor efficiency
maximize F3 =mngr, steam turbine efficiency
maximize Fy = ngen, AC generator efficiency
minimize F5 = Pgpr, peak electric motor power
minimize Fg = Piotqr, total energy consumption

@)

C. The Hybrid Optimization Method

MOTS uses an effective and popular local search method
known as the Hooke and Jeeves (H&J) direct search method
[18]. This method combines a deterministic exploratory search
phase with a pattern search phase that embodies some of the
characteristics of more sophisticated gradient-based methods.
MOTS couples the H&J local search algorithm with a short
term memory to archive recently visited points, which are
“tabu” — the search is not allowed to revisit these points, a
medium term memory, to archive the explored Pareto front,
and an intensification memory (IM) which contains unexplored
Pareto front points. MOTS can also use a long term memory,
which facilitates diversification (global search). This is not
used here because global search is performed by MOGA using
low-fidelity models. Thus MOTS is combined with MOGA to
form a hybrid optimization framework.

The hybridization allows the two algorithms to function in
synergy, capitalising on MOGA’s ability to locate promising
regions in the search space and MOTS’ ability to refine designs
through local search. The reciprocal advantages and disadvan-
tages of both search methods result in a hybrid optimization
algorithm that is simultaneously global and precise, facilitating
the generation of refined design solutions from a large and
complex design space.

The hybrid optimization process follows Fig. 2:

1) Randomly create a population of initial designs.

2) MOGA performs global search optimization by evalua-
tion, selection, crossover and mutation for a number of
generations.

3) The number of generations for which MOGA is run can
be varied and terminates at the switch point,

4) 300 designs are randomly chosen from the Pareto front
produced by MOGA.

5) The selected designs are re-evaluated in the higher-
fidelity design space and their objective function values
archived.

6) Local search is performed on each selected design using
MOTS, with the Pareto front produced by MOGA used
as the initial IM.

7) Stop when the Pareto front shows no sign of change or
when a maximum number of cycles has been executed.

Each process within the optimization framework is inte-
grated into a single executable script that is run within Matlab.
This allows the effect of the switch point to be examined.

IV. HIGHER-FIDELITY SIMULATION MODELS
A. Propeller Simulation Model

In [1] an inverse propeller simulation model was introduced
based on polynomial regression analysis of the Wageningen B-
screw series of propellers. This model is extended to include
variations in the propeller pitch-diameter ratio P/ D, propeller
blade-area ratio A /Ao, and the number of propeller blades
Z . The values of the non-dimensional thrust coefficient K
and torque coefficient K ¢ are now expressed in terms of poly-
nomials, which are derived from multiple regression analysis
[19]:

Kr= % Cr,..())"(P/D)(Ap/A0)'Z"  (3)
s,t,u,v
Ko=) Co....(J)'(P/D)'(Ap/A0)"Z" (4

s,t,u,v

where J is the advance factor and the polynomial coefficients
Cr,,..,and Cq,, ., and the terms s, ¢, u, v are given in [19].

The derived regression polynomials can be used to evaluate
the K7 and K for the following design variable ranges:

2<Z <, ©)
0.5 < P/D < 1.40, ()
0.30 < Ap/Ao < 1.05. @)

It should be noted, however, that at the extremes of the
above ranges the results are slightly erroneous due to limita-
tions of the regression analysis [19]. Efficiency values at these
extremes must therefore be treated with caution.

B. Electric Motor Drive System Simulation Model

Rather than use an efficiency map to simulate the combined
efficiency of the induction motor and its converter [1], a
higher-fidelity model was derived and used in all cases. Based
on the conventional equivalent circuit technique, it allows the
drive electronics to impose full flux operation (a constant ratio
of voltage to frequency), with a small slip. This approach is
efficient in simulation as it also allows the ’full load torque’
constraint to be applied across the four scenarios and correct
matching to the propeller load and converter.
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Fig. 2. Hybrid optimization framework.

The useful mechanical power at the shaft or the input power
required at the shaft is:

Wy (t)Qr (t)

R@h,aftmted

Pshaft = (8)

where w,(t) and Q.(t) are the input variable rotor speed
and torque respectively, and Pspqyt,,,., 1S the maximum
power provided. Pspqf: can be calculated from power balance
considerations [20] as:

Pempu - wapuN;«m
_Pstraypu, N:l (9)

Pshaftpshaftpu

rated

where Py, and Psirqy,, are the friction + windage and stray
losses at full load, respectively, and Pey,,, is the electrome-
chanical power.

Efficiency: Using the inverse model, the stator current, stator

voltage, power factor and the input power, P Mip,, »are found.
The efficiency, ngas, is then:
Pshaft, w
nEM — PUrgted (10)
Ppu,.,,,

The electric motor simulation parameter values were pro-
vided by Converteam Ltd., through a confidentiality agreement
[20]. The simulation model results have been verified against
benchmark test results provided by Converteam Ltd. and the
simulation model is deemed representative of a typical MW
marine electric motor. The motor is scaled for each design
solution and the overall efficiency obtained as described. With
this approach, the motor is operated at all times within its
rated full load torque. The converter efficiency is applied as a
fixed 98% value.

C. Steam Turbine Cycle Simulation Model

In this section an inverse simulation model is presented
that covers the complete nuclear propulsion system, from the
nuclear steam-raising plant, feed pump and condenser, through
to the dryness of the steam turbine exhaust. The nuclear
propulsion plant consists of two basic systems: a primary
system and a secondary system.

The simulation model presented here simulates the sec-
ondary system. This system consists of a boiler, engine throt-
tle, steam turbine, condenser and feed pump. The system is
split into 5 sections or states and the steam cycle simulated
here is based on a non-ideal Rankine cycle that takes into
account the non-isentropic inefficiencies of the steam turbine,
nsT, and feed pump, 7,ump, and also the action of the engine
throttle. The efficiency of the complete nuclear propulsion
steam turbine cycle, 7g57¢ycie, can then be calculated.

The modelling assumptions made place limitations on the
model’s range of validity. By assuming the first row of the
steam turbine remains choked across all operating conditions,
the model becomes unreliable when propulsive loads are
very low. When propulsive loads are low the pressure drop
across the throttle is large and the difference between the
steam turbine inlet and outlet pressures reduces to an extent
that choked operation cannot be sustained. Consequently the
change in enthalpy across the steam turbine is underestimated,
as is the corresponding low-load system efficiency. Therefore
the results from the simulation model at low propulsive loads
must be treated with caution.

Verification of the simulation model against real-life test
data for nuclear submarine propulsion is difficult as test data
is not readily available. However, a comparison has been made
against simulation models provided by DSTL and Mathworks.

V. RESULTS

The output of the multi-objective optimization problem (2)
is a set of solutions approximating the Pareto-optimal set.
Here, the end result of the optimization is a set of ~1000
optimal designs for the 24 objectives, as shown in Fig 3.
Only four of the 15 meaningful pairings of objectives are
shown. The plot of motor size with propeller efficiency (top
left), as expected, does not show any conflict. Nonetheless,
each point is Pareto-optimal elsewhere in the 15 pairings.
The plot of energy consumption with propeller efficiency (top
right) shows that a high efficiency propeller is not necessarily
an overarching design consideration, and a high efficiency
propeller does not uniquely define a low energy consumption.

To establish the performance of the hybrid optimization
method, some measure of progress is required. The unary
epsilon indicator, €, was proposed by Zitzler et al. [21] and
makes direct use of the principle of Pareto-dominance, having
a direct relationship with the formation of the Pareto front.
The epsilon indicator is a measure of the smallest distance
one would need to translate every point in a set so that it
dominates a reference set.

To create a reference set of results, MOGA with higher-
fidelity models was run five times for 100 generations with
a population of 100 individuals, resulting in 10,000 design
evaluations in each run. The reference set is then the Pareto-
optimal set produced by combining the 5 Pareto-optimal sets
obtained [21]. The local search carried out with MOTS in the
hybrid optimizer was also run for 10,000 evaluations for com-
parison purposes following 100 generations of MOGA with
low-fidelity models (not shown). Fig. 4 shows the performance
of the two algorithms, with five similar runs of each.
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front projections for the Escort scenario, where red circles are the outcome
of a single run of the hybrid algorithm and the blue x’s are the outcome of a
single MOGA run with higher-fidelity models.
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It can be seen that the performance of the hybrid optimizer
with MOTS is good from the start and less varied than MOGA
with higher-fidelity models. It is worth noting that in most
cases the low-fidelity MOGA used in the hybrid optimization
is producing as good results as MOGA with higher-fidelity
models, at much lower cost. Within the 5 MOGA runs
with higher-fidelity models, quite varied performance can be
observed: one run converges fast (in around 2000 evaluations)
from a poor start, whereas another has a good start but
struggles to converge to a small epsilon value.
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Fig. 5. Epsilon indicator performance: comparison of means of 5 runs.

An investigation of the effect of switch point from low
fidelity/global search to higher fidelity/local search was carried
out. Results are presented in Fig. 5 for sp values of 50, 100
and 150, showing the mean performance of 5 runs for each
case. The starting point for MOTS with sp = 50 is worst,
as expected, and the local search does not recover the deficit.
The performance for sp = 100 and sp = 150 is similar, with
the latter making slightly more rapid progress.

The computational cost of executing the complete optimiza-
tion framework is studied in Table II. The computation was
carried out on a 2.40GHz two quad-core processor workstation
with 4GB of RAM, with the evaluations parallelized over the
8 cores. A single evaluation of a low-fidelity model takes
~4 seconds and a higher-fidelity model takes ~60 seconds,
and the total execution time for a single optimization run is
presented. Based on the observation that MOTS converges in
around half the evaluations required by MOGA with higher-
fidelity models, the computational cost saving is also approx-
imately half, as the time spent with MOGA in the hybrid
optimization is a small fraction of the total time.

VI. DISCUSSION

From these results it can be proposed that the hybrid sim-
ulation approach is a practical solution. However, preparation
of the low-fidelity models has a significant effect on the
outcome. Low-fidelity models could be developed by fixing
some parameter values, simplifying the equations and making
use of synthetic models or maps. With low-fidelity models,
where the design is in the conceptual design phase, reliable
fixed values may be adopted. However, a choice of typical
fixed values is unlikely to lead to successfully optimized
higher-fidelity models: careful consideration of the mapping
to the higher-fidelity models is required. Here, using all the
decision variables to develop efficiency maps leads to good
performance.

These results also show that a physically defined simplified



TABLE I

COMPUTATIONAL COST

Optimizer Low-fidelity Mapping with || Execution time [hr] Higher-fidelity || Execution time [hr] Total
model HF model with model with execution
evaluations evaluations low-fidelity evaluations higher-fidelity time [hr]

MOGA none none 10000 20.8333 20.8333
Hybrid sp @ 50 5000 300 1.3194 5000 10.4167 11.7361
Hybrid sp @ 100 10000 300 2.0139 5000 10.4167 12.4306
Hybrid sp @ 150 15000 300 2.7083 5000 10.4167 13.1250

model may perform better than a performance map, as the map
requires interpolation and scaling to find values. A synthetic
model capturing basic behaviour also requires evaluations
and scaling. Here the induction motor has a well-understood
equivalent circuit model that performs well when suitable
scaling is applied.

The switch point study shows that increasing sp improves
the optimization at a relatively low computational cost, Table
II. However, the linear interpolation between points in the
maps of the low-fidelity propeller model means there is
inherent error in low-fidelity designs. This source of error
is removed once the switch over has taken place, increasing
confidence in the optimized designs produced.

VII. CONCLUSIONS

The combination of MOGA for the initial investigation of
the designs followed by a MOTS-based local search resolves
the issues of slow MOGA convergence and MOTS’s lack of
speed. A long low-fidelity run is preferred. The induction
motor model used in the low-fidelity modelling is an example
of a multi-fidelity model and was found to work as well as an
efficiency map model whist retaining a great deal of physical
meaning, which allows bounds on the behaviour, scaling and
an operating regime to be applied appropriately. This work
shows that the initial low-fidelity run should have the same list
of design parameters as the high-fidelity optimization to ensure
that by the switching point the design space has been widely
explored — this is the defined function of MOGA in such
a multi-fidelity optimization. The hybrid optimization using
the low- and high-fidelity models showed that the operating
efficiency of the submarine components may be increased
by appropriate sizing and design within a computationally
affordable optimization framework.
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